SoCs for Audio/Biomed Use

How to Use These Tiny but Powerful Linux Devices

IEEE-Madison ECN-EMB Meeting
August 10th, 2017, Tom Kaminski and Dennis Bahr, PhD at Sector67
Overview

- Meet the Raspberry Pi SoCs
- Beginning Steps: What you need
- Updating SD memory
- SSH: Necessary Tool
- Updating Debian
- Linux Basics
- Audio Cards
- Audio Systems
- Demonstration
- Real-Time/Low Power Pi Zero Presentation
What is A SoC?

A System on a Chip (SoC) is a method of placing all necessary electronics for running a computer on a single chip. Instead of having an individual chip for the CPU, GPU, USB controller, RAM, Northbridge, Southbridge, etc., everything is compressed down into one tidy package --- Raspberrypi.org
Raspberry Pi Family

- Model B
- Model A
- Compute Module
- Model B+
- Model A+
- 2 Model B
- Zero
- 3 Model B
Raspberry Pi 3

- Quad Core 1.2GHz Broadcom BCM2837 64bit CPU
- 1GB RAM
- BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board
- 40-pin extended GPIO
- 4 USB 2 ports
- 4 Pole stereo output and composite video port
- Full size HDMI
- CSI camera port for connecting a Raspberry Pi camera
- DSI display port for connecting a Raspberry Pi touchscreen display
- Micro SD port for loading your operating system and storing data
- Upgraded switched Micro USB power source up to 2.5A

$35
Raspberry Pi Zero W

- Dimensions: 65mm × 30mm × 5mm
- SoC: Broadcom BCM2835
- CPU: ARM11 running at 1GHz
- RAM: 512MB
- Wireless: 2.4GHz 802.11n wireless LAN
- Bluetooth: Bluetooth Classic 4.1 and Bluetooth LE
- Power: 5V, supplied via micro USB connector
- Video & Audio: 1080P HD video & stereo audio via mini-HDMI connector
- Storage: MicroSD card
- Output: Micro USB
- GPIO: 40-pin GPIO, unpopulated
- Pins: Run mode, unpopulated; RCA composite, unpopulated
- Camera Serial Interface (CSI)

$10
Minimum System

Raspberry Pi 3 or Pi Zero W

- 5V Power Supply
- WiFi Switch/Router/Firewall
- Micro SD (8GByte)

Laptop/Desktop with Monitor/Mouse/Keyboard for programming and configuration.

HDMI Monitor, Keyboard/Mouse for initial setup.

Both Also support SSH (Secure Shell) remote access.
OS Updating

Program The Compact Flash

1. Plug the SD into an adapter and plug the adapter into your computer
2. Download the SD image to flash to a computer.
3. Decompress the image (tool depends on the chip image).
4. Erase the SD using recommended tools.
5. Flash the SD from your computer using the recommended tool.

Place the SD into your SoC and Boot!

Try Other Operating Systems with a New SD
SSH: Secure Shell

Secure Shell, or SSH is a cryptographic (encrypted) network protocol for initiating text-based sessions on remote machines in a secure way.

SSH has replaced Telnet as the way we make a connection to a remote computer.

It is available free for most platforms. The client is built in for Linux/Unix/OSX. The most common Windows version is PuTTY.

ssh — OpenSSH SSH client (remote login program)

```plaintext
```
Unix/Linux Command Reference

<table>
<thead>
<tr>
<th>File Commands</th>
<th>System Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>ls - directory listing</td>
<td>date - show the current date and time</td>
</tr>
<tr>
<td>ls -al - formatted listing with hidden files</td>
<td>cal - show this month's calendar</td>
</tr>
<tr>
<td>cd dir - change directory to dir</td>
<td>uptime - show current uptime</td>
</tr>
<tr>
<td>cd - change to home</td>
<td>w - display who is online</td>
</tr>
<tr>
<td>pwd - show current directory</td>
<td>whoami - who you are logged in as</td>
</tr>
<tr>
<td>mkdir dir - create a directory dir</td>
<td>finger user - display information about user</td>
</tr>
<tr>
<td>rm file - delete file</td>
<td>uname -a - show kernel information</td>
</tr>
<tr>
<td>rm -r dir - delete directory dir</td>
<td>cat /proc/cpuinfo - cpu information</td>
</tr>
<tr>
<td>rm -f file - force remove file</td>
<td>cat /proc/meminfo - memory information</td>
</tr>
<tr>
<td>rm -rf dir - force remove directory dir*</td>
<td>man command - show the manual for command</td>
</tr>
<tr>
<td>cp file1 file2 - copy file1 to file2</td>
<td>df - show disk usage</td>
</tr>
<tr>
<td>cp -r dir1 dir2 - copy dir1 to dir2; create dir2 if it doesn't exist</td>
<td>du - show directory space usage</td>
</tr>
<tr>
<td>mv file1 file2 - rename or move file1 to file2 if file2 is an existing directory, moves file1 into directory file2</td>
<td>free - show memory and swap usage</td>
</tr>
<tr>
<td></td>
<td>whereis app - show possible locations of app</td>
</tr>
<tr>
<td></td>
<td>which app - show which app will be run by default</td>
</tr>
</tbody>
</table>
Linux Text Editor

