Flexible Coding for Distributed Systems

Zhiying Wang

Joint work with: Weiqi Li, Zhen Chen, Syed A. Jafar, Hamid Jafarkhani June, 2022 IEEE ComSoc Orange County Chapter

Zhiying Wang Flexible Coding 1/38

Table of Contents

- Introduction
- Plexible Storage Codes
- Flexible Matrix Multiplication
- 4 Conclusion

2/38

Zhiying Wang Flexible Coding

Table of Contents

- Introduction
- Plexible Storage Codes
- 3 Flexible Matrix Multiplication
- 4 Conclusion

- The amount of data and computation growth exponentially.
- Scaling services: How to address growth?

3/38

Zhiying Wang Flexible Coding

Vertical "Scale up"

- Add more resources to one device.
- Easier, but limited scale.
- Single point of failure.

Horizontal "Scale out"

- Run the service over multiple devices.
- Harder, but massive scale.
- Failure tolerance.

R, Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and A. Rowstron, Scale-up vs scale-out for Hadoop: time to rethink?, ACM Symp. Cloud Comput, 2013.

• Distributed systems are widely used for storage and computation.

Zhiying Wang Flexible Coding 5/38

• Distributed systems are widely used for storage and computation.

Encoded information

• Number of nodes: n.

• Dimension: k.

• Recovery threshold: R.

Zhiying Wang Flexible Coding 5 / 38

- Failures are frequent in distributed storage
- This talk: information storage and computing with unknown failures

Zhiying Wang Flexible Coding 6/38

Table of Contents

- Introduction
- Plexible Storage Codes
- 3 Flexible Matrix Multiplication
- 4 Conclusion

Motivation

- Fixed code can only make use of R nodes.
- The rest nodes are wasted.
- ullet Each node downloading all symbols o large latency.
- Question: storage codes with flexible recovery threshold R?

W. Li, Z. Wang, T. Lu and H. Jafarkhani, Storage Codes with Flexible Number of Nodes, ArXiv:2106.11336, 2021.

- MDS = minimum redundancy.
- Applied in Google's Colossus, Facebook's f4, Yahoo Object Store, Baidu's Atlas...

Zhiying Wang Flexible Coding 8 / 38

a_1	a ₂	$a_1 + a_2$	$a_1 + 2a_2$
b_1	b_2	$b_1 + b_2$	$b_1 + 2b_2$
c_1	<i>c</i> ₂	$c_1 + c_2$	$c_1 + 2c_2$

- Example of an $(n, k, \ell) = (4, 2, 3)$ fixed code.
- \bullet Each node is a column with $\ell=3$ symbols.
- (4,2) MDS code is adopted in each row.

Zhiying Wang Flexible Coding 8 / 38

a_1	a ₂	$a_1 + a_2$	$a_1 + 2a_2$
b_1	b_2	$b_1 + b_2$	$b_1 + 2b_2$
c_1	<i>c</i> ₂	$c_1 + c_2$	$c_1 + 2c_2$

- Example of an $(n, k, \ell) = (4, 2, 3)$ fixed code.
- \bullet Each node is a column with $\ell=3$ symbols.
- (4,2) MDS code is adopted in each row.
- 2 failures: 2 nodes send all their symbols.

Zhiying Wang Flexible Coding 8/38

a_1	a ₂	$a_1 + a_2$	$a_1 + 2a_2$
b_1	b_2	$b_1 + b_2$	$b_1 + 2b_2$
c_1	<i>c</i> ₂	$c_1 + c_2$	$c_1 + 2c_2$

- Example of an $(n, k, \ell) = (4, 2, 3)$ fixed code.
- \bullet Each node is a column with $\ell=3$ symbols.
- (4,2) MDS code is adopted in each row.
- 2 failures: 2 nodes send all their symbols.
- 1 failure: 2 nodes send all their symbols.
- Question: is it possible to use all 3 nodes but each node sends fewer symbols?

Zhiying Wang Flexible Coding 8/38

• Example of an $(n, k, \ell) = (4, 2, 3)$ naive flexible code.

C _{1,1}	C _{1,2}	C _{1,3}	W_1
C _{2,1}	C _{2,2}	C _{2,3}	W_2
W_1'	W_2'	W_3'	W_4'

Naive solution

• (12,6) MDS code is adopted.

Zhiying Wang Flexible Coding 9 / 38

• Example of an $(n, k, \ell) = (4, 2, 3)$ naive flexible code.

C _{1,1}	C _{1,2}	C _{1,3}	W_1
C _{2,1}	C _{2,2}	C _{2,3}	W_2
W_1'	W_2'	W_3'	W_4'

Naive solution

- (12,6) MDS code is adopted.
- 2 failures: 2 nodes send all their symbols.

Zhiying Wang Flexible Coding 9 / 38

• Example of an $(n, k, \ell) = (4, 2, 3)$ naive flexible code.

