Spring 2016 Tech Seminar Series

#1 Designing PCB’s
For First Version Working Assemblies

Series Presenters: Jim Groves & Mike Joyner

Presentation Sponsored By:
Ithaca IEEE Chapter & Cornell IEEE Chapter

Phillips Hall RM#213 Tuesday, Feb. 23, 5:30pm - 7:00pm
Spring 2016 Tech Seminar Series

#1 Designing PCB’s For First Version Working Assemblies

Series Presenters:

Jim Groves
IC Design Manager at Kionix, Inc.
Linkedin page: https://www.linkedin.com/in/jim-groves-a51811a

Mike Joyner
President/CEO at Town Line Technologies, LLC
Linkedin page: https://www.linkedin.com/in/mike-joyner-90026815
You can have Rev A working boards all the time

- Not a myth
- Mitigate cost impacts, schedule delays.
- Avoid undesired conversations with investors/management
- DFM
- DFT
- Six Sigma Quality, not just a slogan
• **From napkin to schematic to PCB’s**

 – Hand Drawn > Manual Layout

 – CAD (Mechanical) Schematic > Layout?

 - Connectivity?
 - Library Parts?
 - ECO?

 – CAE Schematic > Layout

 - Netlists, Libraries, ECO capabilities
 - Compare, constraint rules
Expensive fuse testers and table coasters
 – Manual vs Compare/Crosschecking
 – Part Foot Prints
 – Mechanical missteps
 – 3D collisions
Spring 2016 Tech Seminar Series
#1 Designing PCB’s For First Version Working Assemblies

• CAD/CAE Tools
 – KiCad
 – Dip Trace
 – Circuit Maker
 – CS Eagle
 – Altium
 – Mentor Pads
 – Mentor Expedition
 – Orcad
 – Zuken
 – Cadence Allegro
• Freeware can be very expensive
 – Not a criticism, complex software distributed freely
 – Limited CAE capabilities
 – Limited rule checking capabilities
 – In some cases unable to handle large complex parts
• **#Net Lists matter**
 - Learn the characteristics of your tool flow
 - Due diligence before accepting exceptions
 - Manually confirm any and all exceptions
 - Multiple GND’s, sometimes a workaround
• **Board fab vs 3d mechanical milling**
 - Feature size/space
 - Through hole types
 - Solder masks
 - Concept to pcb in hand
Spend time on tape outs. Check gerbers independently

- Independent Gerber viewing editing tool is a must.
- GC-Prevue & Cam350 are a couple of examples
- Print to PDF driver
- Viewing in tool plots
• Assume nothing, Always check standards
 – Standard JEDEC footprints anything but.
 – Noting exceptions for parts you have history with, always confirm against manufacture data sheets
 – IPC.org
 – Confirm capabilities of board fab, and especially assembly
 – Double check critical nets for power not just speed
 – Saturn PCB Toolkit is a great freeware tool for calculations
• Use Data Sheets, standard packages are anything but.
 – SOT, SO8 are common examples
 – Build Part Foot Prints with a capable library tool
 – PCB Library Expert is a good tool example
- **Vias may or may not be your friend**
 - Placement is everything
 - Preplan fan outs for minimal layer changes
 - FPGA’s allow for robust pin swapping
 - Blind vias, buried vias, via-in-pad ups your board cost substantially
 - Setup vias with a low priority with auto routers
 - If using an auto router you can go back and clean up/remove a substantial number of unneeded or redundant vias.
2 layer vs 4 layer vs N# layers

- Determine signal integrity/speed issues before costs
- Design for return path first
- No mention of single layer?
- 2 layer vs 4 layer
- Work with board fab on material type/stackups
• Get out of jail cards
 – Test points
 – Jumpers
 – Multiple package types
 – Spare parts, logic, small FPGA
 – Design in redundant circuitry/power margin/glue logic
 – Optimize during productization, goal is for first off working prototype
Vendor Examples