Challenges of an emerging PV industry

Ted Spooner
- Chair of EL42 “Renewable Energy Systems”
- Co-convener or IEC TC82 working group 3 “PV Systems”
- Co-convenor of JWG between TC64 and TC82
- UNSW Senior Visiting Fellow
Overview

- Growth of the industry
- Technical issues
 - Focus on grid connect
 - Just a sample of some significant ones
- Standards Issues
Wide Range of Installations
Commercial Buildings
Architectural Shading
Kogarah Town Square

30/01/2003
Nyngan 102MW - AGL
Cumulative Installed PV power

Figure 1: Evolution of Cumulative PV Capacity (MW)

Source IEA PVPS “Trends in Photovoltaic Applications Rep IEA-PVPS”
Figure 6: Evolution of Grid-Connected PV Market Segmentation

Source: IEA PVPS “Trends in Photovoltaic Applications Report” IEA-PVPS
Figure 15: Evolution of Cell Production in Selected Countries – 2008/2012 (MW)

Source: IEA PVPS “Trends in Photovoltaic Applications Rep IEA-PVPS
Figure 21: Theoretical PV Electricity Production Based on Installed Capacity End 2012

Source IEA PVPS “Trends in Photovoltaic Applications Rep IEA-PVPS"
Australian Electricity Networks

- Currently 2.7GW PV on S.E. network
- PV - single largest generator
 - if taken as an aggregated source.
- PV connected increasing at 10-20MW/week!!
In a perfect world

Get support/regulated in place early:

- Standards
 - Funding?
- Regulation
 - Licensing/Accreditation
 - Product testing/approvals
 - Auditing
- Training
 - Installers
 - Emergency Services
In the real world...

- Industry growing and innovating RAPIDLY
- Standards take time
 - inevitably playing catchup.
- Regulation has limited resources
- Training
 - Needs more resourcing/coordination
Safety Issues
"THAT'S OK....I CAN HOOK IT UP MYSELF!"
PV Arrays - different to the usual house wiring!

- dc wiring
 - unfamiliar territory for many electricians
 - Arc faults a problem even at relatively low dc voltages.
 - Requires properly rated d.c. components
- PV is a current limited source!
- PV arrays are not readily turned off.
- Distributed over an area
 - on an array frame, roof or exterior surface.
 - exposed to rain, extreme temperatures and ultraviolet radiation.
System Configurations

- Wide range of d.c. Voltages up to 1kV
- Many PV arrays - Transformerless inverters
Protection of Strings in current limited Arrays
Fuses

Example

\[I_n = 1 \]

\[I_{nf} = 1.13 \times I_n \]

\[I_f = 1.45 \times I_n \]

\[n_p = 5 \]

Fuse Ratings for PV protection

- No definite time blow
- Inf
- \(-I_n\)
DC Arcs in PV arrays
What types of situations?

- Parallel arc
- Earth fault
- Series arc
JB in multi megawatt PV power plant.
DC Switch/Isolators
Arc Fault in Double Pole DC Sub-Array Switch
Series Arc Fault - Single String

Insert here an IV characteristic showing available arc voltage under each condition.
New Standards needed

ARC DETECTION

SWITCH

- PV switches - difficult environmental conditions
 - Temperature extremes
 - Thermally cycled daily
- Not operated often.
 - Contact resistance
- No fault current
 - Issues also at low operating current
Building Integration

- Mounted on/in buildings
 - need BCA guidelines
- Mounting, wind loading
- Wire routing in buildings
Fire Fighters
Fire Fighter Issues

- Shutting down a system
- Spraying water on live arrays
- Standing water
- Entering a building with a live array on roof
 - Wires hanging down
 - Arcs
 - Protective clothing
Flood Safety

- Electric Shock
- Fires
- High Water Issues
- After the water has receded
Mechanical Security
Consequences?

Glass failure

- Falling debris most serious consequence?

More serious for some locations and types of installations?
Grid Connect

- Protection
- Islanding
- Voltage regulation & Power Quality
- Microgrids/Smart Grids
- Energy Storage
Islanding Event - Spain
FAILURE OF ANTI-ISLANDING PROTECTIONS IN LARGE PV PLANTS

➢ In both cases long duration islands have been reproduced (600 kW to 2.5 MW)

TIME PLOT - RMS U, CH1
8.00 V/div
MIN MAX AVE

Island finished, breaker open

Substation breaker closed

Substation breaker open

ISLANDING BEHAVIOUR

Substation breaker closed

13 minutes island (intentionally finished, so it could be longer)
Figure 2: Overvoltage leading to revenue meter damage during LV switching-off (voltages and currents)
Developments

- INVERTERS
 - Module inverters
 - IR measurement / earth fault alarms
 - VAr compensation
 - Fault ride through

- OTHER
 - Protecting & shutting down PV
 - Active Junction boxes
 - D.C. Arc detection
Standards - Where are we?

- Australian Standards for Grid Connected PV:
 - AS/NZS 5033 “Installation of PV Arrays”
 - AS/NZS 4777 “Grid connection of energy systems via inverters”
Standards

- International
 - Module performance and safety standards
 - Installation Standards & BIPV
 - PV Inverter safety standard IEC 62109
 - Arc Detection
 - Fuses IEC 60269-6
 - Connectors EN 50521
 - Cables – new IEC coming
 - Other BOS component standards
More Needed

- Emergency shutdown at module level
- Standards for systems with Storage
- Better power electronic standards for new components
 - DC switches for PV
 - Micro-Inverters
 - Charge controllers
 - Components near PV arrays
 - PV module shutdown
 - DG control standards for grid regulation & control
Simple? PV System

- Solar Modules
- Micro Inverters
- Roof-Top DC Isolator
- DC-DC
- Smart Grid
- Grid Protection
- VAr & Power Control
- Overcurrent Protection – Fuses?
- Isolation / Separation???
- Transformerless?
- ARC Detect
- Insulation R & RCD detection
- Smart Modules
- DC Isolator
- Inverter
- Switches
- Switches
- Overcurrent Protection – Fuses?
Standards Issues

• Lot to do!
• Long development time for each standard
• Done by volunteers
• Many issues across multiple committees
• Standards not seen as sexy, cool, hip!
• Not much government support
In Rapid Growth -

Need rapid development &

Rapid update of all support systems.
Questions???