GE Energy Digital Energy

Acquiring Operational and Non-Operational

Data

from Substation IEDs Smart Grid Tutorial

John McDonald, P.E.

Director, Technical Strategy & Policy Development

June 6, 2012

"Operational" Data

- Data that represents the real-time status, performance, and loading of power system equipment
- This is the fundamental information used by system operators to monitor and control the power system
- Examples:
 - Circuit breaker open/closed status
 - Line current (amperes)
 - Bus voltages
 - Transformer loading (real and reactive power)
 - Substation alarms (high temperature, low

"Non-Operational" Data

- Data items for which the primary user is someone other than the system operators (engineering, maintenance, etc.)
- Note that operators are usually interested in some data that is classified as non-operational
- Examples of "Non-Operational" data:
 - Digital fault recorder records (waveforms) (protection engineer)
 - Circuit breaker contact wear indicator (maintenance)
 - Dissolved gas/moisture content in oil (maintenance)

Characteristics of Operational and Non-Operational Data

Characteristic	Operational Data	Non-Operational Data
Data Format	Usually limited to individual time sequenced data items	Usually a data file that consists of a collection of related data elements
Real Time vs Historical	Usually consists of <u>real-time</u> quantities	Mostly <u>historical</u> data: trends over time
Data Integration	Easily transportable by conventional SCADA RTUs using standard (non-proprietary) protocols	Typically use <u>vendor</u> <u>specific (proprietary)</u> <u>formats</u> that are not easily transported_by SCADA communication protocols

Flow of Operational and Non-Operational Data Customer Services

Why Have Multiple Data Paths?

- Prevent "nuisance" alarms (alerts)
- Avoid burdening SCADA facilities
- Lack of SCADA support for file transfer and proprietary protocols
- Some useful IED non-operational data items use formats that may not be supported by legacy SCADA protocols
- Sheer volume of data (especially nonoperational data)!

Acquisition of Operational Data Items

- SCADA
 protocol like
 DNP3 can be
 used to
 access most
 "simple" IED
 data items
- Data passed to SCADA supplier's data warehouse (historian)

Acquisition of Non-Operational Data Files –

Basic Approach

1. Use manufacture specific software (or equivalent) to extract data from the IED (acSELerator, TapTalk, etc

2. Capture the data acquired by this software in a non-proprietary format

3. Transmit (push or pull) the resultant data file to a shared drive on the corporate network

4. Enable authorized personnel to access the data using standard analytical

QQ Stion at work

Customer Services Billing, Settlements

Approaches for Obtaining Non-Operational Data

- Approach 1: Download directly from the IED
- Approach 2: Use "Pass through" capabilities of substation data concentrator
- Approach 3: Local data concentrator as non-operational data server

Approach 1 - Direct Download Approach

- Travel to the substation
- Plug laptop containing manufacturer specific data into PC
- Download data directly from the IED onto the laptop
- Transfer the data to the corporate network via docking station or other data off load mechanism
- Pro's And Con's
 - + Low tech- low cost approach
 - Not continuous monitoring –

Approach 2 - "Pass Through"

- Copy of IED manufacturer specific software stored on IED access server
- End user connects to access server using multi-level authentication
- Access server establishes a "pass through" connection to IED in question via the substation data concentrator
- End user interacts with the IED and downloads the required data as though desktop PC was directly connected to the PC in the substation
- Downloaded data is then copied to a shared drive as necessary
- Pro's/Con's:
 - Technically simpler than network approach
 - Promotes data silos
 - Requires special IED software on each desktop PC
- Today, most systems use this approach!

Approach 3 - Data Concentrator as Non-Operational Data Gateway

- IED manufacturer software (acSELerator, Tap talk, etc) or equivalent loaded onto substation data concentrator
- Data concentrator communicates directly with the IEDs to acquire nonoperational data files
- Data concentrator converts data files to standard format
- Converted data file

6/14/2012

Approach 3 - Data Concentrator as Non-Operational Data Gateway

- Advantage of this approach:
 - Fewer field devices to manage from central location – 1 SDC versus multiple IEDs
 - Data files transferred over WAN using FTP, OPC or other standard method versus IED specific protocol
- Disadvantage
 - SDC must support the IED proprietary ASCII protocols
 - Not many do at this time

