High-Density 3D Power Packaging with Heterogeneous Passive-Active Integration

P M Raj, Associate Professor EC 2610, Biomedical Engineering (joint with Electrical and Computer Engineering) 10555 W. Flagler St, Florida International University Miami, FL 33174-1630

Heterogeneous Integration with Nanopackaging

- Power delivery in computing systems
 - Integrated voltage regulator
 - Capacitors and Inductors
- Medium-power packaging
 - Embedded-die packaging with die-attach materials
 - High-temperature organic packaging
- High-Power packaging:
 - Doubleside cooling
 - High-voltage passives

3D Heterogeneous Package Integration

Traditional PCB processes

IPECs may be partitioned and integrated in multiple ways, each potentially serving different parts of hybrid topologies

How to Partition the Power Components Around the Load?

Apple iPhone 8 Application Processor/Memory in Fanout (Info) Package

HETEROGENEOUS

- 13.9 x 14.8mm InFO PoP Package
 - 8% smaller than A10
 - 790µm package height
- Memory package with SxS die
 - Die Thickness:140µm
 - 140µm EMC thickness over die
 - 3L substrate; 90µm thick
 - Underfill between packages
 - Processor : ~10 x 8.7mm
 - 30% smaller than A10
 - 150µm thick; 15µm "top coat"
 - 50µm thick, four-metal-layer RDL

1 A11 Die 2 RDL 3 Vertical Connection 4 Memory 5 Capacitor

Medical Device Application

System Description

 Piezomagnetic antenna to turn on the diode

 Piezomagnetic power telemetry to charge the storage capacitor

• Biophotonic system

 Piezomagnetic power and data telemetry to power the photonics, drivers and RF interface

Power Telemetry – Wearable and Implantable

Two-Coil Inductive Link

Receiving coil should be large enough

 $0.1-1\ mW/mm^2$

Multiple-Coil Inductive Link

Efficiency can be increased with larger separation distance

 $1-5 \text{ mW/mm}^2$

Piezoelectric power telemetry

Receiving link can be reduced to < 1 mm

 $0.1 - 1 \text{ mW/mm}^3$

Piezo-magnetostrictive power

Higher power density can be achieved with smaller sub-mm receivers $1 - 20 \text{ mW/mm}^3$

Nanopackaging Drives Future Hardware

https://ieeenano.org/nanopackaging-tc

Power Delivery

Role of PMIC in Power Delivery

(Adapted from Indumuni Ranmuthu, PwrSOC 2016 [1])

High-frequency power MOSFETS

Advanced Topologies

High-density integrated passives

R&D Needs

Capacitors	Density	High K dielectrics; Enhance electrode surface area; New dielectrics and deposition processes
	Frequency stability	Electrodes and connectivity with lower parasitics
	Integration	Thinner form-factors; Substrate or wafer or fan-out embedding

Inductors	Density	Higher permeability with saturation field and high resistivity
	Efficiency	Low coil DC losses ; Low core losses with low coercivity and eddy currents
2 2 1 (mm)	Integration	Substrate- or wafer-compatible process
	Current-handling	Design innovations; Scalability in thickness to handle higher current

Embedded Capacitors Roadmap

Deep Trench Land-Side Inserted Si Capacitors (TSMC)

Land-side on-Si capacitors for integrated fan-out packaging

High-Density Capacitors for Integrated Voltage Regulators

Integrated Power Delivery in the Package Key for High-Performance in Computing

Previously Voltage regulator is designed on the PCB Few filter capacitors in package

Now, Voltage regulator is moving into the package

More filter capacitors moving into the package

Intel, ECTC 2020

Inductor Technologies

	Discrete (Ferrite or Metal powder)	Magnetic composites –substrate- embedding	Nanomagnetic films: On-chip	Need
L/Rdc nH/milliohm	15-25	5-10	0.1-0.2	>>10
Q	>20	<10	5	>20
Current-handling A/mm2 Thickness	0.01 – 0.1 200- 500 microns	0.1 – 1 50 - 200 microns	5-10 A/mm2 25 microns	5-10 A/mm2 25-50 microns core
Cost	Low	Low	High	Low
	Discrete (Ex.0.5 x 0.1 x 0.5 r	KEMET-Tokin	Dielectric Material Magnetic Lamination Insulating Layer Magnetic Layer Magnetic Layer	
	Qualcomm PMD9645 PMIC	Nitto Denko Magnetic film Copper winding Magnetic film Laminate substrate Magnetic film Laminate substrate Magnetic film Magnetic film Laminate substrate Magnetic film Magnetic film Laminate substrate Magnetic film Substrate-embedded inductors	CU2 MAG CU1 Silicon	
		Magnetic Core (0.5 - 0.6 mm)	Intel and Ferric	▁▁▐▔▐▌ݤ
				FLORIDA INTERNATIO

