

OVERVIEW US EPR EQ Program

by

Nissen M. Burstein

Advisory Engineer, Electrical Systems, New Plants Deployment AREVA NP Inc.

Presented at NPEC/SC-2 Meeting 07-01 April 17/18, 2007, Myrtle Beach, SC

> Presentation

Overview of US EPR EQ

- Use of OL-3 Qualified Equipment Where Practical
- Planned Use of 80% US Qualified Equipment
- Scope of Work
- Summary of EQ Tasks
- Open Items and Concerns

> Overview of EQ for US EPR

Definition of "EQ"

- 10CFR50.49
- IEEE 323 & RG 1.89
- Daughter Standards & Associated RG's
- At Station, EQ is Maintained by Utility Procedures

IEEE Daughter Standards & Associated RG's

IEEE Std + Year	Subject	RG-Rev-Yr	Std-Yr Ref'd by RG	Delta, Y/N
7-4.3.2-2003	Computers	1.152-2-'06	2003	N
317-2003	Penetrations	1.63-3-'87	1983	Y
323-2003	Overall Electric EQ	1.89-1-'84	1974	Y
	Computer Based Systems	1.209-0-'07	2007	N
334-2006	Electric Motors	1.40-0-'73	1971	Y
344-2004	Seismic	1.100-2-'88	1987	Y
382-2006	Valve Actuators	1.73-0-'74	1972	Y
383-2003	Cables	1.131-1-'79	1974	Y
387-2001	EDGs	1.9-3-'93	1984	Y
420-2001	Racks & Panels	n/a		n/a
497-2002	PAM	1.97-4-'06	2002	Ν
535-1986	Batteries	1.158-0-'89	1986	Ν
572-2006	Connectors	1.156-0-'87	1985	Y
627-1980 (withdrawn)	Overall mech/elec EQ	n/a		
628-2001	Raceways	n/a		
638-2006	Transformers	n/a		
649-2006	MCCs	n/a		
650-2006	Chargers/Inverters	n/a		
1202-1991	Cable flame tests	n/a		
1205-2000	Aging	n/a		
1290-1996	Valve Actuator Applications	n/a		
C37.82-2004	Switchgear	n/a		
C37.105-1987	Protective Relays	n/a		
n/a	RFI/EMI	1.180-1-'03	n/a	n/a

IEEE Daughter Standards & Associated RG's

Summary Position for US EPR

The official program position is to either use documents that are current as of 1/1/05, or that have been issued within 6 months of DCD submittal. (RG 1.209?????)

- As noted above, most of the applicable RGs are not current with the latest version of the standards, and the latest version of a standard is not endorsed by RG.
- Therefore, unless a detailed review has determined that there are compelling negative reasons, it has been decided that the most current version of a RG will be followed, along with the most current version of a standard.
- This position has been taken because no new requirements have been introduced, in general, and later versions have been produced for clarification purposes.

> US EPR EQ Program

- NSSS
- BOP
- Electrical
- I&C
- Seismic Sequence Methodology
- Mechanical Components
 - Age Related Degradation Mechanisms (e. g. Gaskets, O-rings, Lubricants, Grease, Diaphragms, Seals)

> Scope of EQ Activities

- DC Aspects (Programmatic)
 - FSAR 3.10 (SRP 3.10, Rev 3, 3/07)
 - FSAR 3.11 (SRP 3.11, Rev 3, 3/07)
 - AREVA Seismic & Dynamic Qualification Spec
 - AREVA Environmental Qualification Spec
 - Position on Mechanical Equipment Qualification
 - Key Inputs from Plant Design, System Engineering, Civil, Radiation Protection, Thermo Hydraulics, etc.
- COL Aspects (Implementation)
 - Equipment Selection, Use, Qualification
 - Generic Basis AREVA
 - Plant Specific Customer

