

Qualification of DRS Digital Equipment for Lungmen NPS

Shian-shing Shyu

Institute of Nuclear Energy Research (INER) Taiwan, ROC

Content

- Background
- DRS Plus32 Control System
- EMC Test
- Environmental Test
- Seismic Test

Background

- INER (Institute of Nuclear Energy research)
 - Established Commercial Grade Item Dedication (CGID) program in 1993
 - Constructed a bi-axial shake table in 1994
 - Installed a harsh environment test lab in 2000
 - Participate in several Class 1E equipment Dedication projects
 - Support TPC (Taiwan Power Company) Lungmen project
- TPC Lungmen NPS
 - Two 1300MW GE ABWR Unit (awarded in 1996)
- DRS
 - Previous known as Eaton
 - DRS Plus32 digital control system is used in Lungmen ESF System

DRS Plus32 Control System

Qualification Methodology Established in DRS Digital Equipment

- Employ a combination of type testing and analysis
- Type testing
 - Environmental (IEEE Standard 323)
 - Seismic (IEEE Standard 344)
 - Electromagnetic Compatibility (EMC)
- In mild environment
- SV&V and its qualification are not included

Qualification Plan

- Functional Performance Test Procedure
- EMC Qualification Test Procedure
- Environmental Qualification Test Procedure
- Seismic Qualification Test Procedure
- Equipment Qualification Test Matrix
- Development of Aging Justification
- Seismic Qualification Test Procedure-VDU

General Test Sequence

- 1. Receiving Inspection (Burn-in)
- 2. Baseline
- 3. Environmental (Aging Test, Radiation)
- 4. Functional Test
- Seismic Test: 5 OBE test & 1 SSE test (IEEE Standard 344)
- 6. Design Basis Event Test
- 7. Post Test Functional Inspection

EMC Test Reference

- GE Documents
 - EQ, Standard Equipment Requirements.
 - EMC Qualification Test Criteria.
 - Safety Related Control Panels, Standard Equipment Requirements
- EPRI-TR-102323 R1, Guidelines for Electromagnetic Interference Testing In Power Plant.
- IEEE-C37.90.2-1995, IEEE-100-1988, IEEE-380-1972/83
- U.S. MILITARY
 - MIL-STD-461D-1993, MIL-STD-462D-1993
- REGULATION AND REGULATORY GUIDANCE
 - NUREG/CR-6431, NUREG/CR-5941, RG 1.180
- IEC 801-2, IEC 801-4, IEC 801-5

EMC Testing by GE Specification

Section	EMC	Test	Test Levels Requirements	GE Table
8.1	Fast Transient/Burst	IEC 801-4	Severity Level X: +/- 3 kV for all lines	1
			(recommends modified wave shape)	
8.2	Surge Immunity	IEC 801-5	Severity Level X: +/- 3 kV for all lines	1
			(recommends modified wave shape)	
8.3	Radiated Susceptibility,	RS-103	10 V/m (10 kHz to 1 GHz)	1
	Electric Field			
8.4	Radiated Emissions,	RE-102	80 dBuV/m (10 kHz to 1MHz)	2
	Electric Field		to 60 dBuV/m (1GHz)	
8.5	Conducted Susceptibility,	CS-101	Requirements are:	1
	Electric Fields, Power Leads		136 dBuV (30 Hz to 50 kHz)	
8.6	Conducted Susceptibility,	CS-114	103 dBuA (50 kHz to 400MHz)	1
	Electric Fields, Bulk Cables			
8.7	Conducted Emissions,	CE-102	112 dBuV (50 kHz)	2
	Power Leads		to 94 dBuV (100kHz)	
			to 74 dBuV (10 – 400 MHz)	

Section	EMC	Test	Test Levels Requirements
9.1	Conducted Susceptibility	CS-116	Cables and Power Leads:
	Damped Sinusoidal Transients		10 kHz to 100 MHz
9.2	Conducted Susceptibility,	CS-115	Power Leads and Signal Leads to pass
	Bulk Cable Injection Impulse		MIL-STD-461D of 5 Amps into 50 ohm
			load for duration of 30 nanosecond
9.3	Radiated Immunity, Horizontal	ANSI / IEEE	Un-modulated waveform with an electric
	and Vertically Polarized Fields	C37.90.2	strength of 35 from 25 MHz to 1 GHz,
			and keying specification of 27, 120, and
			450 MHz at 10 V/m

Environmental Qualification Reference

- GE Documents
 - EQ, Standard Equipment Requirements.
 - Safety Related Control Panels, Standard Equipment Requirements
- EPRI Report NP-2129 Project 1707-3," Radiation Effects on Organic Materials in Nuclear Power Plants".
- IEEE-100-1988, IEEE-101-1987, IEEE-323-1974/83, IEEE-380-1972/83, IEEE-381-1977, IEEE-384-1981, IEEE-420-1982, IEEE-603-1991, IEEE-1050-1989
- REGULATION AND REGULATORY GUIDANCE
 - R.G. 1.89 Environmental Qualification Of Electrical Equipment Important to Safety for Nuclear Power Plant
 - 10CFR 50.49, "Environmental Qualification Of Electrical Equipment Important to Safety for Nuclear Power Plant" of 10CFR 50

- 1. Receiving inspection
- 2. Install inside a large test chamber
- 3. Wiring
- 4. Function test
- 5. Install a minimum of 20 thermocouples to the unit under test
- 6. Program the Test Chamber at the beginning of this 76 hour environmental qualification program in accordance with figure shown below
- 7. Post test functional inspection

Seismic Qualification Reference

- GE Documents
 - EQ, Standard Equipment Requirements.
 - Safety Related Control Panels, Standard Equipment Requirements
- EPRI Report NP-2129 Project 1707-3," Radiation Effects on Organic Materials in Nuclear Power Plants".
- IEEE-100-1988, IEEE-101-1987, IEEE-323-1974/83, IEEE-344-1987, IEEE-380-1972/83, IEEE-381-1977, IEEE-420-1982, IEEE-500-1984, IEEE-603-1991,
- REGULATION AND REGULATORY GUIDANCE
 - R.G. 1.29 Seismic Design Classification
 - R.G. 1.29 to Safety for Nuclear Power Plant
 - 10CFR 50.49, "Environmental Qualification Of Electrical Equipment Important to Safety for Nuclear Power Plant" of 10CFR 50

Seismic Qualification Test Sequence

- 1. Receiving Inspection
- 2. Install on a shake Table
- 3. Wiring
- 4. Function Test
- Seismic Test: 5 OBE test & 1 SSE test (IEEE Standard 344)
- 6. Post Test Functional Inspection