Flexible Coding for Distributed Systems

Zhiying Wang

Joint work with: Weiqi Li, Zhen Chen, Syed A. Jafar, Hamid Jafarkhani
June, 2022
IEEE ComSoc Orange County Chapter

UC University of
California, Irvine

Zhiying Wang Flexible Coding 1/38

Table of Contents

@ Introduction
© Flexible Storage Codes
© Flexible Matrix Multiplication

@ Conclusion

o F = = DA

Zhiying Wang Flexible Coding

Table of Contents

@ Introduction

Background

@ The amount of data and computation growth exponentially.
@ Scaling services: How to address growth?
“28.1 billion in 2020” “By 2020, each human being will
“40.9 billion forecasted for 2020"

“By 2020 exceed 26 billion
units worldwide.”

have an average of 51
connected devices”

-

2050
£)a >100 billion
2020
7 30 billion
l_‘ﬁl.‘u
: 2014 @
2009 10 billion
1975 2003 2.5 billion
1950 W 500 million
5000
= =3 = = E DAl
Zhiying Wang Flexible Coding

Background

Vertical “Scale up” Horizontal “Scale out”
@ Add more resources to one device. @ Run the service over multiple devices.
o Easier, but limited scale. @ Harder, but massive scale.
@ Single point of failure. o Failure tolerance.

JO 0 o099

R, Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and A. Rowstron, Scale-up vs scale-out for Hadoop: time to rethink?, ACM Symp. Cloud Comput, 2013. |

Zhiying Wang Flexible Coding

4/38

Background

@ Distributed systems are widely used for storage and computation.

information ﬁ

Encode

Encoded information @ @ @ @

Zhiying Wang Flexible Coding 5/38

Background

@ Distributed systems are widely used for storage and computation.

information ﬁ

Encode

Encoded information @ @ @

@ Number of nodes: n.
@ Dimension: k.

@ Recovery threshold: R.

Zhiying Wang Flexible Coding 5/38

Background

o Failures are frequent in distributed storage

@ This talk: information storage and computing with unknown failures

information ﬁ

Encode

Encoded information @ @

Zhiying Wang Flexible Coding

6/38

Table of Contents

© Flexible Storage Codes

Motivation

Fixed code can only make use of R nodes.

The rest nodes are wasted.

Each node downloading all symbols — large latency.
Question: storage codes with flexible recovery threshold R?

information ﬁ

Encode

Encoded information ‘ @ @ @
- £l

wasted downloading

W. Li, Z. Wang, T. Lu and H. Jafarkhani, Storage Codes with Flexible Number of Nodes, ArXiv:2106.11336, 2021.

D

Zhiying Wang Flexible Coding 7/38

Fixed MDS (Maximum Distance Separable) Code

@ MDS = minimum redundancy.

@ Applied in Google's Colossus, Facebook's f4, Yahoo Object Store, Baidu's Atlas...

Zhiying Wang Flexible Coding 8/38

Fixed MDS (Maximum Distance Separable) Code

ap | ax | a1 +ax | a1+ 2a2
b1 b2 b1 + b2 bl + 2b2
c1 Co 1+ o 1+ 2¢
e Example of an (n, k,¢) = (4,2, 3) fixed code.
@ Each node is a column with £ = 3 symbols.
© (4,2) MDS code is adopted in each row.

8/38

Fixed MDS (Maximum Distance Separable) Code

ap | ax | a1 +ax | a1+ 2a2
b1 b2 b1 + b2 bl + 2b2
c1 Co 1+ o 1+ 2¢

e Example of an (n, k,¢) = (4,2, 3) fixed code.

@ Each node is a column with £ = 3 symbols.

© (4,2) MDS code is adopted in each row.

o 2 failures: 2 nodes send all their symbols.

8/38

Fixed MDS (Maximum Distance Separable) Code

a1 | a | ag+a | a1 +2a
b1 b2 b1 + b2 bl + 2b2
c1 Co 1+ o 1+ 2¢

@ Question: is it possible to use all 3 nodes but each node sends fewer symbols?