Summary of EQ Tasks

Activity			
Prepare Section 3.10, Seismic and Dynamic Qualification of Mechanical and Electrical Equipment			
Prepare Section 3.11, Environmental Qualification of Mechanical and Electrical Equipment			
Coordinate development of EQ equipment list from various sources			
Prepare Appendix 3D, Methodology for Qualifying EPR Safety-Related Equipment			
Prepare Appendices that define equipment service conditions. For example:			
Mild Environment Parameter Limits			
Post-Accident Equipment Operability Times			
EQ Program Margin Requirements			
Normal Operating Environments, Including Zones/Room Nos.			
60 Year Normal Operating Gamma Dose/Dose Rate			
Abnormal Operating Environments Inside Containment			
Abnormal Operating Environments Outside Containment			
Accident Environments			
Mechanical Equipment Components Requiring Qualification			
Typical Environmental Test Profile			
Gamma Dose/Dose Rate Inside Containment After LOCA			
Beta Dose/Dose Rate Inside Containment After LOCA			
Gamma Dose/Dose Rate Inside Containment After a SLB			
Beta Dose/Dose Rate Inside Containment After a SLB			
Containment Temp/Press Design Conditions; LOCA			
Containment Temp/Press Design Conditions; MSLB			
Containment Temp/Press Test Envelope			
Outside Containment Temperature Test Envelope			

Summary of EQ Tasks

Activity
Prepare Attachment A; Sample EQDP
Prepare Attachment B; Aging Evaluation Program
Prepare Attachment C; Effects of Gamma Doses Below 1E4 Rads on the Mechanical Properties of Materials
Prepare Attachment D; Accelerated Thermal Aging Parameters
Prepare Attachment E; Seismic Qualification Techniques

Mechanical Equipment Qualification Position

10CFR50, Appendix A, GDC-4, Environmental and Dynamic Effects Design Basis; basic requirement for design of SSCs important to safety.

AREVA NP position: ... the mechanical equipment is designed to comply with GDC-4 by verifying the ability of the equipment to perform its required safety function(s) when exposed to postulated service conditions. The verification process is a part of the engineering design process, and evaluates both metallic and non-metallic materials to meet all postulated service conditions.

In addition to design, compliance with GDC-4 is maintained through Procurement, Maintenance, and Surveillance. Change control is also utilized to ensure that changes to qualified equipment are reviewed and approved by engineering, prior to procurement.

The Maintenance Program includes; maintenance, surveillance, and periodic testing, all in accordance with suitable regulations.

Furthermore, program data and records are reviewed in accordance with ASME Section XI to ensure that the equipment has not suffered any degradation resulting from exposure to thermal, radiation, or cyclic aging conditions.

Radiation Zones

> US EPR Radiation Zone Designations (equivalent rads γ)

Zone	60 year TID	Dose Rate
1	<100 R	<0.05 mr/hr
2	1E2 R	<0.25 mr/hr
3	1.3E3 R	<2.5 mr/hr
4	1.3E4 R	<25 mr/hr
5	5.3E4 R	<100 mr/hr
6	2.63 MR	<5 R/hr
7	263 MR	<500 R/hr
8	263 MR	>500 R/hr

AREVA

Key System Design P/T

>	System/Component	Press, psig	Temp, °F
	RCS	2535	664
	PZR	2535	684
	Accumulators	785	140
	MHSI pump/del line	1525	250
	LHSI/RHR pump/del line	1145	356
	RHR suction line	915	356
	Sump suction line	65	248
	SG Secondary side	1435	592
	Main Steam System	1435	592
	Main Feedwater System	1435/1945	514/592
	Containment	62	338

US EPR EQ Related Documents

US EPR Design Certification Project Plan

US EPR Radiation Zone Designations

US EPR Codes & Standards List

US EPR Environmental Qualification of Electrical Equipment

US EPR Seismic and Dynamic Qualification of Mechanical and Electrical Equipment

US EPR EQ List Guidelines

US EPR EQ Program Mechanical and Electrical Equipment Selection Guidance

US EPR MEL DB Field Definitions

US EPR Project Directive, Design Responsibilities

US EPR EQ Related Documents

Examples of Safe Shutdown Systems

Boric Acid Makeup Chemical and Volume Control System (CVCS) **Component Cooling Water System (CCW)** Coolant Supply and Storage System (CSSS) **Emergency Diesel Generator (EDG) and Systems Emergency Feedwater System (EFW)** Essential Service Water System (ESW) Extra Borating System (EBS) **HCAV Systems** Safety Grade Portion of Main Steam System (MSS) Low Head Safety Injection/Residual Heat Removal (LHSI/RHR) Medium Head Safety Injection (MHSI) **Power Distribution System Reactor Boron and makeup System (RBMS) Reactor Coolant Pump Standstill Seal Injection (RCPSSI) Reactor Coolant System (RCS)** Safety Chilled Water System (SCWS)

