
ICBCô19, May 17, 2019

Formal Design,

Implementation and Verification

of Blockchain Languages

Grigore Rosu

University of Illinois at Urbana-Champaign

President & CEO, Runtime Verification Inc.

Blockchain Technology
Unprecedented Security Challenges

2

¢Ƙƛƴƪ άŜȄŜŎǳǘŜ ǎƻƳŜ
given, publicly visible
ŎƻŘŜΣ ǿƛǘƘ ǎƘŀǊŜŘ ǎǘŀǘŜέΗ

Transaction is broadcast, then
άǾŀƭƛŘŀǘŜŘέ ōȅ ǊŜ-executing it on
Ƴŀƴȅ άƴƻŘŜǎέΣ ǳǎƛƴƎ ŀƎǊŜŜŘ ǳǇƻƴ

languages (virtual machines)
Validated transactions
are then deployed by
ŀƭƭ ƴƻŘŜǎ ƭƻŎŀƭƭȅΧ

Χƛƴ ōƭƻŎƪǎΣ ŀǇǇŜƴŘƛƴƎ
each block, irreversibly, to
ǘƘŜ ǇǳōƭƛŎ άƭŜŘƎŜǊέ ƻǊ
άƘƛǎǘƻǊȅέ ƻǊ άōƭƻŎƪŎƘŀƛƴέΦ

Some transactions add new
code to the blockchain, called
άǎƳŀǊǘ ŎƻƴǘǊŀŎǘǎέΣ ǿƘƛŎƘ Ŏŀƴ ōŜ
executed by other transactions.

In the end, all code is public,
can be invoked by anybody, and

can irreversibly change the
history (e.g., steal your money).

Hackers have huge
incentives to exploit any

bugs in smart contracts or
underlying infrastructure.

Smart Contract Snippet (ERC20)
(one of the ~40,000 Ethereum ERC20s)

Written in Solidity:

3

ERC20 does not
ǎǘŀǘŜ ǘƘŀǘΧ

There should be
no overflow when
self-ǘǊŀƴǎŦŜǊΧ

Χ

Attacks Happened. Many.

4
¢ƘŀǘΩǎ ƭŀǊƎŜǊ ǘƘŀƴ Ϸмл70!

What Can WeDo About This?

ÅMore specifically, what can we do about the
execution environment, to increase security?

ïUnacceptable to build this complex and disruptive
technology with poorly designed VMs and languages!

ÅIdeal scenario feasible, stop compromising!

ïEverything must be rigorously designed, using formal
methods. Implementations must be provably correct!

ÅNodes: provably correct VMs or interpreters

ÅSmart contracts: use well-designed programming languages,
with provably correct compilers or interpreters

ÅVerification: Smart contracts provably correctwrt their specs
5

Ideal Language Framework Vision

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

6

Χ

Current State-of-the-Art
- Sharp Contrast to Ideal Vision -

7

C

Java

JavaScript

Solidity

EthereumVM

Χ

Interpreter

Symbolic Execution

Compiler

Model Checker

Deductive Verifier

Χ

Separate tools, by
separate teams, little

to no code shared

Current State-of-the-Art
- Sharp Contrast to Ideal Vision -

8

C

Java

JavaScript

Solidity

EthereumVM

Χ

Interpreter

Symbolic Execution

Compiler

Model Checker

Deductive Verifier

Χ

The story of the
PL/FM community.
Maintenance hell
(L * T systems).
Uneconomical.
Wasted talent!

L T

How It Should Be

9

C

Java

JavaScript

Solidity

EthereumVM

Χ

Interpreter

Symbolic Execution

Compiler

Model Checker

Deductive Verifier

Χ

Ideal Language Framework

Our Attempt: the K Framework
http://kframework.org

ÅWe tried various semantic styles, for >15y and
>100 top-tier conference and journal papers:
ïSmall-/big-step SOS; Evaluation contexts; Abstract
ƳŀŎƘƛƴŜǎ ό//Σ /YΣ /9YΣ {9/5Σ ΧύΤ /ƘŜƳƛŎŀƭ ŀōǎǘǊŀŎǘ
ƳŀŎƘƛƴŜΤ !ȄƛƻƳŀǘƛŎΤ /ƻƴǘƛƴǳŀǘƛƻƴǎΤ 5ŜƴƻǘŀǘƛƻƴŀƭΤΧ

ÅBut each of the above had limitations
ïEspecially related to modularity, notation, verification

ÅK framework initially engineered: keep advantages
and avoid limitations of various semantic styles
ïThen theory came

10

http://kframework.org/

Complete K Definition of KernelC

11

