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Smart Contract Snippet (ERC20)
(one of the ~40,000 Ethereum ERC20

Written in Solidity:
function transfer(address _te, uint256 _wvalue) returns (bool success) |

X

ERC20 does not
if (_value == @) { return false; } 3 lj | lj S l.,J K | l.,l X

uint256 fromBalance = balances[msg.sender];

bool sufficientFunds = fromBalance >= wvalue;
- There should be

bool overflowed = balances[ to] + value < balances[_ to];

no overflow when
seltd NJ y & F S NX

if (sufficientFunds && !overflowed) {
balances[msg.sender] -= wvalue;

balances[_to] += _value;

Transfer(msg.sender, _to, _value);
return true,

T else { return false; }
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What CanWe Do About This?

A More specifically, what can we do about the
execution environmentto increase security?

I Unacceptable to build this complex and disruptive
technology with poorly designed VMs and languages!

A ldeal scenario feasible, stop compromising

I Everything must be rigorously designesing formal
methods. Implementations must h@ovably corredt
A Nodes:provably correcMMs or interpreters

A Smart contracts: useell-designed programming languages
with provably correccompilers or interpreters

A Verification: Smart contractsrovably correctvrt their specs
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Current Stateof-the-Art
- Sharp Contrast to IdeaI\Visien

Separate tools, by
separate teams, little
to no code shared
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Current Stateof-the-Art
- Sharp Contrast to Ideal Visien
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How It Should Be

|deal Language Framework
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Our Attempt: the K Framework
http://Kframework.org

A We tried various semantic styles, for >15y and
>100 toptier conference and journal papers:

I Smalt/big-step SOS; Evaluation contexts; Abstract
YI OKAYyS&a o// % |/ YZ [/9YZ
YI OKAYST 'EAZ2YIFTUAOT [ 2Y

A But each of the above had limitations
I Especially related to modularity, notation, verificatior
A K framework initialengineered keep advantages
and avoid limitations of various semantic styles

I Then theory came


http://kframework.org/

Complete K Definition d{ernelC



