GE Active Containment Sump Strainer for PWR Applications

IEEE/NPEC/SC2 MEETING 05-1

Ed Mohtashemi Principal Engineer

APRIL 20-21, 2005 San Diego, CA.

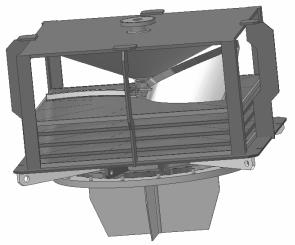
G Agenda

- Summary/Background
- Active Strainer Overview
- Active Strainer Design
- Active Strainer Operation
- Active Strainer Surveillance
- Active Strainer Maintenance
- Q&A

G Summary / Background

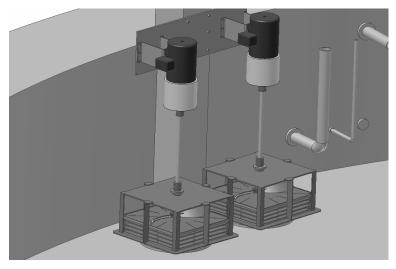
GE Nuclear Energy

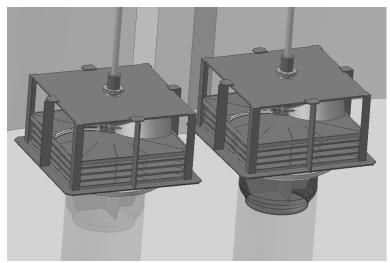
• PWR GSI-191 Technical Assessment (1996)

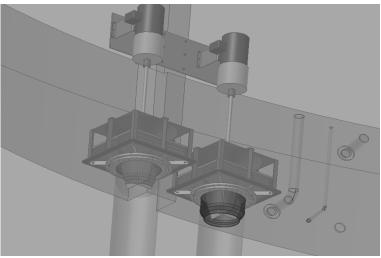

PWR Sump Blockage Post-LOCA

• NUREG-0897; "Containment Emergency Sump Performance"

Findings Related to Unresolved safety Issue (USI) A-43, Containment Emergency Sump Performance"


• Reg Guide 1.82 rev. 3 (2003);


- Active Sump screen/mitigation Systems
- NRC Issued Bulletin 2003-1;
 - Required Licensee to explain how ECCS recirculation functions analyzed to reduce the risk



G Active Strainer Overview

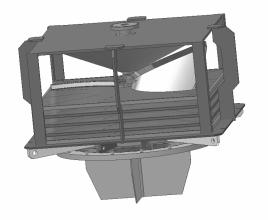
- Initially developed in response to NRC Bulletin 96-03
- Debris headloss relatively independent of debris load
- Most compact / comprehensive solution
- GE patented technology
- Ideal solution for large debris loads, low available NPSH margin, and tight containments

G Active Strainer Overview

- Design based on testing performed during 1995 BWROG Strainer Program and 2003 internal test program
- Patented design
 - Improvement patent pending for refinements
 - Improved strainer is customized for PWR application
- Strainer Demo/Functionality test completed January, 2005

36" Prototype Active Strainer Test Performed at EPRI in 1995

12" Prototype Active Strainer Used in Proof of Design Testing Performed in 2003

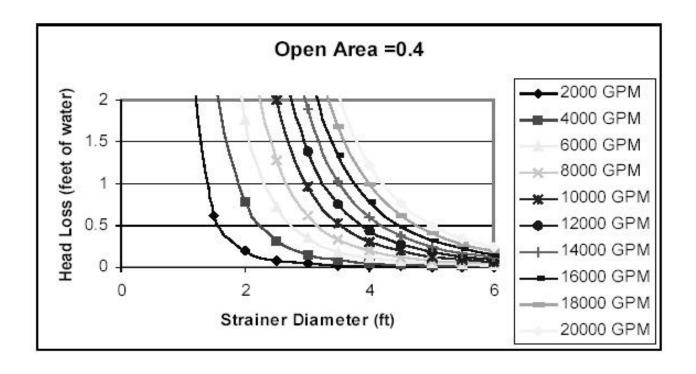


G Active Strainer Design

GE Nuclear Energy

Theory of Operation:

