

Prototyping: Considerations From the Bread Board for the Final Product

A. Jensen Newman, Ph.D., EIT

Principal Investigator: Power, Energy, Controls, and Electronics UT Dallas Applied Research Center 716-544-3184 ajn160130@utdallas.edu **Prepared For:**

DFW Sensor & IoT Technology Meetup

Background Image: TRL8 Energy Saving Control Unit Developed by Newman et al.

Outline

- About Me
- If I Could Only Tell You 2 Things...
- Breadboarding The First Step
- Circuit Design/Schematic Capture
- PCB Design
- Final Assembly
- Free Tools
- Design For Manufacture

About Me

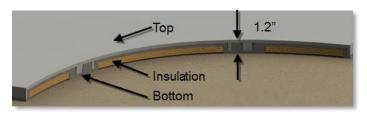
Education

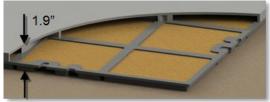
- Ph.D. Applied Mathematics, RPI 2013
- M.S. Mechanical Engineering, UB 2010
- B.T. Electrical Eng. Tech., Buff. State 2008
- B.T. Mechanical Eng. Tech., Buff. State 2007
- A.A.S. Drafting Tech., ECC 2005

Professional

- UTD ARC Principal Investigator
- Applied Research Associates –
- Group Leader
- Cameron Compression Designer
- ATSI Piping Engineer

These are a Few of My Recent Projects




Multi-Functional Transcranial Electrical Stimulation System

Energy Savings Control Unit

Energy Efficient Expeditionary Flooring

If I Could Only Tell you Two Things... (1)

If I Could Only Tell you Two Things... (2)

LT1637 1.1MHz, 0.4V/us

Over-The-Top Micropower, Rail-To-Rail Input and Output Op Amp

FEATURES

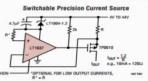
- Operates with Inputs Above V+
 Rail-to-Rail Input and Output
- Micropower: 250µA Supply Current Max Operating Temperature Range: -55°C to 125°C
- Gain-Bandwidth Product: 1.1MHz
- Slew Rate: 0.4V/μs
 Low Input Offset Voltage: 350μV Max
- Single Supply Input Range: -0.4V to 44V
- High Output Current: 25mA Min
- Specified on 3V, 5V and ±15V Supplies
- Output Drives 4700pF with Output Compensation
- Reverse Battery Protection to 25V
- High Voltage Gain: 800V/mV
- High CMRR: 110dB
- Available in 8-Lead MSOP, PDIP and SO Packages; and a Tiny (3mm × 3mm × 0.8mm) DFN Package

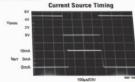
APPLICATIONS

- Battery or Solar Powered Systems: Portable Instrumentation
- Sensor Conditioning Supply Current Sensing
- Battery Monitoring
- MUX Amplifiers
- 4mA to 25mA Transmitters

DESCRIPTION

The LT®1637 is a rugged op amp that operates on all single and split supplies with a total voltage of 2.7V to 44V. The LT1637 has a gain-bandwidth product of 1.1MHz while drawing less than 250µA of quiescent current. The LT1637 can be shut down, making the output high impedance and reducing the quiescent current to only 3µA. The LT1637 is reverse supply protected: it draws virtually no current for reverse supply up to 25V. The input range of the LT1637 includes both supplies and the output swings to both supplies. Unlike most micropower op amps, the LT1637 can drive heavy loads; its rail-to-rail output drives 25mA. The LT1637 is unity-gain stable into all capacitive loads up to 4700pF when optional $0.22\mu F$ and 150Ω compensation is used.

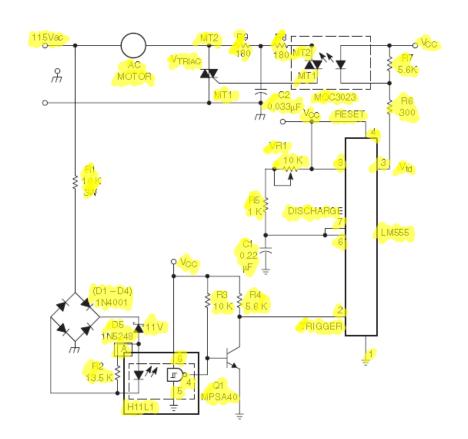

The LT1637 has a unique input stage that operates and remains high impedance when above the positive supply. The inputs take 44V both differential and common mode, even when operating on a 3V supply. Built-in resistors protect the inputs for faults below the negative supply up to 22V. There is no phase reversal of the output for inputs 5V below VEE or 44V above VEE, independent of VCC.


The LT1637 op amp is available in the 8-pin MSOP, PDIP and SO packages. For space limited applications, the LT1637 is available in a 3mm × 3mm × 0.8mm dual fine pitch leadless package (DFN).