Zhiying Wang Flexible Coding

Example of an (n, k, ¢) = (4,2, 3) fixed code.
Each node is a column with £ = 3 symbols.
(4,2) MDS code is adopted in each row.

2 failures: 2 nodes send all their symbols.

1 failure: 2 nodes send all their symbols.

8/38

Naive Solution

e Example of an (n, k, £) = (4,2, 3) naive flexible code.

Cl,l CI,Z C1,3 Wl

CZ,I CZ,Z C2,3 WZ
wyi [wr | W | Wy

Naive solution

@ (12,6) MDS code is adopted.

Zhiying Wang Flexible Coding 9/38

Naive Solution

e Example of an (n, k, £) = (4,2, 3) naive flexible code.

Clj 1 CL,Z Clj 3 W].

CZ,l C2,2 CZJE WZ
wi [wr | Wa | Wy

Naive solution

@ (12,6) MDS code is adopted.
@ 2 failures: 2 nodes send all their symbols.

Zhiying Wang Flexible Coding 9/38

Naive Solution

e Example of an (n, k, £) = (4,2, 3) naive flexible code.

Clj 1 CL,Z Clj 3 W].
CZ, 1 C2 2 CZJ 3 WZ
wi [wr | Wa | Wy

@ (12,6) MDS code is adopted.

Naive solution

@ 2 failures: 2 nodes send all their symbols.

o 1 failure: 3 nodes each sending 2 symbols.

Zhiying Wang Flexible Coding

9/38

Naive Solution

e Example of an (n, k,¢) = (4,2,3) naive flexible code.
Cljl Cl,Z Clj3 W].
CZ,l CZ,Z C2J3 WZ
wi [wr | Wa | Wy

(12,6) MDS code is adopted.

Zhiying Wang Flexible Coding

Naive solution

2 failures: 2 nodes send all their symbols.
1 failure: 3 nodes each sending 2 symbols.

Require a field size of at least |F| = n¢ = 12.

9/38

Related work

o [Jafarkhani-Hajiaghayi, 2014], first proposed flexible ideas.

e [Huang-Langberg-Kliewer-Bruck, 2016], flexible secret sharing.

o [Bitar-Rouayheb, 2016], flexible private information retrieval.

@ [Tamo-Ye-Barg, 2019], flexible MDS codes, focus on bandwidth instead of access.

e [Ramamoorthy-Tang-Vontobel, 2019], universal decodable matrices for flexible
matrix-vector multiplication.

Zhiying Wang Flexible Coding 10/38

Proposed Solution: flexible MDS Codes

e Example of an (n, k,¢) = (4,2, 3) flexible MDS code.

Cip [Cip |Gz | W Cip | Cip |Gz | WA W1’|
Co oo | Ca| ma | [[[cos| e |y
wy | wy | wr | wy wy | wy | owr | wy
Scenario 1: Scenario 2:
2 symbols are accessed in 3 nodes. 3 symbols are accessed in 2 nodes.

Row 1: (5,3) MDS code. W4, W/ are parities.

Row 2: (5,3) MDS code. Wa, Wj are parities.

Row 3: (4,2) MDS code. W/, Wj are information symbols, W5, W; are parities.
Field size |F| = 5.

Achieve optimal download of k¢ = 6 symbols for 1 or 2 failures.

Zhiying Wang Flexible Coding 11/38

Proposed Solution: flexible MDS Codes

e Example of an (n, k,¢) = (4,2, 3) flexible MDS code.

Cox [Con [Con [W1 o Jea|w [wy
Co oo | Ca| ma | [[[cos| e |y
wy | wy | wr | wy wy | wy | owr | wy
Scenario 1: Scenario 2:
2 symbols are accessed in 3 nodes. 3 symbols are accessed in 2 nodes.

@ General flexible construction: extra parities generated in upper layers and encoded to
lower layers.

@ Achieve optimal download of k¢ symbols.