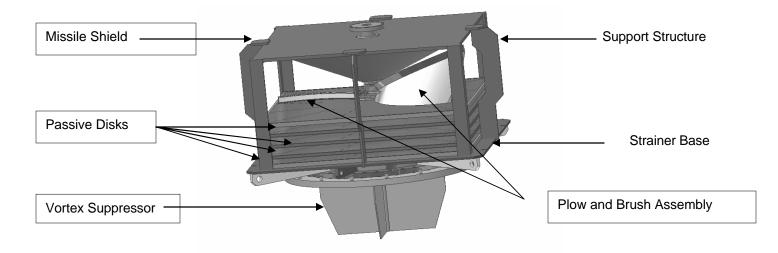
- Centrifugal forces
- Differential densities fluid vs. debris
- Differential velocities fluid vs. debris

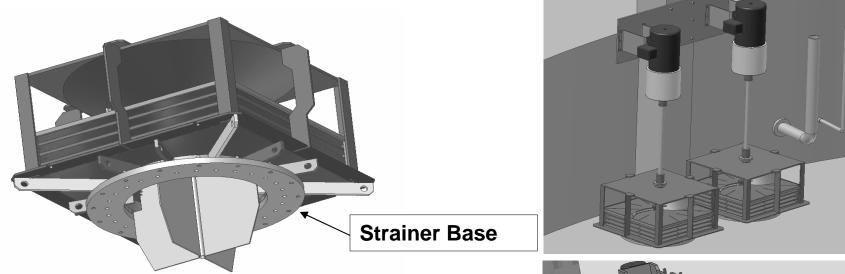

Basic Principles

• Headloss (ft. of H_20) =

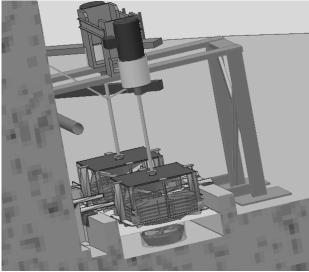
$$\frac{1}{2g} \left(\frac{V(ft/s)}{C_v h} \right)^2$$

- \mathbf{V} = Fluid approach velocity
- Cv= vena contracta of the flow through the plate ? = ratio of open area to total area of
 - = ratio of open area to total area of the plate

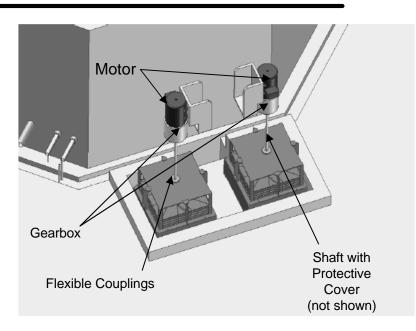

40% Open Area


G Active Strainer Mechanical Designer Nuclear Energy

- Plow/Brush/Bearings Sweep debris from the top perforated surface
- Passive Disks Provide defense in depth
 - Strain water before actuation of motor by RAS
 - Capture debris, decreasing overall load on plow and brush
- Support Structure & Missile Shield Protect assembly from LOCA-generated debris missiles
- Strainer Base Provides foundation for support structure
- Vortex Suppressor Prevents vortexing in sump piping



