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Tighter	integration	of	demand

• Tighter	margins	at	all	system	levels

• Scarcity	of	bottom	up load	models
– Nonexistent	(e.g.	humans)
– Not	shared	(e.g.	commercially	sensitive)

• Data-driven	load	models
– Descriptive	models:	anticipation
– Predictive	models:	control
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Load	model	space
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EXTRACTING	KNOWLEDGE	FROM	
SMART	METER	DATA
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Low	Carbon	London
• UK’s	first	dynamic	time-of-use	tariff

demand	response	trial (2013)

• 5536	households	with	smart	meters	

• 1119	households	took	part	in	
dynamic	time	of	use	trial
• Day	ahead	notification	of	prices	via	SMS	

and	in-home	displays
• Three	price	levels

• Default:	£0.1176/kWh
• Low:	£0.0399/kWh
• High:	£0.672/kWh



• 93	supply	following	events
• 45	high	price	events

(3-12	hours)
• 48	low	price	events

(3-24	hours)

• 13	constraint	management	
events

• high	price,	flanked	by	low	
prices

• primarily	targeted	at	
evening	peaks

• 1-3	consecutive	days	
(21	days	in	total)



Measured	response	to	events

Dataset	can	be	downloaded	from	UK	Data	Service	
www.ukdataservice.ac.uk ;	search	for	“Low	Carbon	London”



Extracting	knowledge	through	aggregation
single	event many	events

single	
household

many	
households

Topic	2:
Analysis	of	household	
responsiveness

Topic	1:
Analysis	of	aggregate	
response

Useful knowledge 
includes estimate of 

uncertainty!



Baselines	to	measure	responsiveness

𝐵	# =% 𝛼'𝑑),# + 𝛽)𝐴./.01/2#𝑑),# + 𝛾	t + 𝛿𝑇#
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)89

weekly	coupling	to
non-ToU group
consumption

weekly	profile trend	line

temperature	factor

Construct	a	linear	regression	model	for	the	baseline,	trained	on	non-event	days.	



Example	of	measured	response



How	good	is	the	baseline	model?
• Bootstrap	procedure	to	select	training	days
• Train	a	baseline	model	for	each	resampled	data	set.
• Compute	the	average	out-of-bag	error	for	each	
30min	settlement	block.

DR	block St Dev

30	mins 3.5%

3	hours 2.5%

6	hours 2.0%

relative	error baseline	error	model!



21	events

Overview	of	peak	shaving	events



Toward	predictive	use	of	models
Simplest	consistent	model:

Uncertainty in parameters	+	baseline	variability
𝑅;<=>?@A= = −0.079	×	 baseline	demand + (random	variation)

7.1%-8.8%

4%-12%
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Identifying	‘responsive’	households
Naive	approach:	Change	in	bills
Compare	actual	bill	with	hypothetical	bill	on	a	flat	tariff

Proposed	approach:	resampling
1. Compute	the	actual	bill	𝑏∗ using	the	actual	price	signal	𝑝# and	

consumption	𝑐#:

𝑏∗ =% 𝑝#𝑐#
Z

#89
2. Generate	randomised bills	tariffs	by	permuting	daily	price	signals

𝐵 =% 𝑝[(#)𝑐#
Z

#89
3. Compare	the	true	and	hypothetical	bills

James	Schofield,	Simon	Tindemans,	Goran	Strbac,	arXiv:1605.08078



Nonparametric	responsiveness	measure

Define	a	measure	of	responsiveness:

𝜑 = Pr(B > 𝑏∗)

𝐵 is	approximately	normal,	so	𝜑 has	an	intuitive	interpretation	
as	a	signal-to-noise	measure.	

𝐵 = random	variable
𝑏∗ =	actual	bill



Interpreting	per-household	responsiveness

What	makes	a	household	‘responsive’?
1. Deliberate	demand	response
2. ‘Accidental’	demand	response
3. Price	signal	bias,	relative	to	the	

population’s	consumption	pattern
eliminate

quantify

We	can	dig	deeper	using	data	from	a	control	group



Correcting	for	price	signal	bias

Evidence	of	price	signal	bias Evidence	of	significant	demand	response

Reparametrize	distribution	to	
correct	for	price	bias

𝜓 = 𝐹bcA#dce 𝜑



Quantifying	household	responsiveness

62%	of	households	are	part	of a	responsive	subpopulation

Each	household	has	probabilistic	measure	of	responsiveness:

corrected	responsiveness	(𝝍)	distribution

=0.38

Pr 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒 𝜓 =
𝑓 𝜓; 𝜆 − 𝜆
𝑓 𝜓; 𝜆



HIGH-DIMENSIONAL	LOAD	MODELLING	
FOR	MACHINE	LEARNING
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Use	case

