

Cloud Computing An IT Paradigm Changer

Mazin Yousif, PhD T-Systems International

··· **T**··Systems

IT infrastructure reaching breaking point

··· **T**··Systems·····

IT infrastructure reaching breaking point

Up to 85% Capacity remains idle

55¢/\$1

70% on average is spent on maintaining infrastructures vs. adding new capabilities.

1.4X

Explosion of information driving 54% growth in storage shipments/year.

33%

33% of consumers notified of security breach terminate their relationship with companies they perceive as responsible.

\$40B

Consumer industries lose ~\$40B/year; 3.5% of sales due to supply chain inefficiencies.

••• **T**•• Systems••

The Path to Clouds

Virtualization

Manageability

Standardizations

... So what are Clouds?

- Clouds
 - -<u>Virtualized</u> <u>Autonomic</u> <u>Multi-tenant</u> <u>Utility</u> Deployments
 - Provide capabilities as services
 - Services are accessible from anywhere
 - Accessing services is billable through usage
- Cloud Computing
 - A consumption and delivery model
 - -End-user focused
 - -Clients only see services

Industrialization of Delivery of IT Services

··· **T**··Systems·····

.. Key Clouds Attributes

High-Quality User Experience

- "Best in class" services
- Flexibility & choice
- Lower costs
- Enhanced security/reliability
- Rapidly Provisioned

Cloud Enables

- Self-service
- Sourcing options
- Economies-of-scale

Cloud Delivery Models

··· **T**··Systems

- Private, public and hybrid
- Industry sector specific
- Workload and/or programming model specific
- Any_Thing_You_Like_Cloud

Cloud Services

- User provision
- Self service
- Tiered, flexible pricing

Changes in Delivery

- Standardized offerings
- Virtualized & automated

Current Offered Services

Cloud Computing drives business value

... to free budget for new investment and speed deployment of new capabilities.

··· **T**··Systems······

Architecture Overview

- Virtualized Pool of Compute & I/O resources
 - Applications/services running within virtual machines
- Autonomic services management
- Catalogues: offered services, images, workflows & utility models

Virtualization - The Foundation of Clouds

··· **T**··Systems

10

Manageability - Command & Control of Clouds

Service Mgmt provides mechanisms & S/W to assure quality service delivery & reduce infrastructure costs

Service Management Model for Cloud Computing

··· **T**··Systems·····

Elements that Drive Cloud Efficiency & Economics

Differences: Cloud Computing & Traditional IT

	Traditional IT	Cloud Computing
Delivery Model	Buy assets & build delivery architecture	Buy external service
Interface Model	Internal network or intranet	Via Internet using standard Internet Protocols (IP, HTTP, HTML, etc.)
Business Model	Pay for fixed assets and administrative overhead	Pay directly based on usage or indirectly (e.g., subsidized by advertizing)
Technology Model	Single Tenant	Scalable, Elastic, Dynamic, & Multi-tenant

··· **T**··Systems·····

Challenges/Risks

- Availability of guaranteed service levels
- Security & regulatory compliance
 - … Data security, recovery, segregation, location; Investigative support; etc.
- Auditing Cloud to verify providers' claims
- •Network connectivity both performance & reliability
- Workload selection; effective exploitation of cloud capabilities
- Applications Scalability
- Integration of services between cloud offerings
- Interoperability among clouds, especially public clouds

Challenges/Risks - Security

We Have Control Located at X Stored in servers Y, Z Backups in place Sufficient ACL & Uptime Happy Auditors Engaged security team

•••**T**••**S**

16

Workloads

Ready to Move (or Not to Move) to Public Clouds Moving Not Yet

- Single virtual appliance workloads
- Test & Pre-production systems
- Mature packaged offerings like email, collaboration,..
- Software development environments
- Batch processing with limited security requirements
- Where latency is not issue
- Storage Solutions/StaaS
- Backup: Backup & Restore as a Service

- With sensitive data: Restricted to Enterprise
- Composed of multiple, co-dependent services, e.g. high throughput OLTP
- With high-levels of auditability & accountability: SOX, HIPPA, etc.
- Based on 3rd party SW that does not have virtualization or cloud-aware licensing strategy
- Require detailed chargeback or utilization measurement needed
- Require customization (customized SaaS)

··· T··· Systems

Workloads

When moving to external clouds: Workloads experience

- Gain:
 - High: small enterprise ERP/CRM/...
 - Little: loosely-coupled architectures/applications,..
- Pain:
 - High: numerical analysis with large data transfer,..
 - Little: development, web serving, collaboration, ...