Examples of SR Equipment and Components from Safe Shutdown List

ltem		Function *			
	RC	RCM	DHR	PM	Support
RT Breaker	Х				••
EFW flow, IvI, press			X	X	
SG IvI, press			Х	Х	
HX temp				Х	
lsol vlv, elec, SOV, MOV, etc.	Х	Х	Х		
CVCS chg flow, temp	Х	Х		Х	
Boric Acid tank Ivl, temp	Х				
EBS pump flowmeter	Х				
PZR IvI, press, temp				Х	
MS relief vlvs			Х		X
ESW pump, strainer, filter, instr	Х	Х	Х	Х	X
CCW pump, HX, flow, IvI , temp, ΔP	Х	X	Х	X	X
Safety chilled water pump					X
EXP tank press					X
Chiller evaporator ΔP					X
Chiller compressor					X
Condenser fan					X
Fire damper					X
EXH fans					X
* RC – reactivity control					

RC – reactivity control RCM – reactor coolant make-up DHR – decay heat removal PM – process monitoring Support – equipment req'd to assist in completing functions

- > Items for review
 - European Qualification v. US Rules
 - ISO v. Appendix B/NQA-1
 - Use of Available and Qualified US Equipment
 - Impact of New Qualification
 - Digital Equipment Qualification: EPRI TR-107330, RG 1.152, and RG 1.209
 - EMC: EPRI TR-102323 and RG 1.180
 - 10CFR50.69 Risk Informed EQ
 - IEEE323/344
 - v. IEC 60780, 60980
 - v. RCC-E Section B
 - v. KTA-3501, 3503, 3505

Comparison between NQA-1 and ISO 9001

NQA-1	ISO 9001	Conclusion
Basic Requirement 1		
Supplement 1S-1	4.1.2.1 Responsibility and Authority	ISO = NQA
Organization	4.1.2.3 Management Representative	
Basic Requirement 2		
QA Program	4.2 Quality System	ISO = NQA
Suppl 2S-1 thru 2S-4	4.1.2.2 Verification Resources and Personnel	ISO < NQA
Pers Indoc & Trng	4.18 Training	
Basic Requirement 3		
Supplement 3S-1	4.4 Design Control	ISO < NQA
Design Control		
Basic Requirement 4		
Supplement 4S-1	4.6.2 Assessment of Subcontractors	ISO < NQA
Procurement Doc Ctrl	4.6.3 Purchasing Date	
	4.6.4 Verification of Purchased Product	
Basic Requirement 5		
Instructions, Procedures	4.2(b) Quality System	ISO = NQA
And Drawings	4.4.4(b) Design Output	
Basic Requirement 6		
Supplement 6S-1	4.5 Document Control	ISO > NQA
Document Control		
Basic Requirement 7		
Supplement 7S-1	4.6.1 General	ISO < NQA
Control of Purchased	4.6.2 Assessment of Subcontractors	
Items and Services	4.6.4 Verification of Purchased Products	
	4.7 Purchaser Supplied Product	

Comparison between NQA-1 and ISO 9001

NQA-1	ISO 9001	Conclusion
Basic Requirement 8		
Supplement 8S-1	4.10 Inspection and Testing	ISO < NQA
Ident & Ctrl of Items	4.8 Proc Ident & Traceability	
Basic Requirement 9		
Supplement 9S-1	4.9 Process Control	ISO = NQA
Control of Processes		
Basic Requirement 10		
Supplement 10S-1	4.10 Inspection and Testing	ISO < NQA
Inspection		
Basic Requirement 11		
Supplement 11S-1	4.10 Inspection and Testing	ISO < NQA
Test Control		
Basic Requirement 12		
Supplement 12S-1	4.;11 Inspection, M&TE	ISO > NQA
Control of M&TE		
Basic Requirement 13		
Supplement 13S-1	4.15 Handling, Storage, Packaging	ISO ≠ NQA
Handl, Store, and Ship	and Delivery	
Basic Requirement 14		
Inspection, Test, and	4.12 Inspection and Test Status	ISO = NQA
Operating Status		

