

Panel Session: Pushing Distribution Grid Analytics to the Edge: Opportunities, Challenges and Best Practices

Federated Learning and Edge Computing Enabled Local Energy Markets

Li He and Jie Zhang The University of Texas at Dallas

Market Transition: From Centralized to Localized

How is the market developing?

Distributed Photovoltaic (PV)

Fast capacity expansion

New U.S. electricity-generating capacity additions, 2010-2021YTD

Residential installations and forecast, 2015-2026E

By 2035, solar energy has the potential to power 40% of the nation's electricity^[4]

https://rameznaam.com/2020/05/14/solars-future-is-insanely-cheap-2020/
 https://www.energy.gov/articles/doe-releases-solar-futures-study-providing-blueprint-zero-carbon-grid

Distributed Photovoltaic (PV)

Challenging with excess capacity

Growth in California's Solar Market¹ Quarterly by ZIP Code, 2007-Q4 to 2018-Q2

1. https://ilsr.org/visualizing-calif-booming-solar-market/

2. https://www.energy.gov/eere/articles/confronting-duck-curve-how-address-over-generation-solar-energy

- Negative prices and PV curtailment
- Quickly increased ramp after sunset
- Reverse power flow fed back to the grid

Energy Sharing and Storage

Net-metering is proposed to pay solar panels owners of sending energy back

Net-metering

Energy Storage & PV

1. https://www.energy.gov/eere/articles/no-roof-no-problem-shared-solar-programs-make-solar-possible-you

2. https://www.letsgosolar.com/consumer-education/community-solar/

3. https://solairgen.com/alternative-to-pv-system-net-energy-metering-improving-grid-stability/

4. https://www.eia.gov/todayinenergy/detail.php?id=49236

Local Electricity Market (LEM)

Market structure

Market structure: pros & cons

- (a) Pros: simple structure, centralized-control, existing lines Cons: low flexibility and reliability
- (b) Pros: centralized-control, high flexibility, reliability, and efficiency Cons: extra lines and entities
- (c) Pros: decentralized-control, high flexibility, reliability, and efficiency Cons: extra lines and entities, information security

IEEE

Power & Energy Society*

Agent-based LEM

Energy flow

Direct sharing	 Prosumers-agent-consumers Agent acts as a middleman
Buffered sharing	 Prosumers-agent-ES-consumers ES acts as a buffer, stores excess PV
Arbitraging from the grid	Grid-agent-ES-customersES stores energy during off-peak hours

He, L. and Zhang, J. Customized Prices Design for Agent-based Local Energy Market with PV and Energy Storage. NAPS 2021

Agent's objective function

• **Stage 1**: Minimize the trading cost with external grid

$$C^{h\sim H} = \sum_{t=h}^{H} \left[\pi_s^t \cdot \max\left(NL^t + x^t, 0 \right) + \pi_f^t \cdot \min\left(NL^t + x^t, 0 \right) + c \cdot |x^t| \right]$$

Aggregated ES schedule ES cost netload

$$s.t. \quad -\Lambda/C_{rate} \leq x^t \leq \Lambda/C_{rate}$$

$$SoC_{min} \leq SoC' \leq SoC_{max}$$

$$SoC^{t} = \begin{cases} SoC^{t-1} + x^{t} \cdot \eta, & x_{i}^{t} > 0\\ SoC^{t-1} + x^{t}/\eta, & x_{i}^{t} < 0 \end{cases}$$

• **Stage 2**: Maximize profit through internal pricing

 $P = \begin{cases} \sum \boldsymbol{\lambda_s} \odot \boldsymbol{E_b} - \sum \boldsymbol{\lambda_b} \odot \boldsymbol{E_s} - \pi_s \Delta E - c \cdot |\boldsymbol{x}|, & \Delta E \ge 0\\ \sum \boldsymbol{\lambda_s} \odot \boldsymbol{E_b} - \sum \boldsymbol{\lambda_b} \odot \boldsymbol{E_s} - \pi_f \Delta E - c \cdot |\boldsymbol{x}|, & \Delta E < 0 \end{cases}$

- s.t. $(\lambda_b, \lambda_s) \in [\pi_f, \pi_s]$ $E_b = \sum_{i=1}^{N_b} (l_i - pv_i)$ $E_s = \sum_{i=1}^{N_s} (pv_i - l_i)$
 - $\Delta E = E_b E_s + x$

- Price constraints ToU/FiT
- Total demand from buyers
- Total supply from sellers
- Balancing with the utility grid

Agent-based LEM

Customers' utility function

$$U_{i} = \begin{cases} k_{i} \ln(1+l_{i}) - \lambda_{s}(l_{i} - pv_{i}), & l_{i} \ge pv_{i} & \bullet \text{ Net Consumer} \\ k_{i} \ln(1+l_{i}) - \lambda_{b}(l_{i} - pv_{i}), & l_{i} < pv_{i} & \bullet \text{ Net Producer} \end{cases}$$

•

- Utility from consumption
- Cost of trading
- *K_i: consumption preferences*
- Strictly concave function
- Load shifting constraints
- $l_i^* = \arg \max U_i(k_i, l_i, pv_i, \lambda_b, \lambda_s)$

 $\begin{array}{ll} \textit{Optimal} \\ \textit{strategy} \end{array} \quad l_i^* = \left\{ \begin{array}{ll} k_i / \lambda_s - 1, & l_i \geq pv_i \\ k_i / \lambda_b - 1, & l_i < pv_i \end{array} \right.$