Screen Editors:

LEAFPAD (also runs as remote X window)

Terminal Editors:

VI – System hacker’s choice.
NANO -- simple syntax
EMACS – extreme version for coders. Lots of built in syntax checking.
Updating Raspbian (Debian) using apt-get

(you must be connected to the Internet for this)

First, update your system's package list by entering the following command in LXTerminal or from the command line:

`sudo apt-get update`

Next, upgrade all your installed packages to their latest versions with the command:

`sudo apt-get upgrade`
Audio In Cards

AudioInjector
← Stereo Pi
Pi Zero →

All 24bit ADC up to 192kHz Sampling

Cirrus Logic/Wolfson (Discontinued)
Audio Out Cards

1.1 Audio Injector
1.2 AudioPhonics
1.3 G2 Labs
1.4 HiFiBerry
1.5 IQaudIO
1.6 JustBoom
1.7 Collybia
1.8 Pi 2 Design
1.9 PiFi
1.10 Pisound
1.11 Pimoroni
1.12 Raspyplay3
Microphone In Cards

Google AIY Voice Command

$15

Matrix Creator

$99

8 MEMS Microphone (DIY Amazon Echo)
FPGA (Xilinx Spartan 6)
Microcontroller (ARM Cortex M3)
Temperature sensor
Ultraviolet sensor
Pressure sensor
3D Accelerometer
3D Gyroscope
3D Magnetometer
Humidity sensor

Android Things Support
Thread
NFC
IR RX/TX
2 ADC Channels
17 Digital GPIOs
ZigBee® (Cert. Pending)
Z-Wave® (Cert. Pending)
SPI
I2C
UART
USB Audio Converters

Behringer UCA222
16Bit CD Quality
Up to 48ksp5 Stereo
~$20

Behringer UMC202HD
24Bit High Quality
Up to 192ksp5 Stereo
~$60
Players: Music Playing

Many Players
I liked VOLUMIO best

Volumio: Technologies Used

- **Node.js** as the serverside application framework
- **Socket.io** for websocket communication
- **Express** as the HTTP webserver for the Volumio WebUI
- **Angular** as the WebUI framework
- **LevelDB** as the persistent database system
- **Kew** to run the promise-based asynchronous execution of code
Geographically Distributed Recorders
Stores 1-minute .wav files
Cloud-Based Server
Node.js + Meteor
Linux Cloud Server
Sonic Boom Server
1. Arecord digitizes audio data
2. Delay routine buffers audio data
3. Sox converts it to single channel
4. Audio data buffered and written as .wav file in 6000 byte chunks.
5. FFT converts 1-second data to frequency spectra
6. 1/3 Octave Power Level Computation
7. 1/3 Octave Power Level data written as .csv file each second
8. Server can start/stop record function
9. Wave file data written on minute boundaries

Calibrated microphone

ADC

USB MEM

RPi

WiFi or Wired Ethernet

48ksps, 24 bit

$f_{3dB} = 10$ Hz
sound transit system

1. Integrates Devices over Enet and Serial-USB Ports
2. GPS for Time and Position
3. Radar Unit Interface
4. SLM Interface for 1/3 Octave Data
5. RFID Reader
6. KiVi Touch Panel for Display
7. Temperature/RH
Sound Level Meter Graph

NCM
Site Name: Mic #4
Site Location:
Date: Tue Jun 6 2017
Demonstrations

1. PiDrive Node Zero Booting Graphical Desktop
2. PiDrive Node Zero Booting Simple OS
3. Volumio Web Interface
4. SSH Terminal Access
5. Sound Level Meter Startup
6. Sound Level UDP Application
7. Sound Transit Touchscreen
8. Ubuntu/ROS and Turtlebot (if time)