Comparison between NQA-1 and ISO 9001

NQA-1	ISO 9001	Conclusion
Basic Requirement 15		
Supplement 15S-1	4.13 Control of Non-Conforming	ISO < NQA
Control of Non-Conform	Product	
ltems		
Basic Requirement 16		
Corrective Action	4.14 Corrective Action	ISO ≠ NQA
Basic Requirement 17		
Supplement 17S-1	4.16 Quality Records	ISO < NQA
QA Records		
Basic Requirement 18		
Supplement 18S-1	4.1.2.2 Verif Resources & Personnel	ISO < NQA
Audits	4.17 Internal Quality Audits	
	4.18 Training	
	ISO req'ts w/out specific NQA counterparts	
	4.3 Contract Review	
	4.19 Servicing	
	4.20 Statistical techniques	

Conclusions & Recommendations; taken from a study by SC-2, presented at SC-2-04-2

IEEE 323 and RCC-E

A major effort is required to incorporate RCC-E approach into IEEE 323, since details are buried in many specific referenced standards. For example, NF M 64-001, is a separate procedure for qualification of electrical equipment, and is not contained within the body of RCC-E.

Manufacturing and commercial issues are an integral part of RCC-E, while the technical aspect of EQ is the only subject of IEEE 323.

RCC-E appears to be more of a specification than a standard and lacks the level of detail to permit a direct comparison to IEEE 323.

Micro-processor equipment is not explicitly addressed in either RCC-E or IEEE 323.

Conclusions & Recommendations

IEEE 323 and IEC 60780

Purpose

323 is used for:

Qualification of Class 1E equipment prior to installation Maintaining and extending qualification Updating qualification, if required (e.g., if equipment is modified)

60780 is used for:

Initial qualification of equipment

Maintaining qualification preservation following modifications

Conclusions & Recommendations

IEEE 323 and IEC 60780

Scope of Standard

323: Describes the requirements for qualifying Class 1E equipment. Intended to be used for qualifying equipment, maintaining and extending qualification, and updating qualification if equipment is modified.

60780: Applicable to electrical equipment of safety systems, including components or equipment of any interface whose failure could adversely affect the performance of the safety system. Also applicable to non-electrical interfaces associated with a safety function.

Conclusions & Recommendations

IEEE 323 and IEC 60780

Summary of Differences-

EMI/RFI test requirements in IEC 60780 appear to be more clearly defined because the referenced standards are binding, whereas 323 reference the Appendices of 603 and 7-4.3.2, which are for information purposes only and are not binding

IEC 60780 is more prescriptive in discussion of Type Test methods. For example, several standards are called out to be used for specific tests as appropriate.

In general, the two standards address the same qualification issues and include similar qualification procedures and methods.

323 addresses qualification from a "functional" viewpoint (ability to perform a safety function)', while IEC 60780 addresses equipment qualification from a "systemic" viewpoint (performance of the safety system)

The IEC standard explicitly states that it is applicable to non-electrical interfaces, while IEEE 323 is applicable to Class 1E equipment and interfaces

Conclusions & Recommendations

IEEE 323 and KTA

KTA standards set the requirements, procedures, and instructions on how to achieve nuclear safety, i.e., qualification, with respect to the ALARA principle.

By their nature and developmental mandate, KTA standards and RGs are more nearly similar than are KTA standards and IEEE standards, and stress the methods and procedures required to achieve performance verification.

General comparison between IEEE and KTA revolves around IEEE 323 and KTA 3501, 3503, and 3505, with 3501 being the 'mother' document.

The three documents describe the safety technology concept of the RPS and monitoring equipment of the safety system, and includes design, manufacturing, installation, operation, testing, etc., and documentation of each activity.

KTA 3503 is intended for equipment in mild environments, while KTA 3505 is intended fore equipment in harsh environments.

Both 3503 and 3505 comprise two parts; one is theoretical, the other practical. The theoretical part includes the development of the elements of the test program, done in the second part, rather than these elements being developed 'off-line', in terms of separate specifications, procedures etc., as done in the US. The practical portion includes those elements of the program related to type-testing, including accident simulation, seismic testing, high radiation, and EMI/RFI.

Neither standard specifically addresses micro-processors based devices, but KTA 3503 is considered more applicable.