

Optical Fiber Behavior in Radioactive Environments

Rob Gilberti - Draka Comteq

Advantages of Fiber Optic Systems

- Electromagnetic immunity

- → no cross talk between adjacent fibers
- → direct contact with high voltage electrical equipment and power lines / no ground loops of any kind

- Low attenuation, large bandwidth

- → much higher data rates / ability to carry much more information and deliver it with greater fidelity than either copper wire or coaxial cable
- Ideal for secure and safe communication systems
 - → very difficult to tap but very easy to monitor / no possibility of a spark from a broken fiber.
 - → even in the most explosive atmospheres, there is no fire hazard

- Chemical stability

- → impervious to corrosion / buried directly in most kinds of soil or exposed to corrosive atmospheres
- Low weight, low volume
 - → much smaller than a wire / coaxial cable with similar information carrying capacity
 - → easier to handle and install, and uses less duct space

Improvement of Fiber Properties

- Attenuation reduction
 - → presently: <0.2dB/km @1550nm
- Strong increase of information-transmitting capacity
 - → Wider Wavelength range, Higher Data Rates/Laser Optimized
- Good mechanical resistance
 - → Lifetime > 25y; mainly mankind failures
- Large fiber production volumes
 - → Stabilization of fiber features & standards
- Radiation Resistance Performance Understanding

Uses of Optical Fiber in Radiative Environments

- Military

no official data - classified; certifications (USA: MIL-PRF 49291)

- Nuclear Power Plants
- High Energy Physics Laboratories

CERN (Geneva)

Fermi National Accelerator Lab. (USA)

- Space industry

NASA / ESA

Uses of Optical Fiber in Radiative Environments

		Doses	Dose-rates	Typical applications
Military & protection of strategic civil data (estimated – no official data)		From a few mGy up to 10 ² -10 ³ Gy	From 10 Gy/h up to 10 ⁹ – 10 ¹³ Gy/h (pulsed irradiations)	Data transfer
Space		From 10 up to 10 ⁴ Gy	From 10 ⁻² up to 10 ² Gy/h	Data transfer, gyroscopes
Nuclear power plants	Normal 40°C	~5.10 ⁵ Gy (over 40 years)	~1 Gy/h	Tele-operation (up to 10 ⁵ Gy/h), data transfer, fiber sensors
	Accident 120°C	~ 10 ⁶ Gy	~10 ³ Gy/h	
High Energy Physics laboratories (CERN-LHC)		< 10 ⁵ Gy (annual total dose) Up to 10 ⁶ Gy (future equipments)	< 1 Gy/h Up to 10 Gy/h	Data transfer, fiber sensors

Uses of Optical Fiber in Radiative Environments

1 Gy = 100 Rad

What kind of fiber to choose?

Single mode fibers (SMF)

High data rates over long distances

→ Current RadHard: SMF G.652 (MIL qualified: MIL - PRF- 49291/7)

Multimode fibers (MMF)

Short distance / Datacom

→ Current: 50 µm OM2 RadHard (MIL qualified: MIL - PRF - 49291/1)

→ Current: 50 µm OM3 RadHard (10Gb/s over 300m @850nm)

→ Current: 62.5 µm OM1 RadHard (MIL qualified: MIL - PRF - 49291/6)

Single Mode Fiber behavior

Comparison of different commercial SMFs tested

Radiation-Induced Attenuation for different commercial SMFs – by Fraunhofer Insitute

November 7, 2006 1 Gy = 100 Rad

50/125 µm MultiMode Fiber behavior

Comparison of different commercial MMFs tested for ESA by INO

Radiation-induced attenuation in some COTS fiber samples (100 metres)
Average dose rate = 157 Gy/h, Total dose = 1000 Gy

Draka-MaxCap 300 RadHard optimized: recommended for space appl. [Theriault - 2006]

[Thériault, INO, Canada - 2006]: "Radiation Effects on COTS Laser-Optimized Multimode Fibers Exposed to an Intense Gamma Radiation Field", by S. Thériault, Conference Photonics North 2006 – Quebec city, June 2006

Dependence on Dose Rate

Dependence on Temperature

Dependence on Injected Power

1 Gy = 100 Rad

Dependence on Fiber Composition

What we have learned

Radiation-Induced Attenuation or RIA

- Impact of radiation conditions: dose-rate, total dose, temperature, nature of radiation

RIA *generally* increases with increasing dose and dose-rate

- ⇒ Be aware that accelerated gamma-exposures (i.e. at higher dose-rates than the final operating dose-rate) will lead to much higher RIA. However, such trials can be very useful for fiber comparison.
- ⇒ Try to make the preliminary radiation-tests with conditions as similar as possible to the final in-situral radiation conditions.

Nature of radiation (gamma, neutron, X, etc.) => seem to lead to quite comparable results (for same doses).

⇒ Note that ⁶⁰Co sources are the easiest to use. Many radiation facilities (Fraunhofer Institute, INO, Tecnologica, CEA)

RIA *generally* increases with decreasing temperature

What we have learned

Radiation-Induced Attenuation or RIA

- Impact of dopants/Fiber Composition:

Do not use P and B as dopants

Formation of Phosphorus-defects that have strong absorption bands; one of them is located in the NIR => very bad for uses at 1310nm and 1550nm

At very high doses (~MGy), use pure silica instead of Ge-doped fibers Ge-doped fibers: formation of Ge-defects (GeE', Ge(1), Ge(2), GEC)

- Impact of manufacturing conditions:

Coating: can be critical at high doses

Radiation can cause crosslinking resulting in microbending

Special Coatings

More work to be done!

Effect of Radiation on Fiber Mechanical Properties

Strength

Bending

Physical Dimensions

Temperature Dependence

Further Comparisons of Fiber Composition and Design

Summary - Conclusions

Optical fiber offers important features in radiative environments

- Behavior of optical fiber in radiative environments can be complex
 Dependent on many variables including
 dose rate, temperature, fiber composition and optical power
- Careful characterization of the radiation conditions is important

 Careful selection of fiber is very important, based on allowed loss budget, mechanical porperties and fiber composition

Thank you for your kind attention!

Contact: rob.gilberti@draka.com