C _{1,1}	C _{1,2}	C _{1,3}	W_1
C _{2,1}	C _{2,2}	C _{2,3}	W_2
W_1'	W_2'	W_3'	W_4'

Naive solution

- (12,6) MDS code is adopted.
- 2 failures: 2 nodes send all their symbols.
- 1 failure: 3 nodes each sending 2 symbols.

Zhiying Wang Flexible Coding 9/38

• Example of an $(n, k, \ell) = (4, 2, 3)$ naive flexible code.

C _{1,1}	C _{1,2}	C _{1,3}	W_1
C _{2,1}	C _{2,2}	C _{2,3}	W_2
W_1'	W_2'	W_3'	W_4'

Naive solution

- (12,6) MDS code is adopted.
- 2 failures: 2 nodes send all their symbols.
- 1 failure: 3 nodes each sending 2 symbols.
- Require a field size of at least $|\mathbb{F}| = n\ell = 12$.

Zhiying Wang Flexible Coding 9/38

Related work

- [Jafarkhani-Hajiaghayi, 2014], first proposed flexible ideas.
- [Huang-Langberg-Kliewer-Bruck, 2016], flexible secret sharing.
- [Bitar-Rouayheb, 2016], flexible private information retrieval.
- [Tamo-Ye-Barg, 2019], flexible MDS codes, focus on bandwidth instead of access.
- [Ramamoorthy-Tang-Vontobel, 2019], universal decodable matrices for flexible matrix-vector multiplication.

Zhiying Wang Flexible Coding 10/38

Proposed Solution: flexible MDS Codes

• Example of an $(n, k, \ell) = (4, 2, 3)$ flexible MDS code.

C _{1,1}	C _{1,2}	C _{1,3}	W_1
C _{2,1}	C _{2,2}	C _{2,3}	W_2
W_1'	W_2'	W_3'	W_4'

C _{1,1}	C _{1,2}	C _{1,3}	W_1	W_1'
C _{2,1}	C _{2,2}	C _{2,3}	W_2	W_2'
W_1'	W_2'	W_3'	W_4'	

Scenario 1:

Scenario 2:

2 symbols are accessed in 3 nodes.

3 symbols are accessed in 2 nodes.

- Row 1: (5,3) MDS code. W_1, W'_1 are parities.
- Row 2: (5,3) MDS code. W_2, W'_2 are parities.
- Row 3: (4,2) MDS code. W'_1, W'_2 are information symbols, W'_3, W'_4 are parities.
- Field size $|\mathbb{F}| = 5$.
- Achieve optimal download of $k\ell = 6$ symbols for 1 or 2 failures.

11/38

Zhiying Wang Flexible Coding

Proposed Solution: flexible MDS Codes

• Example of an $(n, k, \ell) = (4, 2, 3)$ flexible MDS code.

C _{1,1}	C _{1,2}	C _{1,3}	W_1
C _{2,1}	C _{2,2}	C _{2,3}	W_2
W_1'	W_2'	W_3'	W_4'

C _{1,1}	C _{1,2}	C _{1,3}	W_1	W_1'
C _{2,1}	C _{2,2}	C _{2,3}	W_2	W_2'
W_1'	W_2'	W_3'	W_4'	

Scenario 1:

Scenario 2:

2 symbols are accessed in 3 nodes.

3 symbols are accessed in 2 nodes.

- General flexible construction: extra parities generated in upper layers and encoded to lower layers.
- Achieve optimal download of $k\ell$ symbols.

Zhiying Wang Flexible Coding 11/38

- LRC (Locally Recoverable Codes): when one node fails, only r helper nodes are accessed.
- High performance in terms of energy and speed.
- Applied in, e.g., Microsoft Azure.
- Optimal LRC codes [Tamo-Barg, 2014] satisfy $R = k + \frac{k}{r} 1$.
- Question: Flexible recovery threshold *R* for entire information + locality *r* for single node recovery?

Zhiying Wang Flexible Coding 12/38

	group 1			 group 4		
Laver 1	$C_{1,1,1}$	$C_{1,1,2}$	$C_{1,1,3}$	 $C_{1,1,10}$	$C_{1,1,11}$	$C_{1,1,12}$
Layer 1	$C_{1,2,1}$	$C_{1,2,2}$	$C_{1,2,3}$	 $C_{1,2,10}$	$C_{1,2,11}$	$C_{1,2,12}$
Layer 2	$C_{2,1,1}$	$C_{2,1,2}$	$C_{2,1,3}$	 $C_{2,1,10}$	$C_{2,1,11}$	$C_{2,1,12}$

• $(n = 12, k = 4, \ell = 3)$ code. Locality r = 2. Recovery threshold R = 5.