10

UNIVERSITY

Prior Art- Inductor Integration

On-Chip IVR

٠

•

- Monolithic integration
 - Magnetic-core inductor
 - CoZrTaB Ms: 1.5 T
 - Hc: 0.39 Oe
 - Switching frequency 80 to 100 MHz
 - Inductance

300 nH/mm²

- Peak Q Factor > 20 @ ~100MHz
- Peak Inductance Density ~300nH/mm2
- L/RDC >200nH/Ω for L > 100nH
- L/RDC of 120nH/ Ω for L ~ 10nH
- Current Density exceeding 12A/mm2 for coupled inductors
 - Saturation Current exceeding 1.5A for single inductors
 - Cross wafer inductance variability σ < 3%
- Other Devices in development:

2

Transformers, improved inductor designs

On-Chip IVR

- Monolithic integration
 - Magnetic-core inductor
 - Ni₄₅Fe₅₅
 - Ms: 1.6 T
 - Hc: 0.2 Oe
 - Switching frequency
 - 50 to 200 MHz
 - Inductance
 - 130 nH/mm²

On-Chip

Monolithic integration

- Magnetic-core inductor
 - Ni₈₀Fe₂₀
- Switching frequency
 - 30 MHz to 140 MHz
- Inductance
 - 17 nH
- 16 inductors in 2.8 mm²
 - Inductor size: 0.17 mm²
- Current: 1.5 A

Frequency (MHz)

Material sample thickness = >40um
 High deposition rate – high throughput and low cost

IC or glass substrate- compatible Deposition thickness capability up to 50um μ_r = 200, Bsat= 1.3 T, Q @ 5 MHz>90, Q@ 20 MHz=30

0.5 microhenries; Isat of 2 Amp on 6 inch; Toroid and solenoid inductors

Magnetic Components: Integration

• Planar transformers with windings implemented on PCB are gaining momentum in R&D and production

	Method Conventional Wire-wound		Wire-wound integrated	PCB winding planar core	
mponent	Structure	[1]	[2]	[3]	
Co	Power	3.3kW	192W	5 kW	
	Profile	> 45 mm	> 30 mm	20 mm	
	Leakage inductor	Discrete	Integrated	Integrated	
	Process	Manual (Litz wire)	Manual (Litz wire)	Thick Cu PCB	
	Repeatability	Low	Low	High	

• Monolithic integration of transformer and inductors on single core to minimize part count

Medium Frequency – Medium Power: Inductor Advances

PCB-embedded ferrite and metal flake composites

High-Density Embedded Inductors for Integrated Voltage Regulators

3D Power Packaging

•	Multiphysics converter design (topology & hardware co-design) Advanced GaN devices & high-temp passives	•	Structure and process innovations Doubleside wafer plating Panel-scale embedding of power devices
		•	High-temperature materials with enhanced interfaces for Hi-Rel

Infineon

Schweizer

- Sintered copper interconnections between devices, IMS or leadframe and PCB
- Barriers for oxygen and moisture
- Advanced encapsulants

- ASE
- Advanced cooling loop with temp uniformity
- System-level thermomechanical and electrical reliability:

Improvement trends* for different system components

Evolution of Die-Attach Materials

		\rightarrow			\rightarrow
	High-lead solders	Transient Liquid Phase Sintering	Nanosilver	Nanocopper	Nanocopper- microwire-graphene
	e_now	Silicon die	Silicon	Cu foil	multilayers
		Cu ₃ Sn	Copper	Sintered foam Cu metallization	
	Koduri, Texas Instruments Current is not needed for lateral GaN die-attach)	Cu on DBC substrate Infineon	^{200µm} → Jiang Li (TI, Virginia Tech)	Vanessa Smet, Georgia Tech	
Pressureless assembly capability	Pressureless		Requires pressure	Requires more pressure	Pressureless with reactive nanosurfaces
Electrical and thermomechanical reliability performance	Moderate with low homologous temperature	Moderate with kirkendall voids	Microstructural instabilities and diffusion	Die shear strength is low with smooth backside metallization	
Safety	Lead-based				
Cost			High	Moderate	Low, because of design and process flexibility

Low Power (Consumer Electronics) to High Power

High-Power Packages – Leading-edge Products

Package	Standard wire bond package	Cu pin interconnect w/ thick Cu DBC	Double-sided liquid cooling	Cu traces on flexible foil w/ sintered joints	Planar interconnect using Cu plating
-	Conventional	Fuji Electric	Denso	Semikron SKiN	Siemens SiPLIT
Package structure		14. 1 mm 62.6 mm			Container (192) and a second and compare Container (192) and co
Cross-section		SiN Ceramic Substrate Power Circuit Board Terminal Cu Pin Cu Pin Thick Cu Block Epoxy Resin	Thermal grass Cooling channel Collect place Cooling channel Thermal grass Cooling channel Cooling channel Cooling channel Cooling channel	RC- Terminant Ro-Dip Bit Color AC- Terminant North Color AC- North Color AC- N	Planar Cu Missionnect Biotep DCB
Parasitic inductance					
Thermo-mechanical					
Note	Wire bondSolder die attach	 Cu pin joints Gel replaced with epoxy 	Double sided coolingDouble DBC	 FPCB Gate drive integrated Ag sintered joints	 Area joints by Cu electroplating
Haksun Lee, GT	Not Available	Very bad Bad	Good	Very Good	

