
GE Hitachi Nuclear Energy

IEEE Std 535 and Safety-Related Batteries 101

2008 IEEE SC2 COMMITTEE Meeting

November 11, 2008

James F. Gleason, PE

IEEE 323-2003 EQ

- Directly Applicable? YES
- Application
 - Mild Environment
 - Age Sensitivity: Arrhenius Equation
 - Qualified Life and Condition Monitoring

IEEE 344-1987

- Directly Applicable? YES
- Application
 - Seismic Performance
 - C&EUS Seismic Hazard: Seismic High Frequency: Not an Issue for GEH ESBWR or GE BWRs
 - Not Seismic Frequency / Intermittent Sensitive

IEEE-535

- Directly Applicable? YES
- Application
 - Aging
 - Seismic

IEEE-535-1986 (R1994)

- "Standard for Qualification of Class 1E Lead Storage Batteries for Nuclear Power Generating Stations."
- Applies to Lead Acid Batteries
- Aging based on positive plate growth and grid corrosion

IEEE-535-2006

• "Standard for Qualification of Class 1E Lead Storage Batteries for Nuclear Power Generating Stations."

- 1.1 Scope
 - This standard describes qualification methods for Class 1E vented lead acid batteries and racks to be used in nuclear power generating stations outside primary containment.
- Aging based on positive plate growth and grid corrosion
- Life expectancy of batteries is not affected by two deep discharges per year and is based upon ~50 deep discharges (8 hours) over the life of the cell. Typical 12-15 discharges in plants.

Battery Types

Vented Lead Acid (VLA) – aka Flooded

Valve Regulated Lead Acid (VRLA)

VRLA Batteries History

- Several designs have had issues
 - Infant mortality
 - Short life
 - Thermal runaway
 - Loss of compression with loss of capacity
- Causes
 - Lack of ambient temperature control
 - Internal pressure prior to release
 - Install and forget mentality
 - Designs
 - Applications

HITACHI

VRLA Battery Standard IEC 60896 –21, -22 Effective March 2007

 Withdrew all other VRLA standards in effect since 1995

• 21 clauses or methods of test are defined for the quantification of properties and characteristics of all types of Valve Regulated Stationary Lead Acid Batteries for float charge application in a static location and incorporated into stationary equipment or installed in battery rooms for use in telecom, uninterruptible power supply (UPS), utility switching, emergency power or similar applications.

IEC 60896 -21, -22 Effective March 2007

- Verification Tests
 - Gas emission
 - Protection against internal ignition from external spark sources
 - Valve operation
 - Flammability rating of materials
 - Intercell connector performance

IEC 60896 -21, -22 Effective March 2007

- Performance Characteristics
 - Discharge capacity
 - Charge retention during storage
 - Valve operation
 - Float service with daily discharges
 - Recharge behavior

IEC 60896 -21, -22 Effective March 2007

- Durability Characteristics
 - Service life at an operating temperature of 40 °C
 - Impact of a stress temperature of 55 °C or 60 °C
 - Abusive over discharge
 - Thermal runaway sensitivity
 - Low temperature sensitivity
 - Dimensional stability at elevated internal pressure and temperature
 - Stability against mechanical abuse of units during installation

HITACHI

VLA Batteries and Existing Active NPPs

- Nuclear Stationary Batteries
- Typical 20-year life
- Typical Duty Cycle < 8 hours
- Typical Duty Cycle demand
 - Initially high demand for motors and pumps

VLA Batteries and New Passive NPPs

- Nuclear Stationary Batteries
- Typical 20-year life
- Typical Duty Cycle
 - 24 hours (AP-1000)
 - 72 hours (AP-1000 & ESBWR)
- Typical Duty Cycle demand
 - Less AH Demand
 - MOV loads 1000 A initially (24 hours AP-1000)
 - Monitoring and DCIS loads (72 hours AP-1000 & ESBWR)

GEH Research

- VLA Batteries and New Passive NPPs
 - Deep 72 hour Discharge does not appear to change Aging basis
 - Same battery tested for 0.25, 0.5, 1, 3, 5, 11, 26, 93, 266 hour discharges with >80% capacity
 - IEEE 535 20-year aging + IEEE 344 Seismic
 - Additional 22-year aging post seismic (42-year)

GEH Research

- VRLA Batteries and New Passive NPPs
 - Deep 72 hour Discharge does not appear to change Aging basis
 - Same battery tested for 0.4, 0.8, 2, 3, 5, 12, 27, 94, 263 hour discharges with >80% capacity
 - IEEE 535 20-year aging + IEEE 344 Seismic
 - Additional 14-year aging post seismic (34-year)

EPRI and IEEE team VLA Batteries and New Passive NPPs

- EPRI and IEEE team
- Test plan to verify
 - Aging based on positive plate growth and grid corrosion

EPRI and IEEE Team VRLA Batteries and New Passive NPPs

Assessing manufacturers information