Zhiying Wang Flexible Coding 13 / 38

		group 1			group 4	
Laver 1	$C_{1,1,1}$	$C_{1,1,2}$	$C_{1,1,3}$	 $C_{1,1,10}$	$C_{1,1,11}$	$C_{1,1,12}$
Layer 1	$C_{1,2,1}$	$C_{1,2,2}$	$C_{1,2,3}$	 $C_{1,2,10}$	$C_{1,2,11}$	$C_{1,2,12}$
Layer 2	$C_{2,1,1}$	$C_{2,1,2}$	$C_{2,1,3}$	 $C_{2,1,10}$	$C_{2,1,11}$	$C_{2,1,12}$

- $(n = 12, k = 4, \ell = 3)$ code. Locality r = 2. Recovery threshold R = 5.
- Can recover entire $k\ell=12$ information symbols from:
 - $R_2=R=5$ nodes, each accessing $\ell_2=3$ symbols
 - $R_1=8$ nodes, each accessing $\ell_1=2$ symbols
 - Less failures, lower latency

Zhiying Wang Flexible Coding 13 / 38

	group 1		 group 4			
Lavor 1	$C_{1,1,1}$	$C_{1,1,2}$	$C_{1,1,3}$	 $C_{1,1,10}$	$C_{1,1,11}$	$C_{1,1,12}$
Layer 1	$C_{1,2,1}$	$C_{1,2,2}$	$C_{1,2,3}$	 $C_{1,2,10}$	$C_{1,2,11}$	$C_{1,2,12}$
Layer 2	$C_{2,1,1}$	$C_{2,1,2}$	$C_{2,1,3}$	 $C_{2,1,10}$	$C_{2,1,11}$	$C_{2,1,12}$

• Layer 1:
$$f_m(x) = (u_{m,0} + u_{m,1}g(x) + u_{m,2}g^2(x)) + x(u_{m,3} + u_{m,4}g(x) + u_{m,5}g^2(x)), m = 1, 2.$$

Zhiying Wang Flexible Coding 14/38

		group 1			group 4	
Lavor 1	$C_{1,1,1}$	$C_{1,1,2}$	$C_{1,1,3}$	 $C_{1,1,10}$	$C_{1,1,11}$	$C_{1,1,12}$
Layer 1	$C_{1,2,1}$	$C_{1,2,2}$	$C_{1,2,3}$	 $C_{1,2,10}$	$C_{1,2,11}$	$C_{1,2,12}$
Layer 2	$C_{2,1,1}$	$C_{2,1,2}$	$C_{2,1,3}$	 $C_{2,1,10}$	$C_{2,1,11}$	$C_{2,1,12}$

• Layer 1:
$$f_m(x) = (u_{m,0} + u_{m,1}g(x) + u_{m,2}g^2(x)) + x(u_{m,3} + u_{m,4}g(x) + u_{m,5}g^2(x)), m = 1, 2.$$

• Layer 2:
$$f_3(x) = (f_1(\alpha^4) + f_1(\alpha^9)g(x)) + x(f_2(\alpha^4) + f_2(\alpha^9)g(x)).$$

Zhiying Wang Flexible Coding 14/38

		group 1			group 4	
Lavor 1	$C_{1,1,1}$	$C_{1,1,2}$	$C_{1,1,3}$	 $C_{1,1,10}$	$C_{1,1,11}$	$C_{1,1,12}$
Layer 1	$C_{1,2,1}$	$C_{1,2,2}$	$C_{1,2,3}$	 $C_{1,2,10}$	$C_{1,2,11}$	$C_{1,2,12}$
Layer 2	$C_{2,1,1}$	$C_{2,1,2}$	$C_{2,1,3}$	 $C_{2,1,10}$	$C_{2,1,11}$	$C_{2,1,12}$

- Layer 1: $f_m(x) = (u_{m,0} + u_{m,1}g(x) + u_{m,2}g^2(x)) + x(u_{m,3} + u_{m,4}g(x) + u_{m,5}g^2(x)), m = 1, 2.$
- Layer 2: $f_3(x) = (f_1(\alpha^4) + f_1(\alpha^9)g(x)) + x(f_2(\alpha^4) + f_2(\alpha^9)g(x)).$
- Code over $\mathbb{F} = GF(2^4) = \{0, 1, \alpha, ..., \alpha^{14}\}.$ $g(x) = x^3.$
- Evaluated at: $x \in A = \{A_1 = \{1, \alpha^5, \alpha^{10}\}, A_2 = \{\alpha, \alpha^6, \alpha^{11}\}, A_3 = \{\alpha^2, \alpha^7, \alpha^{12}\}, A_4 = \{\alpha^3, \alpha^8, \alpha^{13}\}\}$. Extra group $A_5 = \{\alpha^4, \alpha^9, \alpha^{14}\}.$

Zhiying Wang Flexible Coding 14/38

		group 1			group 4	
Lavor 1	$C_{1,1,1}$	$C_{1,1,2}$	$C_{1,1,3}$	 $C_{1,1,10}$	$C_{1,1,11}$	$C_{1,1,12}$
Layer 1	$C_{1,2,1}$	$C_{1,2,2}$	$C_{1,2,3}$	 $C_{1,2,10}$	$C_{1,2,11}$	$C_{1,2,12}$
Layer 2	$C_{2,1,1}$	$C_{2,1,2}$	$C_{2,1,3}$	 $C_{2,1,10}$	$C_{2,1,11}$	$C_{2,1,12}$

