Massive MIMO Communications with One-Bit Quantization
Lee Swindlehurst
Center for Pervasive Communications and Computing
University of California Irvine
Hans Fischer Senior Fellow, Institute for Advanced Study
Technical University of Munich
Massive MIMO Communications with One-Bit Quantization

Collaborators:
Amine Mezghani, Yongzhi Li, Amodh Saxena, Hessam Pirzadeh, Chuili Kong, Deying Kong, Shilpa Rao (UCI)
Hela Jedda, Josef Nossek, Wolfgang Utschick (TU Munich, Germany)
Inbar Fijalkow (Univ. Cergy-Pontoise, France)
Gonzalo Seco Granados (Univ. Autònoma de Barcelona, Spain)
<table>
<thead>
<tr>
<th>Name</th>
<th>Research Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ender Ayanoglu</td>
<td>Wireless Communications & Networks</td>
</tr>
<tr>
<td>Nader Bagherzadeh</td>
<td>Computer Architecture Network-on-a-Chip</td>
</tr>
<tr>
<td>Ahmed Eltawil</td>
<td>System & Circuit Architectures for Wireless Communications</td>
</tr>
<tr>
<td>Michael Green</td>
<td>Analog Integrated Circuit Design for Communications Systems</td>
</tr>
<tr>
<td>Payam Heydari</td>
<td>High-Frequency Analog and RF Integrated Circuit Design</td>
</tr>
<tr>
<td>Syed Jafar</td>
<td>Multiuser Information Theory Wireless Communications</td>
</tr>
<tr>
<td>Hamid Jafarkhani (Director)</td>
<td>Coding and Communication Theory Wireless Networks</td>
</tr>
<tr>
<td>Athina Markopoulou</td>
<td>Network Protocols & Algorithms Network Coding & Security</td>
</tr>
<tr>
<td>A. Lee Swindlehurst</td>
<td>Signal Processing Wireless Communications</td>
</tr>
<tr>
<td>Zhiying Wang</td>
<td>Information and Coding Theory Data Storage, Genomic Information</td>
</tr>
</tbody>
</table>
The Spectral Crunch

- More active mobile wireless devices than people on the planet
- Ubiquitous wireless access is now a commodity
 - emergency services
 - e-Health
 - environmental monitoring
 - smart grid
 - vehicular communications
- And private uses: communications, internet, HDTV on demand, gaming
- To meet growing needs, we need 1000x more throughput!
- Current systems don’t have any more bandwidth available
What if we knew that in 5 years, we would need to handle 1000x more traffic?
The Road to Gigabit Wireless (5G and Beyond)

- How do we get to Gb/s wireless links?

- Three symbiotic trends emerging:
 - Deployment of pico- and femto-cells (OoM decrease in cell size)
 Build more roads, closer together
 - Millimeter wave frequencies (OoM increase in bandwidth)
 Build wider roads
 - Massive MIMO (OoM increase in antennas)
 Stack the roads on top of each other!
(1) “Pico” and “Femto” Cells
(2) Millimeter Wave Frequencies (30-300 Ghz)
(2) Millimeter Wave Frequencies (30-300 Ghz)
(2) Millimeter Wave Frequencies (30-300 Ghz)
(3) Massive Multi-Input Multi-Output (MIMO) Antenna Arrays

Lund University

Rice University

Nokia/Mitsubishi
A Symbiotic Relationship

- Millimeter wave frequencies
 - short wavelengths
 - larger propagation losses, shorter range operation
 - little multipath, line-of-sight (LOS) or near-LOS
 - low SNR
 - larger Doppler shifts, more sensitive to mobility

- Massive antenna arrays
 - large array gain
 - size proportional to wavelength
 - narrow, focused beamforming

- Small cells
 - short range
 - lower power
 - low mobility
 - interference-limited
A Symbiotic Relationship

- Millimeter wave frequencies
 - short wavelengths
 - larger propagation losses, shorter range operation
 - little multipath, line-of-sight (LOS) or near-LOS
 - low SNR
 - larger Doppler shifts, more sensitive to mobility

- Massive antenna arrays
 - large array gain
 - size proportional to wavelength
 - narrow, focused beamforming

- Small cells
 - short range
 - lower power
 - low mobility
 - interference-limited
A Symbiotic Relationship

- Millimeter wave frequencies
 - short wavelengths
 - larger propagation losses, shorter range operation
 - little multipath, line-of-sight (LOS) or near-LOS
 - low SNR
 - larger Doppler shifts, more sensitive to mobility