Zhiying Wang Flexible Coding 11/38

Flexible LRC

LRC (Locally Recoverable Codes): when one node fails, only r helper nodes are accessed.
High performance in terms of energy and speed.

Applied in, e.g., Microsoft Azure.

Optimal LRC codes [Tamo-Barg, 2014] satisfy R = k + é —1.

Question: Flexible recovery threshold R for entire information + locality r for single node
recovery?

Zhiying Wang Flexible Coding 12/38

Flexible LRC

group 1 group 4
G| Gz | Gia3 Cii10 | G | Gaae
Layer 1
CGpoi1 | G2 | Gposz |- | G210 | G| G2
Layer2 | Co11 | Goi2 | (213 G0 | G | Qi

@ (n=12,k =4, = 3) code. Locality r = 2. Recovery threshold R = 5.

13/38

Zhiying Wang Flexible Coding

Flexible LRC

group 1 group 4
Ciar | Gaz | Gz |-+ | G0 | Gian | G
Layer 1
CGpoi1 | G2 | Gposz |- | G210 | G| G2
Layer2 | Co11 | Goi2 | (213 G0 | G | Qi

e (n=12k =4,¢ =3) code. Locality r = 2. Recovery threshold R = 5.

@ Can recover entire k¢ = 12 information symbols from:

e R, = R =5 nodes, each accessing ¢, = 3 symbols
e Ry = 8 nodes, each accessing /1 = 2 symbols
o Less failures, lower latency

Zhiying Wang Flexible Coding

13/38

Flexible LRC

group 1 group 4
Gai | Ga2 | Gas | - | Gaao | G | G
Layer 1
Gpo1 | Goo | Goz | -+ | Goio | Goi1 | G2
Layer2 | Gaa | Gao | Gaz | - | Griwo | G | G

@ Layer 1: fi(x) = (um,o + um18(x) + um,2g2(x)) + x(um73 + Umag(x) + u,,,,5g2(x))7 m=1,2.

Zhiying Wang Flexible Coding

14/38

Flexible LRC

group 1 group 4
Gai | Ga2 | Gas | - | Gaao | G | G
Layer 1
Gpo1 | Goo | Goz | -+ | Goio | Goi1 | G2
Layer 2 | Ga1 | G2 | Giz | - | Grio | Guru | G

@ Layer 1: fi(x) = (um,o + um18(x) + um,2g2(x)) + x(um73 + Umag(x) + u,,,)5g2(x))7 m=1,2.

o Layer 2: fi(x) = (A(a*) + fi(a®)g(x)) + x(f2(a*) + £(a”)g(x))-

Zhiying Wang Flexible Coding

14/38

Flexible LRC

group 1 group 4
Gai | Gaz2 | Gags G | Gau | G
Layer 1
Co1 | G2 | Gpogs G | Gou | G2
Layer 2 | G | Gao | G G | Guan | G

Code over F = GF(2*) = {0,1,q, ...

= {a3 a8 a'3}}. Extra group As =

{a*,a® a4},

{a,a® ot} Az =

Zhiying Wang Flexible Coding

Layer 1: fm(X) = (um,O + Um,lg(x) + um,2g2(x)) + X(Um,3 + Um,4g(x) + Um,5g2(x))7 m =
Layer 2: (x) = (R(0*) + fi(a)g(x)) + x(5(0%) + H(a%)g(x)).
,att) g(x) = x5

Evaluated at x€A={A1 ={1,a%all} A = {a?, o, a’?},

1,2.

14/38

Flexible LRC

group 1 group 4
L Gaii| Gz | Gags G| G | G
ayer 1
Cip1 | Cip2 | Cip3 Cip10 | Gip11 | Gipao
Layer 2 | Go1n | G122 | Gois G | G | G

o Locality: for x € A;:

fm(X) = (um70 + Um1+ Um72) + x(um,3 + Umg + Um,5), m=1,2.

f(x) = (A(a*) + f(a)) + x(H(a) + ().

@ All are linear functions of x. — Require r = 2 evaluations.
e Eg., As = {a* o, o'}, A(a?), A(a®) = A(al?)