• Locality: for $x \in A_i$:

$$f_m(x) = (u_{m,0} + u_{m,1} + u_{m,2}) + x(u_{m,3} + u_{m,4} + u_{m,5}), m = 1, 2.$$

$$f_3(x) = (f_1(\alpha^4) + f_1(\alpha^9)) + x(f_2(\alpha^4) + f_2(\alpha^9)).$$

- All are linear functions of x. \rightarrow Require r = 2 evaluations.
- E.g., $A_5 = \{\alpha^4, \alpha^9, \alpha^{14}\}, f_1(\alpha^4), f_1(\alpha^9) \to f_1(\alpha^{14})$

Zhiying Wang Flexible Coding 15/38

		group 1			group 4	
Laver 1	$C_{1,1,1}$	$C_{1,1,2}$	$C_{1,1,3}$	 $C_{1,1,10}$	$C_{1,1,11}$	$C_{1,1,12}$
Layer 1	$C_{1,2,1}$	$C_{1,2,2}$	$C_{1,2,3}$	 $C_{1,2,10}$	$C_{1,2,11}$	$C_{1,2,12}$
Layer 2	$C_{2,1,1}$	$C_{2,1,2}$	$C_{2,1,3}$	 $C_{2,1,10}$	$C_{2,1,11}$	$C_{2,1,12}$

• Recovery from $R_1 = 8, \ell_1 = 2$:

$$f_m(x) = \left(u_{m,0} + u_{m,1}g(x) + u_{m,2}g^2(x)\right) + x\left(u_{m,3} + u_{m,4}g(x) + u_{m,5}g^2(x)\right), m = 1, 2.$$

• $f_m(x)$ has degree 7. $(g(x) = x^3)$

Zhiying Wang Flexible Coding 16/38

		group 1			group 4	
Laver 1	$C_{1,1,1}$	$C_{1,1,2}$	$C_{1,1,3}$	 $C_{1,1,10}$	$C_{1,1,11}$	$C_{1,1,12}$
Layer 1	$C_{1,2,1}$	$C_{1,2,2}$	$C_{1,2,3}$	 $C_{1,2,10}$	$C_{1,2,11}$	$C_{1,2,12}$
Layer 2	$C_{2,1,1}$	$C_{2,1,2}$	$C_{2,1,3}$	 $C_{2,1,10}$	$C_{2,1,11}$	$C_{2,1,12}$

• Recovery from $R_2 = 5$, $\ell_2 = 3$:

$$f_m(x) = (u_{m,0} + u_{m,1}g(x) + u_{m,2}g^2(x)) + x(u_{m,3} + u_{m,4}g(x) + u_{m,5}g^2(x)), m = 1, 2.$$

$$f_3(x) = (f_1(\alpha^4) + f_1(\alpha^9)g(x)) + x(f_2(\alpha^4) + f_2(\alpha^9)g(x)).$$

• $f_3(x)$ has degree $4 \rightarrow f_1(\alpha^4), f_1(\alpha^9), f_2(\alpha^4), f_2(\alpha^9)$.

Zhiying Wang Flexible Coding 17/38

		group 1			group 4	
Laver 1	$C_{1,1,1}$	$C_{1,1,2}$	$C_{1,1,3}$	 $C_{1,1,10}$	$C_{1,1,11}$	$C_{1,1,12}$
Layer 1	$C_{1,2,1}$	$C_{1,2,2}$	$C_{1,2,3}$	 $C_{1,2,10}$	$C_{1,2,11}$	$C_{1,2,12}$
Layer 2	$C_{2,1,1}$	$C_{2,1,2}$	$C_{2,1,3}$	 $C_{2,1,10}$	$C_{2,1,11}$	$C_{2,1,12}$

• Recovery from $R_2 = 5$, $\ell_2 = 3$:

$$f_{m}(x) = (u_{m,0} + u_{m,1}g(x) + u_{m,2}g^{2}(x)) + x(u_{m,3} + u_{m,4}g(x) + u_{m,5}g^{2}(x)), m = 1, 2.$$

$$f_{3}(x) = (f_{1}(\alpha^{4}) + f_{1}(\alpha^{9})g(x)) + x(f_{2}(\alpha^{4}) + f_{2}(\alpha^{9})g(x)).$$

- $f_3(x)$ has degree $4 \to f_1(\alpha^4), f_1(\alpha^9), f_2(\alpha^4), f_2(\alpha^9)$.
- Locality $\rightarrow f_1(\alpha^{14}), f_2(\alpha^{14}).$

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < C

Zhiying Wang Flexible Coding 17/38

		group 1			group 4	
Laver 1	$C_{1,1,1}$	$C_{1,1,2}$	$C_{1,1,3}$	 $C_{1,1,10}$	$C_{1,1,11}$	$C_{1,1,12}$
Layer 1	$C_{1,2,1}$	$C_{1,2,2}$	$C_{1,2,3}$	 $C_{1,2,10}$	$C_{1,2,11}$	$C_{1,2,12}$
Layer 2	$C_{2,1,1}$	$C_{2,1,2}$	$C_{2,1,3}$	 $C_{2,1,10}$	$C_{2,1,11}$	$C_{2,1,12}$

