verification

IITII;‘MS ‘ runtime
)

Formal Design,

Implementation and Verification

of Blockchain Languages

Grigore Rosu

University of lllinois at Urbana-Champaign

President & CEO, Runtime Verification Inc.

| CBC6 19, Ma y

[¢ KA Y1 o 7 Transaction is broadcast then

, Pl A d
[]

— N\

Vgivgnl publicly vi & @I f A R

O2RSXZ @6A) Y| yeé a Validated transaction
W ;\ languages are then deployed b
= Tm 7 Fff Yy2RS3

 Some transactions add new\=____- .
m | code to the blockchain, calledA Y 01 2 O
et A YF NI O2y 0 NI jlb'@Cé(,foe\@r&ibd

aaaaaaaaaa executed by other transactiongK S 1LJdz0 £ A
aKAa

NO O‘<< ¢

02 NE ¢

. R —
.~ Hackers have huge the end, al code |s publlc
incentives to exploit any N be invoked by anybody, ar

bugs in smart contracts ofan irreversibly change the
. underlying infrastructure story (e.gd., steal your money,

Smart Contract Snippet (ERC20)
(one of the ~40,000 Ethereum ERC20

Written in Solidity:
function transfer(address _te, uint256 _wvalue) returns (bool success) |

X

ERC20 does not
if (_value == @) { return false; } 3 lj | lj S l.,J K | l.,l X

uint256 fromBalance = balances[msg.sender];

bool sufficientFunds = fromBalance >= wvalue;
- There should be

bool overflowed = balances[to] + value < balances[_ to];

no overflow when
seltd NJ y & F S NX

if (sufficientFunds && !overflowed) {
balances[msg.sender] -= wvalue;

balances[_to] += _value;

Transfer(msg.sender, _to, _value);
return true,

T else { return false; }

[—_—

Yesterday"?
nhitps://patt

ently N0
. that cur™
«This meaﬂs

Sig Wallets”

resulted 1

major exchai
withdrawals

The exploit. termed Veriﬁed lt.

Aprjfl when 115 octo

What CanWe Do About This?

A More specifically, what can we do about the
execution environmentto increase security?

I Unacceptable to build this complex and disruptive
technology with poorly designed VMs and languages!

A ldeal scenario feasible, stop compromising

I Everything must be rigorously designesing formal
methods. Implementations must h@ovably corredt
A Nodes:provably correcMMs or interpreters

A Smart contracts: useell-designed programming languages
with provably correccompilers or interpreters

A Verification: Smart contractsrovably correctvrt their specs
5

ldeal Language Framework Visior

X (Deductive\
program

Parse% P

[< verifier y

{Interpreter] Formal Language Definition Model
(Syntax and Semantics) checker

(semantic :
execution
Debugger

[C"”‘p"eﬂ { ﬂ Ls,ymbonﬂ

Current Stateof-the-Art
- Sharp Contrast to IdeaI\Visien

Separate tools, by
separate teams, little
to no code shared

C L mterpreter
Java Compiler J
JavaScript Model Checker
Solidity :Symbolic Executio}1
EthereumVM Deductiye_ Verifier]

X X

Current Stateof-the-Art
- Sharp Contrast to Ideal Visien

C

Java

/The story of the\
PL/FM community.
Maintenance hell

(L * T systems).
Uneconomical.

\ Wasted talent!
JavaScript M

Solidity

EthereumVM

X

Interpreter

Compiler

Model Checker

:Symbolic Executio}1

: Deductive Verifier]

X

How It Should Be

|deal Language Framework

C 4 2

Interpreter
Java Compiler J
JavasScript Model Checker:
Solidity :Symbolic Executio}1
EthereumVM Deductiye_ Verifier]

X _ X ./

Our Attempt: the K Framework
http://Kframework.org

A We tried various semantic styles, for >15y and
>100 toptier conference and journal papers:

I Smalt/big-step SOS; Evaluation contexts; Abstract
YI OKAYyS&a o// % |/ YZ [/9YZ
YI OKAYST 'EAZ2YIFTUAOT [2Y

A But each of the above had limitations
I Especially related to modularity, notation, verificatior
A K framework initialengineered keep advantages
and avoid limitations of various semantic styles

I Then theory came

http://kframework.org/

Complete K Definition d{ernelC