Zhiying Wang Flexible Coding

15/38

Flexible LRC

group 1 group 4
G| Gz | Gia3 Cii10 | G | G
Layer 1
Cip1 | Gipo | Gipo3 Cip10 | Gio11 | G2
Layer 2 | Go11 | G2 | G G0 | G | Qi

@ Recovery from Ry = 8,41 = 2:

fn(x) = (Um,O + Um,lg(x) + Um,2g2(x)) + X(Um,3 + Um,4g(X) + Um,5g2(x))a m=1,2.

o fm(x) has degree 7. (g(x) = x3)

Zhiying Wang Flexible Coding

16/38

Flexible LRC

group 1 group 4
G| Gz | G Cii0 | G | G
Layer 1
G| G2 | Gpog3 G | Go11 | G
Layer 2 | Ga1 | Gz | Gags Giio | G | G

@ Recovery from Ry, = 5,4, = 3:

fn(X) = (Um,o + Um18(x) + Um28°(x)) + x(Uum3 + Umag(X) + Uumsg>(x)), m = 1,2.
fi(x) = (A(a*) + fi(a”)g(x) + x(f(a®) + f(a”)g(x)).

o f3(x) has degree 4 — fi(a*), fi(a?), K(a*), f(a?).

Zhiying Wang Flexible Coding

17/38

Flexible LRC

group 1 group 4
G| Gz | G Cii0 | G | G
Layer 1
G| G2 | Gpog3 G | Go11 | G
Layer 2 | Ga1 | Gz | Gags Giio | G | G

@ Recovery from Ry, = 5,4, = 3:

fn(X) = (Um,o + Um18(x) + Um28°(x)) + x(Uum3 + Umag(X) + Uumsg>(x)), m = 1,2.
fi(x) = (A(a*) + fi(a”)g(x) + x(f(a®) + f(a”)g(x)).

o f3(x) has degree 4 — fi(a*), fi(a?), K(a*), f(a?).
e Locality — f1(a!?), f(a*).

Zhiying Wang Flexible Coding

17/38

Flexible LRC

group 1 group 4
G| Gz | G Cii0 | G | G
Layer 1
G| G2 | Gpog3 G | Go11 | G
Layer 2 | Ga1 | Gz | Gags Giio | G | G

@ Recovery from Ry, = 5,4, = 3:

fm(X) = (Um,O + Um,lg(x) + um,2g2(X)) + X(Um,3 + Um,4g(X) + Um,5g2(X))a m=1,2.
fi(x) = (A(a®) + fi(a®)g(x)) + x(f(a*) + f2(a”)g(x)).
o f3(x) has degree 4 — fi(a*), f(a?), (a?), H(a®).

e Locality — f1(a!?), f(a*).
o Totally 8 evaluations in Layer 1.

Zhiying Wang Flexible Coding

17/38

Performance

@ Simulation in Amazon Cluster with 8 servers.
@ Matrix-vector multiplication is applied.

Average latency of fixed codes and flexible codes

0.05 T
0.045 1 b
0.04 | J
£ 0.035 J
>
[9)
c
2
< 003 b
0.025 1 b
Fixed code with (R,))=(4,15)
ol Fixed code with (R,)=(5,12) | |
0.0 Flexible code with
(R,l) = (4,15),(5,12)

015
1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Matrix size in each server

Zhiying Wang Flexible Coding 18/38

Table of Contents

© Flexible Matrix Multiplication

Motivation

@ Matrix multiplication is a central operation of linear algebra.
o Example applications: statistical physics, mathematical finance, machine learning.

Source A Source B

i - Partition and Encode matrices

u v] »
e @ @ @
Send computation results

Master

@ Matrix multiplication: A- B.

Zhiying Wang Flexible Coding 19/38

Motivation
o Fixed code can only make use of R servers.
@ The rest available servers are wasted.
@ Each available server computes all tasks — large latency.