• Recovery from $R_2 = 5$, $\ell_2 = 3$:

$$f_{m}(x) = (u_{m,0} + u_{m,1}g(x) + u_{m,2}g^{2}(x)) + x(u_{m,3} + u_{m,4}g(x) + u_{m,5}g^{2}(x)), m = 1, 2.$$

$$f_{3}(x) = (f_{1}(\alpha^{4}) + f_{1}(\alpha^{9})g(x)) + x(f_{2}(\alpha^{4}) + f_{2}(\alpha^{9})g(x)).$$

- $f_3(x)$ has degree $4 \to f_1(\alpha^4), f_1(\alpha^9), f_2(\alpha^4), f_2(\alpha^9)$.
- Locality $\rightarrow f_1(\alpha^{14}), f_2(\alpha^{14}).$
- Totally 8 evaluations in Layer 1.

|ロト 4回 ト 4 恵 ト 4 恵 ト | 恵 | 夕 Q G

Zhiying Wang Flexible Coding 17/38

Performance

- Simulation in Amazon Cluster with 8 servers.
- Matrix-vector multiplication is applied.

Table of Contents

- Introduction
- Plexible Storage Codes
- Service The Service of the Servic
- 4 Conclusion

Motivation

- Matrix multiplication is a central operation of linear algebra.
- Example applications: statistical physics, mathematical finance, machine learning.

• Matrix multiplication: $A \cdot B$.

Zhiying Wang Flexible Coding 19 / 38

Motivation

- Fixed code can only make use of R servers.
- The rest available servers are wasted.
- ullet Each available server computes all tasks o large latency.

Flexible Matrix Multiplication

 A flexible construction is provided for distributed matrix multiplication and the parameter optimization is analyzed ¹

Problem Statement

- Functions of matrix A (and B) are sent to each server.
- Each server performs computation on the functions.
- The master collects computation results and recovers $A \cdot B$.

Problem Statement

- Computation load *L*: the number of multiplications normalized by the total number of multiplications required to multiply two matrices.
- Goal: flexible algorithms with small computation load for unknown stragglers.

Problem Statement

- Computation load *L*: the number of multiplications normalized by the total number of multiplications required to multiply two matrices.
- Goal: flexible algorithms with small computation load for unknown stragglers.

- Tolerate up to n R stragglers.
- Stragglers are not known a priori.

Related work

• Coded matrix multiplication with fixed R.

[Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, ArXiv:1705.10464, 2017], [S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, IEEE Trans IT, 2020], [S. Dutta, Z. Bai, H. Jeong, T. Low, and P. Grover, ArXiv:1811.10751, 2018], [Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, IEEE Trans IT, 2020], [Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. Avestimehr, PMLR, 2019], [Z. Jia and S.A. Jafar, IEEE Trans IT, 2021] ...

- Flexible matrix-vector multiplication.
 - [R. Bitar, P. Parag, and S. E. Rouayheb, IEEE Trans Comm, 2020], [R. Bitar, Y. Xing, Y. Keshtkarjahromi, V. Dasari, S. E. Rouayheb, and H. Seferoglu, ArXiv:1909.12611, 2019], [A. Ramamoorthy, L. Tang, and P. O. Vontobel, ISIT, 2019], [A. B. Das, L. Tang, and A. Ramamoorthy, ITW, 2018].
- Flexible matrix multiplication with special partition.
 - [R. Bitar, M. Xhemrishi, and A. Wachter-Zeh, ArXiv:2101.05681, 2021], [B. Hasırcıoğlu, J. Gómez-Vilardebó, and D. Gündüz, ArXiv:2001.07227, 2020; Global Comm, 2020], [S. Kiani, N. Ferdinand, and S. C. Draper, ISIT, 2018], [X. Fan, P. Soto, X. Zhong, D. Xi, Y. Wang, and J. Li, IWQoS, 2020], [A. B. Das and A. Ramamoorthy, ArXiv:2012.06065,2020].
- Flexible matrix multiplication with arbitrary partition remains an open problem.

◆ロト ◆団 ト ◆ 三 ト ◆ 三 ・ 夕 ○ ○

Main Idea

- Recovery Profile $\{R_1, \dots, R_a\}$ instead of recovery threshold R.
- Each server is assigned multiple small subtasks and finishes them sequentially.
- ullet With less stragglers, each server finishes fewer subtasks o low latency

Main Idea

- Based on Entangled Polynomial codes^[1].
- Extra parities generated in upper layers and encoded to lower layers.

Server 1 Server 2 Server 3 Server 4 Server 5

[1] Q. Yu, M.A. Maddah-Ali, A.S. Avestimehr, Straggler Mitigation in Distributed Matrix Multiplication: Fundamental Limits and Optimal Coding, IEEE Trans on IT. 2020.

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久 ②

• No stragglers: each server computes 1 task, computation load is $\frac{1}{3}$.