• Best response

Source: PecanStreet Dataport Date: Nov. 6, 2018 c5, c8, and c10 are consumers, others are prosumers

Power & Energy Society*

IEEE

LEM: Preliminary Results

Baseline: Time-of-use (ToU) price & Feed-in-tariff (FiT) price **Customized Pricing (CP):** Price discrimination between customers **Single uniform Pricing (SP):** No price discrimination

- C9 is offered the lowest selling price during 11:00-14:00
- C6 is offered the highest buying price during 11:00-17:00
- C3 and C5 are offered lower selling price at 9:00
- C4 and C6 are offered lower selling price at 10:00

- Uniform selling prices apply to all buyers
- Uniform buying prices apply to all sellers
- Internal prices are same with utility prices when no energy sharing occurs

Agent-based LEM

Current limitations:

- **1.** Perfect foresight of load and PV
- 2. Behind-the-meter PV generation is available
- 3. Privacy is not considered

Power & Energy Society*

Cyber-security and privacy challenges: concerns of data sharing

How could the private data be used?

What information your data can reveal:

- Appliances (flexibilities)
- Activities (preferences)

- Occupancy (routines)
- Probability of demand response (PDR)

1. Tang, G, et al. The meter tells you are at home! non-intrusive occupancy detection via load curve data. In 2015 IEEE International Conference on Smart Grid Communications.

2. He, L, et al. An Occupancy-Informed Customized Price Design for Consumers: A Stackelberg Game Approach. in IEEE Transactions on Smart Grid.

What information your data can reveal:

Netload curves of one prosumer in one month

Netload data:

- a) Consumption noises
- b) Gross load > 0
- c) Minimal netload < clear-sky generation

Table 1: Accuracy of BTM Disaggregation, MAPE [%]

c1	c2	c3	c4	c6	c7	c9	Agg
10.12	13.76	19.32	6.38	10.71	12.44	9.53	1.31

He, L. and Zhang, J. Customized Price Design for Energy Sharing in Agent-Based Local Electricity Markets with Behind-The-Meter Solar and Energy Storage. (under review)

How could your data be used?

Cyber attack

Burglary

Federated Learning and Edge Computing

How could the privacy be protected?

Step 4

Extension of previous LEM structure

Federated Learning **

- Agent generates the global forecasts without obtaining local datasets ۲
- Agent designs incentives for customers with potential additional datasets •
- Clients receive prices and determine load response on the edge of the network ۲

- **Non independent and identically distributed (Non-IID) dataset**
 - Members selection: choose the most correlated members (preliminary)
 - Robust learning rate: dynamically modify the learning rate (future work)

Identify the best combination of FL members

TABLE I									
Correlation coefficient between the aggregated and individual netload									
-									_
-1	~ ~ ~	07	04	05	06	07	68	0	

Agg	c1	c2	c3	c4	c5	c6	c7	c8	c9	c10
1	0.9189	0.9230	0.8521	0.8803	0.5067	0.9491	0.9159	0.1029	0.8609	0.2947

TABLE II						
GLOBAL FORECASTING PERFORMANCE (NRMSE) UNDER DIFFERENT MEMBERS SELECTION						

	c1	c2	c3	c4	c5	c6	с7	c8	c9	c10
M1	47.21%	47.07%	62.71%	45.08%	63.77%	24.09%	35.97%	37.59%	41.60%	30.27%
M2	22.59%	20.66%	19.93%	39.67%	16.03%		28.54%	24.00%	23.89%	44.95%
M3	24.81%		22.02%	31.86%	23.29%		26.05%	15.80%	27.75%	51.44%
M 4			22.49%	19.92%	24.95%		23.90%	20.15%	25.29%	36.14%
M5			22.68%	21.36%	25.20%			20.36%	24.82%	29.31%

He, L. and Zhang, J. Customized Price Design for Energy Sharing in Agent-Based Local Electricity Markets with Behind-The-Meter Solar and Energy Storage. (under review)

(a)	FL
(c)	Single LSTM

(b) FL + updates(d) Single LSTM + updates

	А	В	С	D
RMSE (kW)	6.4189	2.6962	7.8635	1.8263

Scenarios	(a)	(b)	(c)	(d)	Actual
Profits (\$)	10.48	11.13	10.05	11.41	11.75
Increase [%]	12.19	5.57	16.92	2.98	-

- (a) *vs.* (c): FL has better performance using jointly trained mode when there is no available data
- (b) *vs.* (d): Extra data helps in improving the single model
- Better forecasting accuracy yields higher profit in LEM

IEEE

Power & Energy Society*

Individual forecasting performance with extra data (privacy leakage)

(D1) No extra data
(D3) 1st half data
(D5) 1DA data

(D2) All historical data
(D4) 2nd half data
(D6) Full data with updates

 TABLE III

 Cost savings of PV prosumers [%] under FL model (A)

Cases	c1	c2	c3	c4	c6	c7	c9
D1	17.04	11.39	2.13	11.02	15.13	4.54	4.49
D5	4.71	4.87	2.11	1.34	8.01	4.53	4.45
D6	0.04	0.12	0.03	0.05	0.06	0.12	0.02

Extra data helps in improving the accuracy

- False data injection misleads the agent (D4 vs. D3)
- Limited data is enough to improve the accuracy (D5)
- Less leakage yields higher cost savings (D1>D5>D6)

Power & Energy Society*

Ongoing research:

- Robustness to Non-IID dataset
- Accountable FL Frameworks
- False data injection attack in FL

Q & A

Thanks!