Source A Source B

i . Partition and Encode matrices

-~ FOOL

Straggler
49 v Send computation results

wasted

Master

Zhiying Wang Flexible Coding

20/38

Flexible Matrix Multiplication

@ A flexible construction is provided for distributed matrix multiplication and the parameter
optimization is analyzed 1

W Li, Z Chen Z Wang, S.A. Jafar, H Jafarkhani, Flexible Constructions for Distributed Matrix
Multiplication, IEEE International Symposium on Information Theory (ISIT) 2021.

Zhiying Wang Flexible Coding 21/38

Problem Statement
e Functions of matrix A (and B) are sent to each server.
@ Each server performs computation on the functions.
@ The master collects computation results and recovers A - B.

Source A Source B

i . Partition and Encode matrices

-~ FOOL

Straggler
49 v Send computation results

wasted

Master

Zhiying Wang Flexible Coding

22/38

Problem Statement

@ Computation load L: the number of multiplications normalized by the total number of
multiplications required to multiply two matrices.

@ Goal: flexible algorithms with small computation load for unknown stragglers.

Source A Source B

e ©

Partition and Encode matrices

- 90008

Straggler + Send computation results
wasted

Master @

Zhiying Wang Flexible Coding 23/38

Problem Statement

@ Computation load L: the number of multiplications normalized by the total number of
multiplications required to multiply two matrices.

@ Goal: flexible algorithms with small computation load for unknown stragglers.

Source A Source B

¢ @©

Partition and Encode matrices

S s s s @ Tolerate up to n — R stragglers.

Servers . .
Eﬂ @ Stragglers are not known a priori.
Straggler i Send computation results

wasted

Master @

Zhiying Wang Flexible Coding 23/38

Related work

@ Coded matrix multiplication with fixed R.
[Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, ArXiv:1705.10464, 2017], [S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover,
IEEE Trans IT, 2020], [S. Dutta, Z. Bai, H. Jeong, T. Low, and P. Grover, ArXiv:1811.10751, 2018], [Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr,
IEEE Trans IT, 2020], [Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. Avestimehr, PMLR, 2019], [Z. Jia and S.A. Jafar, IEEE Trans

IT, 2021] ...

@ Flexible matrix-vector multiplication.
[R. Bitar, P. Parag, and S. E. Rouayheb, IEEE Trans Comm, 2020], [R. Bitar, Y. Xing, Y. Keshtkarjahromi, V. Dasari, S. E. Rouayheb, and H. Seferoglu,
ArXiv:1909.12611, 2019], [A. Ramamoorthy, L. Tang, and P. O. Vontobel, ISIT, 2019], [A. B. Das, L. Tang, and A. Ramamoorthy, ITW, 2018].

@ Flexible matrix multiplication with special partition.
[R. Bitar, M. Xhemrishi, and A. Wachter-Zeh, ArXiv:2101.05681, 2021], [B. Hasircioglu, J. Gémez-Vilardebd, and D. Giindiiz, ArXiv:2001.07227, 2020;
Global Comm, 2020], [S. Kiani, N. Ferdinand, and S. C. Draper, ISIT, 2018], [X. Fan, P. Soto, X. Zhong, D. Xi, Y. Wang, and J. Li, IWQoS, 2020], [A. B.

Das and A. Ramamoorthy, ArXiv:2012.06065,2020].

@ Flexible matrix multiplication with arbitrary partition remains an open problem.

Zhiying Wang Flexible Coding 24 /38

Main ldea

@ Recovery Profile {Ry,--- ,R,} instead of recovery threshold R.
@ Each server is assigned multiple small subtasks and finishes them sequentially.

@ With less stragglers, each server finishes fewer subtasks — low latency

Zhiying Wang Flexible Coding 25/38

Main ldea

@ Based on Entangled Polynomial codes!!].