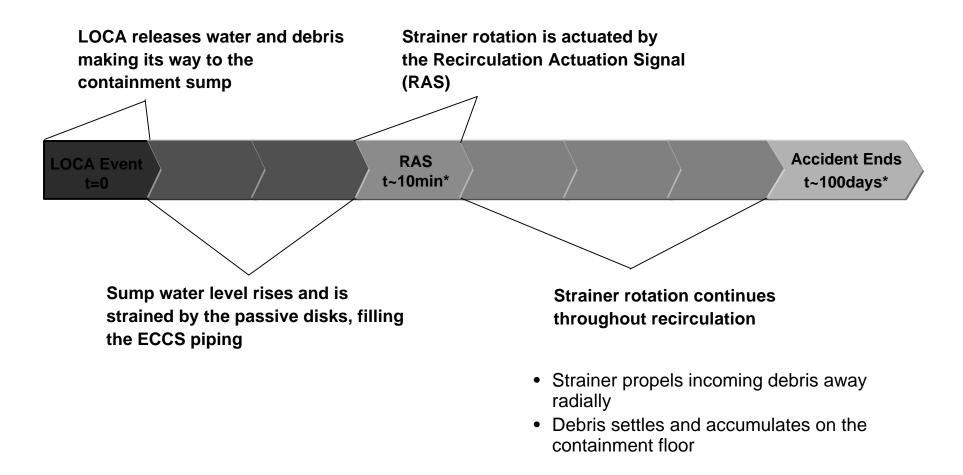
G Active Strainer Installation


- Designed to mount onto existing strainer flanges, minimizing installation time
- Estimated 12 day installation period

G Active Strainer Drive System

GE Nuclear Energy

- Motor rated at 10HP, estimated to run at 3-5HP
- Gear reduction drive 30:1
- Flexible Couplings
- Thrust bearings
- Shaft protection
- Strainer I&C
 - Differential pressure
 - Amperage readout


Motor Information

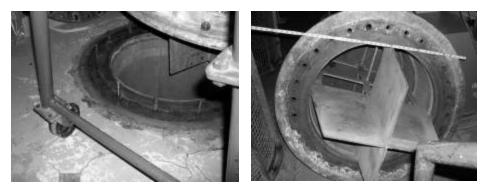
- NEMA frame size will be approximately 215, weighing 250 lbs
- "C" flange to mount with gearbox in a standard mounting configuration
- Totally Enclosed Non-Ventilated (TENV) minimizes water ingress
- Space heaters will minimize internal moisture
- Extra Severe Duty (XSD) enclosure

G Active Strainer Operation

GE Nuclear Energy

* Exact accident duration and conditions vary on a plant-to-plant basis

G Active Strainer Instrumentation & Control


- Each strainer will be controlled by an independent Class IE Power Source (480 VAC, 3 Phase, 60 Hz)
- A control room panel insert can provide operators with AUTOMATIC or MANUAL control of the strainers
- Indication lamps on the insert indicate the following:
 - > AUTO Lamp: Control is in AUTOMATIC mode
 - > STOP Lamp: Strainer is off
 - > FORWARD Run: Strainer is running in the forward direction
 - > REVERSE Run: Strainer is running in the reverse direction
- Digital meters indicate motor amperage and differential pressure across strainer
- During surveillance testing, strainer operates in MANUAL mode.

Active Strainer Surveillance

G Active Strainer Surveillance

GE Nuclear Energy

- Currently, plants perform surveillance every 31 days to:
 - Verify position and power status for certain ECCS valves.
- Currently, plants perform surveillance every 18 months to:
 - Verify ECCS equipment operation from a simulated signal.
- Active strainer surveillance requirements only require additional checks to verify power availability to the strainer motor every 31 days and that the motor starts upon a simulated RAS every 18 months.
- Strainer base is designed for easy removal of its assembly from the mounting location to provide access to view piping or for installation of a blind flange for leak rate testing.
- The proposed surveillance requirements are complimentary to existing requirements.

Removal of strainer to view sump piping

G Licensing Evaluations

Issue	Active	Passive
Implementation (No NRC pre-approval)	Utilize 50.59 Process	Utilize 50.59 Process
Technical Specification Changes (NRC TS approval prior to strainer implementation is not required)	New Surveillance requirements	No Change
Plant Program Changes (FME, Coatings, EQ)	No Change	Potential for significant additional or expanded programs

G Active Strainer Preventive Maintenance

The following is the proposed Active Strainer maintenance program.

Every 5 Years	Every 10 Years
Repack and inspect the strainer base bearings in the hub assembly	Remove and inspect the gear box, repack and replace the bearings, replace the seals
Remove and inspect the plow and brush assembly for signs of corrosion, wear and damage	Remove and inspect the motor, repack and replace the bearings, replace the seals
Remove, inspect and rebalance the drive shaft	Replace space heaters in the motor
Remove and inspect the flexible couplings (two per drive shaft).	