- Massive antenna arrays
 - large array gain
 - size proportional to wavelength
 - narrow, focused beamforming

- Small cells
 - short range
 - lower power
 - low mobility
 - interference-limited
A Symbiotic Relationship

- Millimeter wave frequencies
 - short wavelengths
 - larger propagation losses, shorter range operation
 - little multipath, line-of-sight (LOS) or near-LOS
 - low SNR
 - larger Doppler shifts, more sensitive to mobility

- Massive antenna arrays
 - large array gain
 - size proportional to wavelength
 - narrow, focused beamforming

- Small cells
 - short range
 - lower power
 - low mobility
 - interference-limited
A Symbiotic Relationship

- Millimeter wave frequencies
 - short wavelengths
 - larger propagation losses, shorter range operation
 - little multipath, line-of-sight (LOS) or near-LOS
 - low SNR
 - larger Doppler shifts, more sensitive to mobility

- Massive antenna arrays
 - large array gain
 - size proportional to wavelength
 - narrow, focused beamforming

- Small cells
 - short range
 - lower power
 - low mobility
 - interference-limited
A Symbiotic Relationship

- Millimeter wave frequencies
 - short wavelengths
 - larger propagation losses, shorter range operation
 - little multipath, line-of-sight (LOS) or near-LOS
 - low SNR
 - larger Doppler shifts, more sensitive to mobility

- Massive antenna arrays
 - large array gain
 - size proportional to wavelength
 - narrow, focused beamforming

- Small cells
 - short range
 - lower power
 - low mobility
 - interference-limited
A Symbiotic Relationship

- Millimeter wave frequencies
 - short wavelengths
 - larger propagation losses, shorter range operation
 - little multipath, line-of-sight (LOS) or near-LOS
 - low SNR
 - larger Doppler shifts, more sensitive to mobility

- Massive antenna arrays
 - large array gain
 - size proportional to wavelength
 - narrow, focused beamforming

- Small cells
 - short range
 - lower power
 - low mobility
 - interference-limited

Research Group: Exploiting Antenna Arrays for Next-Generation Wireless Systems
“Smart” Antenna Systems

- interference reduction

Interference 1

Interference 2

User 1

User 2
“Smart” Antenna Systems

- interference reduction
- multiplexing users in space
- at high SNR, M antennas can yield M-fold gain in rate w/out bandwidth expansion
“Smart” Antenna Systems

- interference reduction
- multiplexing users in space
- at high SNR, M antennas can yield M-fold gain in rate w/out bandwidth expansion
- antenna degrees of freedom also used for nulling
- in general, to increase rate by R and null J jammers, need $M=R+J$ antennas

Interference 1

user 1

user 2

Interference 2
“Smart” Antenna Systems

- interference reduction
- multiplexing users in space
- at high SNR, M antennas can yield M-fold gain in rate without bandwidth expansion
- antenna degrees of freedom also used for nulling
- in general, to increase rate by R and null J jammers, need $M=R+J$ antennas
- another alternative: reduce transmit power (increase battery life) for same quality
“Smart” Antenna Systems

- interference reduction
- multiplexing users in space
- at high SNR, M antennas can yield M-fold gain in rate without bandwidth expansion
- antenna degrees of freedom also used for nulling
- in general, to increase rate by R and null J jammers, need $M=R+J$ antennas
- another alternative: reduce transmit power (increase battery life) for same quality
- user 1 and user 2 can be different antennas for the same user: MIMO

Interference 1

user 1

user 2

Interference 2
Massive Antenna Arrays for Wireless

The advantages of multiple antennas in wireless communications is by now well known:

- improved coverage
- improved diversity
- increased spectral efficiency
- reduced interference

MIMO is an important component of current WiFi and 4G-LTE standards
Massive Antenna Arrays for Wireless

The advantages of multiple antennas in wireless communications is by now well known:

- improved coverage
- improved diversity
- increased spectral efficiency
- reduced interference

MIMO is an important component of current WiFi and 4G-LTE standards

Current implementations employ relatively few (< 10) antennas, improvements in spectral efficiency are rather modest
Massive Antenna Arrays for Wireless

The advantages of multiple antennas in wireless communications is by now well known:
- improved coverage
- improved diversity
- increased spectral efficiency
- reduced interference