@ Extra parities generated in upper layers and encoded to lower layers.

r==—=-=1 r==—=-=1
|48 | 4.8, |48 | A [4B | 1aB, 1 1 aB,
| ap | [wy [amy [e | Jencoding
IA;B; |A;B; l ALB: |A:;B;‘ |A;B; | —

Server1l Server2 Server3 Server4 Server5

| | Encoding

[1] Q. Yu, M.A. Maddah-Ali, A.S. Avestimehr, Straggler Mitigation in Distributed Matrix Multiplication: Fundamental Limits and Optimal Coding, IEEE Trans onJ

IT, 2020.

Zhiying Wang Flexible Coding

26/38

Example

o No stragglers: each server computes 1 task, computation load is %

Server 1 Server 2 Server 3 Server 4 Server 5

Ry =5,L= % [iler A™Y) | fifaz A%D) | £ (s 4%0) | 13 (e A7) | £3(ms, 47) |

Zhiying Wang Flexible Coding 27/38

Example

o 1 straggler: each server computes 2 tasks, computation load is %

Server 1 Server 2 Server 3 Server 4 Extra parity 2
Ry =51L=3 [a%0) | £ila A) | £l A7) [£ (@ A7) | fi{a, ATD)
Fola, ATV | fa(an, APY) | folag, A%) [£y AZD)
O Y AT P2 FECi

Zhiying Wang Flexible Coding 27/38

Example

@ 2 stragglers: each server computes 3 tasks, computation load is %

Server 1 Server 2 Server 3 Extra parity 2 Extra parity 3
Rl N 5’ L - % |f](al'A(L1)) |f1(a1,A"'U) | f1(a3| A(l‘n) | | f](fXJ-.AlL-\:_] | fl{ﬂxs}lll“'} |
Ry=3L=1 Lol ABDY | fo(ay, ABD) | fyfa, AZD)
2T fz(“"'ls/l'::') fg(a;.A‘z':-‘) JACH A'“‘)

Zhiying Wang Flexible Coding 27/38

Example

@ 3 stragglers: each server computes 6 tasks, computation load is 1.

Server 1 Server 2 Extra parity 1 Extra parity 2 Extra parity 3

Rl _ 57 L= % |f,(¢zl,A“-“) |f1(°z, A(I.l)) | | fl(m_A-l..J) | |f|{“:-44'l":] |f,(aK,A"“‘) |
Ry—3, L= 1 £, AZD) [£, (ty, ARD) ol ACY)
’ 6 Foley, ACY) | fy(ay, A2) falag A%P)

L L [;(_L!l,/l'”‘) I\(a;.A:J'I')
Ry =2,L= &1 (@, ACD) | f5(ay, ATD)
ol ABD) | fi(ar, 4%)

Zhiying Wang Flexible Cod 27/38

Performance

Let R be the number of available servers, R = 2,3,4,5.
Let p(R) be the probability of R available servers.

Expectation over the realizations of R,

E[Lfiex] = ZP = i)Lpex(R = i).

p(5) =0.7,p(2) = p(3) = p(4) = 0.1, E[Liex] = 0.45, E[Lgp] = 0.5.

Zhiying Wang Flexible Coding 28/38

Performance

@ Assume b servers. Each unit task in each server satisfies an

CDF of Latency for Example 1

exponential distribution.

08|
07}
06
Zost
04
03}

02

Latency for EP Code
Latency for flexible construction

0.1

J

|

L

6 7 8 9 10 11 12 13
Time slots

Zhiying Wang Flexible Coding

14

29 /38

Performance
@ Assume n =16, Ry = 15, R, = R = 11. 10% straggler probability for each server.

Comparison of flexible codes and fixed EP codes

0.17 T '

Fixed EP codes
0.16 2-layer flexible codes | |
015]
0.14]

o

o

w
T
.

Computation Load
=] =]
Y

o
T
.

0.09 []

0.07 ' ' '
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Storage constraint C

Zhiying Wang Flexible Coding 30/38

Example

o Partition:

o n= 5, R= 2, {R]_, Rz, Rg} = {5,3,2}.

