

中科华核电技术研究院 China Nuclear Power Technology Research Institute

CPR1000 Equipment Survivability Assessment under Severe Accident

China Nuclear Power Research Institute HE Dong Yu 2013-10-14

- 1. Introduction
- 2. Equipment Survivability and Equipment Qualification
- 3. Progress of ES in CGNPC
- 4. ES Assessment Method
- 5. Results from LA2
- 6. Conclusion and Future Work

1.INTRODUCTION

中科华核电技术研究院 China Nuclear Power Technology Research Institute

1.Introduction

- HAF102 Safety of Nuclear Power Plants : Design 》
 - "To the extent possible, equipment (such as certain instrumentation) that must operate in a severe accident should be shown, with reasonable confidence, to be capable of achieving the design intent."
- Definition
 - The equipment survivability assessment is to evaluate the availability of equipment and instrumentation used during a severe accident to achieve a controlled, stable state after core damage under the unique containment environments.

2.Equipment Survivability and Equipment Qualification

2.ES and EQ

□American :

EQ : Design Basis ;

ES : AP1000、ESBWR , Severe Accident ;

□ France :

EQ : Design Basis、Beyongd Design Basis ;

Compare based on concept of American EQ and ES.

2.ES and EQ

3.PROGRESS OF ES IN CGNPC

中科华核电技术研究院 China Nuclear Power Technology Research Institute

3.Progress of ES in CGNPC

		2013,
 2011, finish LA2 ES, this is the 1st ES assessment for CPR1000 in China 	2012, HongYanHe, NingDe, YangJiang	Daya Bay, LingAo, FangCheng Gang

中科华核电技术研究院 China Nuclear Power Technology Research Institute

4.ES ASSESSMENT METHOD

中科华核电技术研究院 China Nuclear Power Technology Research Institute

4.ES Assessment Method

4.1.Identify the high level actions

- The high level actions are actions used to maintain the steady control state, that would achieve three object:
 - Heat could be removed from containment ;

Containment boundary protection ;

- Safety state in primary and containment ;
- The high level actions for CPR1000 are defined by SAMG.

4.1.Identify the high level actions

主控室	技术支持中心(TSC)	
	严重事故诊断流程图 (DFC)	严重事故威胁状态树 (SCST)
严重事故初始响应导则 (SACRG-1)	严重事故导则 -SAG-1 -SAG-5 -SAG-2 -SAG-6 -SAG-3 -SAG-7 -SAG-4 -SAG-8	严重威胁导则 -SCG-1 -SCG-2 -SCG-3 -SCG-4
严重事故瞬态导则 (SACRG-2)	计算辅助(CA1-7) 技术支持中心 长期监督(SAEG-1) SAMG终止(SAEG-2)	

4.2. Define the accident time frames

Time frames :

- Time Frame 0 Pre-Core Uncovery ;
- Time Frame 1 Core Heatup ;
- Time Frame 2 In-Vessel Severe Accident ;
- Time Frame 3 Ex-Vessel Severe Accident.

4.3. Determine the equipments used

- According to the high level actions and plant character, 62 groups of equipments are listed;
- Additional equipments to be considered :
 - Instrument for SAMG enter, exit, long term;
 - Containment;
- Screen:
 - Inside Containment ;
 - Main/Important equipment ;

- Condition for primary/secondary side:
 - According to the accident analysis:
 - Core outside thermocouple;
 - Pressurizer safety valves;
 - Secondary safety/relief valves ;
- Condition in Containment
 - Temperature
 - Pressure
 - Humidity
 - Dose

SA analysis code MAAP, simulate the response of light water reactor power plants:

- and secondary
- b) response for cont.
- c) behavior of core melt
- d) movement of FP
- e) hydrogen behavior

□ Temperature、 Pressure

- Cont. environment defined by SA analysis;
- ◆LBLOCA、SBO、ATWS。
- Stage1 : LOCA accident;
- Stage 2 : non-LOCA accident, feed-bleed, hydrogen burn;
- Stage 3 : Cont. filter release, heat removal.

Aerosol——size

 The size of aerosol usually comes from test, test of FPT showed the size is between 0.65 -5.0 µm, average value is 2µm.

中科华核电技术研究院 China Nuclear Power Technology Research Institute

Aerosol——concentration

- Calculated by MAAP code;
- LOCA sequence
- None HPSI, LPSI, ACC
- None containment spray
- Boundary FP mass

□ Aerosol — — concentration

- The peak mass of aerosol is about 100kg
- ◆Cont. vol. 49400m³
- Under accident, the peak
 concentration is about 2 g/m³, average 1 g/m³

Humidity

Consider LOCA sequence , 100% ;

Dose

A value of 1×10⁶Gy (7 Days) is used, according to RG1.183.

4.5.Perform ES assessment

Assessment method :

- Compare equipment test condition with SA condition;
- Containment use CFD method;
- Conclusion :
 - Completely satisfied;
 - Partly satisfied;
 - Can't decided;
 - Can't be used;

5.RESULTS FROM LA2

中科华核电技术研究院 China Nuclear Power Technology Research Institute

5.Results from LA2

- More than half of the equipments used under severe accident are out of containment;
- Some equipments could satisfy the harsh environment in a short period, but can't stand for long period;
- ■Some equipments could satisfy the harsh environment in the whole accident;
- Some dedicated equipments already have been tested under severe accident

China Nuclear Power Technology Research Institute

environment;

6.FUTURE WORK

中科华核电技术研究院 China Nuclear Power Technology Research Institute

6. Future Work

- There are still some detailed work could be done in the future:
 - More realistic environment could be defined based on detailed analysis in detailed containment Room;
 - The conclusion for equipment survivability will be considered in Level 2 PSA for CPR1000;

中科华核电技术研究院 China Nuclear Power Technology Research Institute