Traditional to 3D Power Packaging

- Reliability challenges with nanocopper and nanosilver
- Thick packages
- Large electrical inductance and high thermal resistance

Leadframe Fan-Out Packaging

- No reliability challenges with nanocopper
- (Bonding layers are in compression)
- Thin packages
- Lower electrical inductance and thermal resistance

One block of converter

Full converter

Mitsubishi Electric

3D Power Packaging: AT&S and GaN Systems

- Planar Surface-embedded components (PARSEC)
- 250-450 V; 200 A: 50 kW inverter
- IMS PCB with thermal-conducting prepregs
- Better partitioning, faster switching, reduced switching losses

GaN Systems 7 KW, Level 2 EV Charger

3D Power Packaging - Schweizer

- Thick lead-frame heat-spreader with cavity for die placement
- Laser-drilled and plated-vias for top interconnect on top side (logic integration possible)
- Power embedded PCB offers improved electrical, thermal performance with increased power density

P2Pack Half-bridge with embedded shunt:

- No die-attach reliability concerns
- Laminate temp: 175-220 C
- 38% reduction in losses for power PCB
 - Over 100-500 Amp

Kearney et al., ABB Corporate research

- Improved switching behavior
- Reduced losses
- Optimized heat dissipation
- Control & power co-integration

- 50% improvement in performance
- 4.5-9W ; 3-5 K rise in temperature;
- 0.05 -0.1 milliohm resistance

Reliability Challenges

- Cracking of thick vias
- Dielectric cracking at stress-intensive points
- Partial discharge:
 - 41-50 kVrms/mm before aging
 - 32-36 kVrms/mm after aging Lifetime = C/Eⁿ

n = 14-16

ABB/Schweizer Example of electrical breakdown at high fields

Infineon power module (low CTE, high Tg, high fillers or fibers

Bosch/Schweizer/Isola Resin cracking in standard resins (left), no cracking with advanced epoxies

Low-Frequency - High-Power Magnetics

- Ferrite 3C90:
 - 500 kHz: 0.1 T peak; 700 mW/cc;
 - 1 MHz; 0.02 T; 70 mW/cc;
- Ferrite 3F5 MnZn:
 - 1 MHz; 0.02 T; 30 mW/cc
- Sumida's ferrite:
 - 1.5 MHz; 0.02 T; 37 mW/cc
 1 MHz; 0.02 T; 70 mW/cc;
 - 200 kHz; 0.1 T; 250 mW/cc

Vitrovac (Co₆₇ Fe₄ B₁₁ Si₁₆ Mo₂) amorphous flakes: 100 kHz; 0.1 Tesla, 30 mW/cc; 100 kHz; 0.2 Tesla: 200 mW/cc;

Hitachi metals: Finemet - FT-3L and FT-3M: 20 kHz; 0.1 Tesla; 2 mW/cc 20 kHz; 0.2 Tesla; 15 mW/cc 20 kHz; 1 Tesla; 300 mW/cc

Permeability of 10,000 to 100,000 20 kHz x 50 mT << 500 W/cc

Ms: 1.5 – 2 Tesla; 1-5 A/m of Coercivity <100 kHz

Attracting Tomorrow

Comparison of DC capacitors of nominal 1µF/400V_{op}

	MKP film capacitor	BTO Class 2 MLCC (e.g. X7T)	CeraLink™
Nominal / rated capacitance	100 %	100 %	100 %
No bias voltage 0.5 V _{RMS} , 25°C	100%	100 %	35 %
DC link voltage 0.5 V _{RMS} , 25°C	100 %	35 %	60 %
DC link voltage 20 V _{RMS} , 25°C	100 %	35 %	100 %
Typical capacitance density @ DC link voltage 20 V _{RMS} , 25°C	0.7 µF/cm³	2.5 µF/cm³	<mark>☆ 4.9 µF/cm³</mark>
Typical current rating per capacitance @ 100 kHz, 105°C	<1 A/µF	<4.5 A/µF	☆ 12 A/µF

Heterogeneous Integration with Nanopackaging

- Power delivery in computing systems
 - Integrated voltage regulator: power conversion closer to the load
 - Capacitors and Inductors: >10 MHz; Impedance < 1 milliohms</p>
- Medium-power packaging
 - Integrated copper carriers
 - Embedded-die packaging with die-attach materials: Silver to nanocopper
 - High-temperature organic packaging
- High-Power packaging:
 - Doubleside cooling, lower parasitics
 - High-voltage passives: 1000 V, planar and higher power densities