B
A= [A1, A2, A3], B = | B>

B3

o & = E DAl
Zhiying Wang Flexible Coding

Example

o n= 5, R = 2, {Rl, R2, R3} = {5,3,2}.

o Partition:
By
A=[A1,A,A3],B= |B
B3
@ Encode:

Al + ajAx + 05,2/43, 04,231 + a;Bz + Bs.

Zhiying Wang Flexible Coding 31/38

Example

o n= 5, R = 2, {Rl, R2, R3} = {5,3,2}.

o Partition:
By
A=[A1,A,A3],B= |B
B3
@ Encode:

Al + ajAx + CM,ZA3, Oz,gBl + a;Bz + Bs.
o Layer 1 calculates:

A1Bs + ai(AB3 + A1Bo) + a?(A1 By + AxBy + A3B3) + a3 (A2B1 + A3Ba) + ot AsBy.

Zhiying Wang Flexible Coding 31/38

Example

e n= 5, R= 2, {Rl, R2, R3} = {5,3,2}.

o Partition:
By
A=[A1,A,A3],B= |B
B3
@ Encode:

A1+ aiAr + a?As, a?By + By + Bs.
o Layer 1 calculates:
A1Bs + aj(A2Bs + A1Ba) + o (A1B1 + ABa + A3B3) + a3 (A2B1 + A3Ba) + o AsBy.
@ If no stragglers, computation completes.

Zhiying Wang Flexible Coding 31/38

Example

o Layer 2: Handle the parities in Layer 1.

Aa, = (A1 + a7A2 + a2A3), B, = (02B1 + 7By + Ba).

o & = E DAl
Zhiying Wang Flexible Coding

Example
o Layer 2: Handle the parities in Layer 1.

Aa, = (A1 + a7A2 + a2A3), B, = (02B1 + 7By + Ba).

o Partition:

;oA B;
Aoz7 = [A17 2]7 BCW = B! .
2

@ Encode:

I+ aiAy, «;B] + B

Zhiying Wang Flexible Coding 32/38

Example
o Layer 2: Handle the parities in Layer 1.

Aoy = (AL + a7A2 + a2A3), B, = (a2B1 + a7B; + Bs).
o Partition:
/ / Bi
AOl7 = [A17 2]7Boé7 = |: Bé :| .
@ Encode:
’1 + a,-A'Q, a,—B{ + Bé.
o Layer 2 calculates:

ALBY + (AL By + AyBL) + a2 AL By,

Zhiying Wang Flexible Coding 32/38

Example
o Layer 2: Handle the parities in Layer 1.

Any = (AL + a7h2 + 05A3), Ba, = (a3B1 + a7 By + Bs).

o Partition:
o By
Aa, = [A17 2]7 Ba, = B |-
2
@ Encode:
|+ ;A ;B + B).
o Layer 2 calculates:
ALBY + (AL By + AyBL) + a2 AL By,

@ Same for Ay, Bag.
@ More matrices are sent to servers, while the matrices are smaller.

Zhiying Wang Flexible Coding

32/38

Example
@ Layer 3: Handle the parities in Layer 1 and 2.

A1) — ,fl(oéfi’,4(1~,1))7 AB32) — f2(0[6’,4(2~1))7 ABB3) — fz(a@,A(z’2))
8(3’1) = gl(a6a B(ll’l))a B(3,2) = g2(0(67 B(2’1))a B(3’3) = g2(a67 8(2’2))

o Partition: AGY = A7 BGY = B/ BY].

Zhiying Wang Flexible Coding 33/38

Example
@ Layer 3: Handle the parities in Layer 1 and 2.

A1) — fl(oéfi’A(Ll))7 AB32) — 7[2(0467/4(2’1))7 ABB3) — fz(a&A(ﬂ))

BGY = gi(as, B, BE2) = g(ag, B*Y), BGY = gy(as, BHY)

o Partition: AGY) =AY BB = B/ BJ].