MIMO is an important component of current WiFi and 4G-LTE standards

Current implementations employ relatively few (< 10) antennas, improvements in spectral efficiency are rather modest

At millimeter wave frequencies, on- or near-chip antennas produce a small Footprint for large arrays; e.g., a 12x12 array @ 30 GHz is less than 6”x6”
Standard Receiver Implementation

- Full precision ADC requires linear, low-noise amplifiers and AGC
- ADC power consumption grows exponentially with resolution
- A commercial TI 1 Gs/s 12-bit ADC requires as much as 2-4W
- Not practical for ideal massive MIMO
A One-Bit Receiver

- Full precision ADC requires linear, low-noise amplifiers and AGC
- ADC power consumption grows exponentially with resolution
- A commercial TI 1 Gs/s 12-bit ADC requires as much as 2-4W
- Not practical for ideal massive MIMO
- One-bit ADC ⇒ simple RF, no AGC or high cost LNA
- Operates at a fraction of the power (mW)
- Compensate for quantization error with signal processing
Single Antenna Theoretical Analysis

AWGN Channel Capacity

\[B \log_2(1 + \text{SNR}) \]

1-Bit AWGN Capacity

\[2B \left(1 - H_b(\Phi(\sqrt{\text{SNR}})) \right) \]

loss in power efficiency < 2dB when SE < 1.4 bpcu

trade-off between power and energy efficiency is less apparent for 1-bit systems
Consider a Gaussian signal that passes through a non-linear operator:

\[r = Q(x) \]

Bussgang (Bell Labs, 1952) showed that a statistically “equivalent” (up to second order) linear model exists for the non-linearity

\[r = Q(x) = Ax + q \]

that results in the error \(q \) (here the quantization noise) and the signal \(x \) being uncorrelated, namely

\[A = \mathcal{E}\{xr^T\}\mathcal{E}\{xx^T\}^{-1} \]

This is also the choice that minimizes the quantization noise:

\[A = \arg \min_A \|r - Ax\|^2 \]
Recent Research Activities

- How many more antennas are needed with one-bit quantization?
Recent Research Activities

- How many more antennas are needed with one-bit quantization?

Answer: \(\frac{\pi^2}{4} \approx 2.5 \)
Recent Research Activities

- How many more antennas are needed with one-bit quantization?

 \[\frac{\pi^2}{4} \approx 2.5 \]

- How to estimate the wireless channel with one-bit quantization?

 Answer: Bussgang LMMSE
Example: Channel Estimation Error Bounds

This is why dithering is beneficial!
Example: Channel Estimation

- $M = 128$
- $K = 8$
- $\tau = K$
- Rayleigh fading
Recent Research Activities

- How many more antennas are needed with one-bit quantization?

 Answer: \(\frac{\pi^2}{4} \approx 2.5 \)

- How to estimate the wireless channel with one-bit quantization?

 Answer: Bussgang LMMSE

- How to maximize spectral/energy efficiency?

 Answer: Convex optimization for energy-per-bit
Example: Optimizing Energy per Bit

- $K = 8$ users
- unoptimized
 $\rho_d = \rho_p$
- coherence interval $T = 200$
- sum spec. eff.
 \[S = \frac{T - K}{T} K R \]
Recent Research Activities

- How many more antennas are needed with one-bit quantization?

 Answer: $\frac{\pi^2}{4} \approx 2.5$

- How to estimate the wireless channel with one-bit quantization?

 Answer: Bussgang LMMSE

- How to maximize spectral/energy efficiency?

 Answer: Convex optimization for energy-per-bit

- How to precode the signals to account for one-bit DAC?

 Answer: Perturbed quantized linear precoding
Example: Performance of Perturbed Quantized ZF Precoder

- $M = 128$
- $K = 8$ users
- Rayleigh fading
- Perfect CSI

![Graph showing the performance of different precoding schemes with respect to SNR at user terminals. The graph plots Symbol Error Rate (y-axis) against SNR at user terminals (x-axis). Different lines represent various precoding schemes including Q-MRC, Q-ZF, Q-MMSE, MRC, ZF, and MMSE. The perturbed Q-ZF scheme is indicated.]
Conclusion

Can we get a 1000x improvement in throughput with only one-bit transceivers?
Conclusion

Can we get a 1000x improvement in throughput with only one-bit transceivers?
Conclusion

Can we get a 1000x improvement in throughput with only one-bit transceivers?

YES!

(with a GHz of bandwidth and the right processing)