•• **T**••Systems•••••

Cloud Middleware

- Middleware written assuming static (permanent) machines Conventional Environments
 - Even for simple virtualized environment (e.g., for server consolidation purposes)
 - Long running VMs with static IP addresses, host names, Elasticity limited to VMM capabilities; etc.
 - When shutdown VM (store back in persistent storage), it still exists normal middleware still works. Restart VM image when needed.
- In Clouds
 - VM images get created; live for minutes/hours/etc. then collapse... nothing left (no states) → disappears forever.
 - You can purchase images that live for very long time; but you pay \$\$
 - Middleware must evolve with how virtualization is used in Clouds
 - VM disappearing forever on regular basis is a problem
 - Middleware to continuously discover resources/services
 - Can be done; but will be specific to cloud environment (IBM, Amazon,...) > No standards yet

Cloud Applications

- Take Enterprise Applications & move them to Clouds?
 - May be; but Unlikely
- Applications not Cloud Friendly: concerns
 - Enterprise applications' scalability is no match for scalability required for Clouds
 - Latencies in Clouds likely longer than latencies in enterprise
 - May need to deal with very large datasets in clouds
 - Licensing model may not work in the clouds
- ••• **T**•• Systems••••••

Likely Evolution of Clouds

•••**Ŧ**••

- 1. Vendor offerings adopted primarily in single service nature;
- 2. Challenges will remain such acceptance, security and performance to be gradually filled to brouler acceptance.
- 3. Adoption by enterprise measured, focusing on non-core applications

- 2. Regulatory, security & SLA can interfy offerings will be filled;
- 3. Vendors offering the station of the cloud within enterprises.

 Collection of offerings from multiple vendors;
 Custom applications to be composites of offthe-shelf offerings in error of 1 mashed up to create new solutions;

3. Enterprise y dy annically decide on resources to use based on current pricing & required SLAs.

Test Clouds – An Example

IT Test Environments - Notoriously Inefficient

- 30% 50% of all servers within a typical IT environment are dedicated to test.*
- Industry average utilization of test servers is around 5%
- IT staffs top challenge is finding available resources to perform tests to move new applications into production.
- 30% of defects caused by wrongly configured test environments
- Testing backlog is often very long
 - ... also the single largest factor in delay of new SW deployments
- Test environments are seen as expensive and providing little real business value
- Too many different tools and skills needed

Traditional & Cloud-based Test Infrastructure

A Private Test Cloud - An Example

Ę

··· **T**··Systems

SW Dev&test - Real improvements

··· T·· Systems·

Test Cloud ROI Analysis - Financial Institution

Cost Structure With and Without Cloud Transformation

Payback Period (Months) Total Initial Investment for Test Cloud Net Present Value (NPV)	2.85 \$914,929.31 \$7,949,228.81	
Estimated ROI over 3 years Estimate average annual ROI	868.84% 289.61%	

Gartner's Hype Cycle for Cloud Computing - July 2009

Conclusions

Cloud Computing is happening

- ... Still evolving requiring R&D
- Considerable market growth & maturity over next 5 years
- Challenges exist
 - e.g., security, compliance, network availability, SLA guarantees, ...
- Interoperability among public clouds
 - Standards & open source key for wide cloud adoption

··· **T**··Systems·····

Q&A Thank You

Mazin Yousif, PhD Mazin.yousif@t-systems.com

(Photo by Nicholas_T @ Flickr)