• 1 straggler: each server computes 2 tasks, computation load is $\frac{1}{2}$.

$$R_1 = 5, L = \frac{1}{3}$$

$$R_2 = 3, L = \frac{1}{6}$$

27 / 38

Zhiving Wang

• 2 stragglers: each server computes 3 tasks, computation load is $\frac{2}{3}$.

	Server 1	Server 2	Server 3	Server 4	Server 5	Extra parity 1	Extra parity 2 Extra parity 3
$R_1=5, L=\tfrac{1}{3}$	$f_1\big(\alpha_1,A^{(1,1)}\big)$	$f_1(\alpha_2, A^{(1,1)})$	$f_1(\alpha_3, A^{(1,1)})$	$f_1(\alpha_4,A^{(1,1)})$	$f_1(\alpha_5, A^{(1,1)})$	$f_1(\alpha_6, A^{(1,1)})$	$f_1(\alpha_7, A^{(1,1)}) f_1(\alpha_8, A^{(1,1)})$
$R_2=3, L=\tfrac{1}{6}$				$f_2(\alpha_4, A^{(2,1)})$ $f_2(\alpha_4, A^{(2,2)})$	$f_2(\alpha_5, A^{(2,1)})$ $f_2(\alpha_5, A^{(2,2)})$		
	,				$f_3(\alpha_5, A^{(3,2)})$		

• 3 stragglers: each server computes 6 tasks, computation load is 1.

Server 2

 $f_2(\alpha_2, A^{(2,1)})$

 $f_2(\alpha_2, A^{(2,2)})$

 $f_1(\alpha_1, A^{(1,1)}) \quad f_1(\alpha_2, A^{(1,1)})$

Server 1

 $f_2(\alpha_1, A^{(2,1)})$

 $f_2(\alpha_1, A^{(2,2)})$

$$R_1=5, L=\tfrac{1}{3}$$

$$R_2 = 3, L = \frac{1}{6}$$

$$R_3 = 2, L = \frac{1}{6}, \frac{1}{12}$$

$f_3(\alpha_1, A^{(3,1)})$	$f_3(\alpha_2, A^{(3,1)})$	$f_3(\alpha_3, A^{(3,1)})$	
$f_3(\alpha_1, A^{(3,2)})$	$f_3(\alpha_2, A^{(3,2)})$	$f_3(\boldsymbol{\alpha}_3, \boldsymbol{A}^{(3,2)})$	
$f_3(\alpha_1,A^{(3,3)})$	$f_3(\alpha_2,A^{(3,3)})$	$f_3(\boldsymbol{\alpha}_3, \boldsymbol{A}^{(3,3)})$	

Extra parity 1 Extra parity 2 Extra parity 3

$f_2(\alpha_6, A^{(2,1)})$	$A^{(2,1)} = f_1(\alpha_{\gamma}, A^{(1,1)})$
$f_2(\alpha_6, A^{(2,2)})$	$ A^{(2,2)} = f_1(\alpha_8, A^{(1,1)})$

$$A^{(3,1)} = f_1(\alpha_6, A^{(1,1)})$$

$$A^{(3,2)} = f_2(\alpha_6, A^{(2,1)})$$

27 / 38

Performance

- Let \hat{R} be the number of available servers, $\hat{R}=2,3,4,5$.
- Let $p(\hat{R})$ be the probability of \hat{R} available servers.
- Expectation over the realizations of \hat{R} ,

$$E[L_{\text{flex}}] = \sum_{i=2}^{5} p(\hat{R} = i) L_{\text{flex}}(\hat{R} = i).$$

• p(5) = 0.7, p(2) = p(3) = p(4) = 0.1, $E[L_{flex}] = 0.45$, $E[L_{EP}] = 0.5$.

Performance

• Assume 5 servers. Each unit task in each server satisfies an exponential distribution.

Performance

• Assume $n = 16, R_1 = 15, R_2 = R = 11$. 10% straggler probability for each server.

- $n = 5, R = 2, \{R_1, R_2, R_3\} = \{5, 3, 2\}.$
- Partition:

$$A = [A_1, A_2, A_3], B = \begin{bmatrix} B_1 \\ B_2 \\ B_3 \end{bmatrix}$$

- $n = 5, R = 2, \{R_1, R_2, R_3\} = \{5, 3, 2\}.$
- Partition:

$$A = [A_1, A_2, A_3], B = \begin{bmatrix} B_1 \\ B_2 \\ B_3 \end{bmatrix}$$

• Encode:

$$A_1 + \alpha_i A_2 + \alpha_i^2 A_3$$
, $\alpha_i^2 B_1 + \alpha_i B_2 + B_3$.