@ Encode:
1, &(ai,aiBf + By.
o Layer 3 calculates:
AlBY + a;A]BY .
o Same for AG:2) B(3:2) AB3) B(G3)

Zhiying Wang Flexible Coding

33/38

Optimization

@ How to set the parameters
e number of layers
e recovery profile
e partitioning parameters

Ay Aap) Bay - Bun
a_ | Aev o Aes | g | Ben o Ben
Amai) - Amp) By - Bpn)

Zhiying Wang Flexible Coding 34/38

Optimization

@ Minimize the expectation
n
Elled =Y p(R =)Laex(R = i),
i=R

o Over the number of layers a.
o Over recovery profile {Ry,--- , R,}.
o Over the partitioning parameters p;, mj, nj, j € [a].

Zhiying Wang Flexible Coding 35/38

Optimization

@ Theorem. When the probability of no straggler is large enough, the maximum number of
layers is optimal.

e a=n— R+ 1 and recovery profile {Ry,--- ,R,} ={n,n—1,--- | R}.

Zhiying Wang Flexible Coding 36/38

Optimization

@ Theorem. When the probability of no straggler is large enough, the maximum number of
layers is optimal.
e a=n— R+ 1 and recovery profile {Ry,--- ,R,} ={n,n—1,--- | R}.
e pp is an integer around (R +1) — /(R +1)2 — (16Ax?u)/C2.
o pj =1,mjn; = R;, j > 2, matrix-vector multiplication.

Zhiying Wang Flexible Coding 36/38

Optimization

@ Theorem. When the probability of no straggler is large enough, the maximum number of
layers is optimal.
e a=n— R+ 1 and recovery profile {Ry,--- ,R,} ={n,n—1,--- | R}.
e pp is an integer around (R +1) — /(R +1)2 — (16Ax?u)/C2.
o pj =1,mjn; = R;, j > 2, matrix-vector multiplication.

o Key steps:
o Optimize p;, m;, nj given recovery profile.
e Given R; and R, the more layers, the better.
o Find the sufficient condition to set R; = n.

Zhiying Wang Flexible Coding 36/38

Optimization

@ Theorem. When the probability of no straggler is large enough, the maximum number of
layers is optimal.
e a=n— R+ 1 and recovery profile {Ry,--- ,R,} ={n,n—1,--- | R}.
e py is an integer around 3(R + 1) — 31/(R + 1)2 — (16Ax2p)/C2.
o pj =1,mjn; = R;, j > 2, matrix-vector multiplication.

@ n =50, R =40 and assume the number of stragglers follows a truncated binomial
distribution with parameter e. Then a=n— R+ 1 = 11 layers is optimal if € < 7.4%.

Zhiying Wang Flexible Coding 36/38

Table of Contents

@ Conclusion

Conclusion

@ Flexible constructions and optimizations for distributed storage and computing.

o & = E DAl
Zhiying Wang Flexible Coding

Conclusion

@ Flexible constructions and optimizations for distributed storage and computing.

@ Our flexible storage codes can be generalized to optimal flexible codes that tolerates
mixed types of failures (useful for flash drives and RAID) and minimizes the traffic during
single-node repair (useful for networked storage).

Zhiying Wang Flexible Coding 37/38

Conclusion

@ Flexible constructions and optimizations for distributed storage and computing.

@ Our flexible storage codes can be generalized to optimal flexible codes that tolerates
mixed types of failures (useful for flash drives and RAID) and minimizes the traffic during
single-node repair (useful for networked storage).

@ Our flexible matrix multiplication can be generalized to batch processing and secure
distributed matrix multiplication.

Zhiying Wang Flexible Coding 37/38

Conclusion

@ Flexible constructions and optimizations for distributed storage and computing.

@ Our flexible storage codes can be generalized to optimal flexible codes that tolerates
mixed types of failures (useful for flash drives and RAID) and minimizes the traffic during
single-node repair (useful for networked storage).

@ Our flexible matrix multiplication can be generalized to batch processing and secure
distributed matrix multiplication.

@ It is worthwhile to explore more applications of flexible constructions, such as federated
learning and secure multi-party computation.

Zhiying Wang Flexible Coding 37/38

Thank you!

o & = E A
Zhiying Wang Flexible Coding