• Comprehensive	Dynamic	Security	Assessment	requires
– Time-domain	simulations
– For	all	credible	contingencies
– For	a	range	of	scenarios
– On	a	number	of	timescales

• Use	machine	learning	to	construct	`proxies’	(aka	emulators)	
for	simulation	outcomes.	See	e.g.
– Panciatici,	P.,	Bareux,	G.	&	Wehenkel,	L.,	2012.	Operating	in	the	Fog:	

Security	Management	Under	Uncertainty.	IEEE	Power	and	Energy	
Magazine,	10(5)
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Requirements	for	probabilistic	model

• Model	multi-variate	stochastic	injections/loads	(100s)

• Correct	sampling	of	marginal	distributions

• Accurately	represent	dependencies	

• Can	be	used	to	sample	many representative	points
– Generate	larger	sample	pool	than	historical	data	alone!

25



Dependency	patterns
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Marginal probability distribution
15-minute load measurements, 3 months 
bus in the region of Nancy, France (2012)

Bivariate empirical distribution 
between two load points in the same 
region



Copulas:	Sklar’s theorem

Consider	𝑛 random	variables		𝑿 = 𝑋9,… , 𝑋A .

Independent variables	have	a	joint	probability	density	function
𝑓 𝑥9, … , 𝑥A = 𝑓9 𝑥9 …𝑓A(𝑥A)

Dependent variables	have	a	joint	PDF	that	can	be	written	as:
𝒇 𝒙𝟏, … , 𝒙𝒏 = 𝒄𝟏…𝒏(𝑭𝟏 𝒙𝟏 , … , 𝑭𝒏(𝒙𝒏)) { 𝒇𝟏 𝒙𝟏 …𝒇𝒏 𝒙𝒏

where	𝑐 is	the	multivariate	copula	density.	

27

Copulas	allow	decoupling	of	dependency	structure	and	marginals of	a	
multivariate	probability	function



Decoupling	marginals from	dependence
28
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marginals marginals



Multivariate	copulas

• Wide	variety	of	parametric	copulas	for	bivariate	case,	
but	limited	options	for	multivariate	distributions

• C-Vine	copula	(Bedford	and	Cooke,	2001)	uses	Pair	
copula	construction	(Joe,	1996)	to	construct	
multivariate	from	bivariate	copulas

• We	truncate	the	C-Vine	to	limit	impact	of	dimension

29



The	modelling	pipeline
30
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Does	it	work?

• 128	variables	(118	loads,	10	wind	generators)
• 3	months	data,	15-minute	intervals
• 10	clusters;	97.5%	variance	used	to	select	truncation;	C-vine	

parametrised	using	Clayton,	Frank,	Gaussian,	Gumbel,	
Student-t	copulas	(and	rotations)

• Generated	40,000	samples
• Test	on	1000	random	subsets	of	sample	and	historical	data
• Test	metrics

– Kolmogorov-Smirnov	for	marginals
– Energy	test	(Aslan	&	Zech,	2005)
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Statistical	match	to	historical	data
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Marginals (Kolmogorov Smirnov) Full distribution (energy test)



Impact	on	machine	learning
33

four different contingencies

MGC = multivariate Gaussian copula ; MGD = multivariate Gaussian distribution



Scaling	up

• Realistic	system	(French	grid)
– 1886	buses,	1955	lines
– 3808	variables
– 1980	credible	contingencies

• HPC	implementation	(10,000	cores;	223,500	core-hours)
– 9870	random	samples	processed
– 14M	dynamic	simulations
– 1.35	TB	of	impact	analysis	data	(for	machine	learning)

34

Konstantelos et al., IEEE Trans Smart Grid, 8(3), pp.1417–1426 (2017).



Summary

• Smart	meter	data
– Quantify	aggregate	demand	response	- and	uncertainty
– Quantify	household	responsiveness	probabilistically

• Transmission	level	data
– Data	driven	model	to	sample	‘typical’	scenarios

• Data	volume	may	not	be	Big,	but	is	large	and	growing
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Challenges	in	load	modelling
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dimensionality
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more data
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online analysis 
(incl detection of changes)
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