- $n = 5, R = 2, \{R_1, R_2, R_3\} = \{5, 3, 2\}.$
- Partition:

$$A = [A_1, A_2, A_3], B = \begin{bmatrix} B_1 \\ B_2 \\ B_3 \end{bmatrix}$$

Encode:

$$A_1 + \alpha_i A_2 + \alpha_i^2 A_3, \quad \alpha_i^2 B_1 + \alpha_i B_2 + B_3.$$

Layer 1 calculates:

$$A_1B_3 + \alpha_i(A_2B_3 + A_1B_2) + \alpha_i^2(A_1B_1 + A_2B_2 + A_3B_3) + \alpha_i^3(A_2B_1 + A_3B_2) + \alpha_i^4A_3B_1.$$

- $n = 5, R = 2, \{R_1, R_2, R_3\} = \{5, 3, 2\}.$
- Partition:

$$A = [A_1, A_2, A_3], B = \begin{bmatrix} B_1 \\ B_2 \\ B_3 \end{bmatrix}$$

• Encode:

$$A_1 + \alpha_i A_2 + \alpha_i^2 A_3$$
, $\alpha_i^2 B_1 + \alpha_i B_2 + B_3$.

Layer 1 calculates:

$$A_1B_3 + \alpha_i(A_2B_3 + A_1B_2) + \alpha_i^2(A_1B_1 + A_2B_2 + A_3B_3) + \alpha_i^3(A_2B_1 + A_3B_2) + \alpha_i^4A_3B_1.$$

• If no stragglers, computation completes.

< ロ > ∢回 > ∢ 回 > ∢ 直 > ~ 直 ・ の Q ○

• Layer 2: Handle the parities in Layer 1.

$$A_{\alpha_7} = (A_1 + \alpha_7 A_2 + \alpha_7^2 A_3), B_{\alpha_7} = (\alpha_7^2 B_1 + \alpha_7 B_2 + B_3).$$

• Layer 2: Handle the parities in Layer 1.

$$A_{\alpha_7} = (A_1 + \alpha_7 A_2 + \alpha_7^2 A_3), B_{\alpha_7} = (\alpha_7^2 B_1 + \alpha_7 B_2 + B_3).$$

Partition:

$$A_{\alpha_7} = [A'_1, A'_2], B_{\alpha_7} = \begin{bmatrix} B'_1 \\ B'_2 \end{bmatrix}.$$

• Encode:

$$A_1' + \alpha_i A_2', \quad \alpha_i B_1' + B_2'.$$

• Layer 2: Handle the parities in Layer 1.

$$A_{\alpha_7} = (A_1 + \alpha_7 A_2 + \alpha_7^2 A_3), B_{\alpha_7} = (\alpha_7^2 B_1 + \alpha_7 B_2 + B_3).$$

Partition:

$$A_{\alpha_7} = [A'_1, A'_2], B_{\alpha_7} = \begin{bmatrix} B'_1 \\ B'_2 \end{bmatrix}.$$

• Encode:

$$A_1' + \alpha_i A_2', \quad \alpha_i B_1' + B_2'.$$

• Layer 2 calculates:

$$A'_1B'_2 + \alpha_i(A'_1B'_1 + A'_2B'_2) + \alpha_i^2A'_2B'_1.$$

• Layer 2: Handle the parities in Layer 1.

$$A_{\alpha_7} = (A_1 + \alpha_7 A_2 + \alpha_7^2 A_3), B_{\alpha_7} = (\alpha_7^2 B_1 + \alpha_7 B_2 + B_3).$$

Partition:

$$A_{\alpha_7} = [A'_1, A'_2], B_{\alpha_7} = \begin{bmatrix} B'_1 \\ B'_2 \end{bmatrix}.$$

Encode:

$$A_1' + \alpha_i A_2', \quad \alpha_i B_1' + B_2'.$$

Layer 2 calculates:

$$A_1'B_2' + \alpha_i(A_1'B_1' + A_2'B_2') + \alpha_i^2A_2'B_1'.$$

- Same for $A_{\alpha_8}, B_{\alpha_8}$.
- More matrices are sent to servers, while the matrices are smaller.

• Layer 3: Handle the parities in Layer 1 and 2.

$$A^{(3,1)} = f_1(\alpha_6, A^{(1,1)}), \quad A^{(3,2)} = f_2(\alpha_6, A^{(2,1)}), \quad A^{(3,3)} = f_2(\alpha_6, A^{(2,2)})$$

$$B^{(3,1)} = g_1(\alpha_6, B^{(1,1)}), \quad B^{(3,2)} = g_2(\alpha_6, B^{(2,1)}), \quad B^{(3,3)} = g_2(\alpha_6, B^{(2,2)})$$

• Partition: $A^{(3,1)} = A_1'', B^{(3,1)} = [B_1'', B_2''].$

• Layer 3: Handle the parities in Layer 1 and 2.

$$A^{(3,1)} = f_1(\alpha_6, A^{(1,1)}), \quad A^{(3,2)} = f_2(\alpha_6, A^{(2,1)}), \quad A^{(3,3)} = f_2(\alpha_6, A^{(2,2)})$$

$$B^{(3,1)} = g_1(\alpha_6, B^{(1,1)}), \quad B^{(3,2)} = g_2(\alpha_6, B^{(2,1)}), \quad B^{(3,3)} = g_2(\alpha_6, B^{(2,2)})$$

- Partition: $A^{(3,1)} = A_1'', B^{(3,1)} = [B_1'', B_2''].$
- Encode:

$$A_1'', g_3(\alpha_i, \alpha_i B_1'' + B_2'')$$

Layer 3 calculates:

$$A_1''B_2'' + \alpha_i A_1''B_1''.$$

• Same for $A^{(3,2)}$, $B^{(3,2)}$, $A^{(3,3)}$, $B^{(3,3)}$.

4日 > 4周 > 4 恵 > 4 恵 > ・ 恵 ・ 夕 Q ⊙

- How to set the parameters
 - number of layers
 - recovery profile
 - partitioning parameters

$$A = \begin{bmatrix} A_{(1,1)} & \cdots & A_{(1,p)} \\ A_{(2,1)} & \cdots & A_{(2,p)} \\ \vdots & \vdots & \vdots \\ A_{(m,1)} & \cdots & A_{(m,p)} \end{bmatrix}, B = \begin{bmatrix} B_{(1,1)} & \cdots & B_{(1,n)} \\ B_{(2,1)} & \cdots & B_{(2,n)} \\ \vdots & \vdots & \vdots \\ B_{(p,1)} & \cdots & B_{(p,p)} \end{bmatrix}.$$

Minimize the expectation

$$E[L_{\text{flex}}] = \sum_{i=R}^{n} p(\hat{R} = i) L_{\text{flex}}(\hat{R} = i),$$

- Over the number of layers a.
- Over recovery profile $\{R_1, \dots, R_a\}$.
- Over the partitioning parameters $p_j, m_j, n_j, j \in [a]$.

• Theorem. When the probability of no straggler is large enough, the maximum number of layers is optimal.

• a = n - R + 1 and recovery profile $\{R_1, \dots, R_a\} = \{n, n - 1, \dots, R\}$.

• Theorem. When the probability of no straggler is large enough, the maximum number of layers is optimal.

- a = n R + 1 and recovery profile $\{R_1, \dots, R_a\} = \{n, n 1, \dots, R\}$.
- p_1 is an integer around $\frac{1}{2}(R+1) \frac{1}{2}\sqrt{(R+1)^2 (16\lambda\kappa^2\mu)/C^2}$.
- $p_j = 1$, $m_j n_j = R_j$, $j \ge 2$, matrix-vector multiplication.

• Theorem. When the probability of no straggler is large enough, the maximum number of layers is optimal.

- a = n R + 1 and recovery profile $\{R_1, \dots, R_a\} = \{n, n 1, \dots, R\}$.
- p_1 is an integer around $\frac{1}{2}(R+1) \frac{1}{2}\sqrt{(R+1)^2 (16\lambda\kappa^2\mu)/C^2}$.
- $p_j = 1$, $m_j n_j = R_j$, $j \ge 2$, matrix-vector multiplication.
- Key steps:
 - Optimize p_j, m_j, n_j given recovery profile.
 - Given R_1 and R, the more layers, the better.
 - Find the sufficient condition to set $R_1 = n$.

 Theorem. When the probability of no straggler is large enough, the maximum number of layers is optimal.

- a = n R + 1 and recovery profile $\{R_1, \dots, R_a\} = \{n, n 1, \dots, R\}$.
- p_1 is an integer around $\frac{1}{2}(R+1)-\frac{1}{2}\sqrt{(R+1)^2-(16\lambda\kappa^2\mu)/C^2}$.
- $p_i = 1, m_i n_i = R_i, j \ge 2$, matrix-vector multiplication.

• n=50, R=40 and assume the number of stragglers follows a truncated binomial distribution with parameter ϵ . Then a=n-R+1=11 layers is optimal if $\epsilon<7.4\%$.

Table of Contents

- Introduction
- Plexible Storage Codes
- 3 Flexible Matrix Multiplication
- 4 Conclusion

• Flexible constructions and optimizations for distributed storage and computing.

- Flexible constructions and optimizations for distributed storage and computing.
- Our flexible storage codes can be generalized to optimal flexible codes that tolerates mixed types of failures (useful for flash drives and RAID) and minimizes the traffic during single-node repair (useful for networked storage).

- Flexible constructions and optimizations for distributed storage and computing.
- Our flexible storage codes can be generalized to optimal flexible codes that tolerates mixed types of failures (useful for flash drives and RAID) and minimizes the traffic during single-node repair (useful for networked storage).
- Our flexible matrix multiplication can be generalized to batch processing and secure distributed matrix multiplication.

37 / 38

- Flexible constructions and optimizations for distributed storage and computing.
- Our flexible storage codes can be generalized to optimal flexible codes that tolerates mixed types of failures (useful for flash drives and RAID) and minimizes the traffic during single-node repair (useful for networked storage).
- Our flexible matrix multiplication can be generalized to batch processing and secure distributed matrix multiplication.
- It is worthwhile to explore more applications of flexible constructions, such as federated learning and secure multi-party computation.

Thank you!