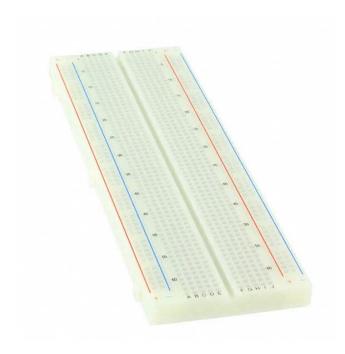
CT, LT, LTC and LTM are registered trademarks of Linear Technology Cor Over-The-Top is a registered trademark of Linear Technology Corporation All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

Over-The-Top® Current Source with Shutdown



If I Could Only Tell you Two Things... (2)



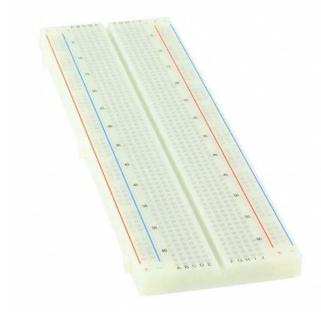
You Will Check. The Only Question is: Do You Check Before or After Something Breaks?

Breadboarding

Always Use an ESD Wrist Strap

Digikey PN

16-1087-ND


You will not always see a spark if an ESD event occurs

Knowing these Breadboard Specs Will Help You Pick the Right Parts

DALLAS
Applied Research Center

- 100 mil pitch
- Center is 300 mil pitch
- 1.5 A capacity
- Look for parts with lead dia. < 40 mil, length
 >=138 mil (3.5mm)

Digikey PN

BKGS-830-ND

Use Wire to Board Terminal Blocks If Connecting to Breadboard

Item	Digikey PN
15A 12-30 AWG	277-5911-ND
10A 14-30 AWG (low profile)	277-6270-ND

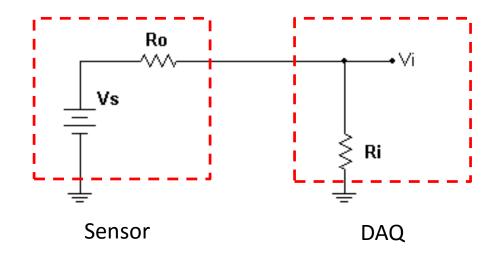
Rising Edge Cage Clamp

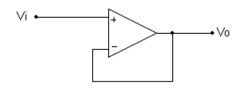
Look for Parts Available in Both DIP and SMT

Compare Parts	7	lmage	Digi-Ke Nun	ey Part nber	Manufa Part N		Manufa	acturer	Desci	ription	Quar Availa	able	Unit P US	D	Minir Quar	ntity	Pack	aging	Packag	e / Case	Dev	plier vice kage
			A	_	^	▼	_	_	_		A	•		~	•	~	_	_	A	•	A	_
	7	reditter.	ADG436	BRZ-ND	ADG4361	<u>BRZ</u>	Analog Device		IC SWITCH SPDT 16S		890 - Immedi	iate	6.9000	00	1		Tube Alterna Packa	ate	16-SOIC 3.90mm		16-SOI	С
			ADG436	BNZ-ND	ADG4361	BNZ	Analog Device		IC SWITCH SPDT 16D		133 - Immedi 2,500 - Factory Stock		7.4700	00	1		Tube	3	16-DIP ((7.62mm)		16-PDI	P

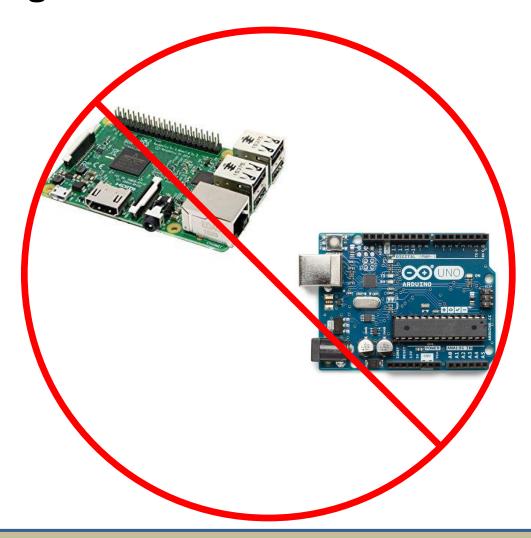
Common SMT Packages
SOIC
SWD
QFN
TSSOP
1206

Double Check Your Packaging and Footprints


DIP: Dual In-Line
Plastic
SMT: Surface Mount
Technology


Avoid Plastic Ball Gated Array (PBGA)

Watch out for Low Input Impedances; Avoid Sensors That Output Voltage

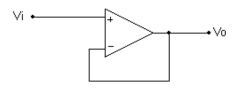

Voltage Follower

Voltage is Follower is one of My Favorite Circuits; Output Z:Input Z = 1:100

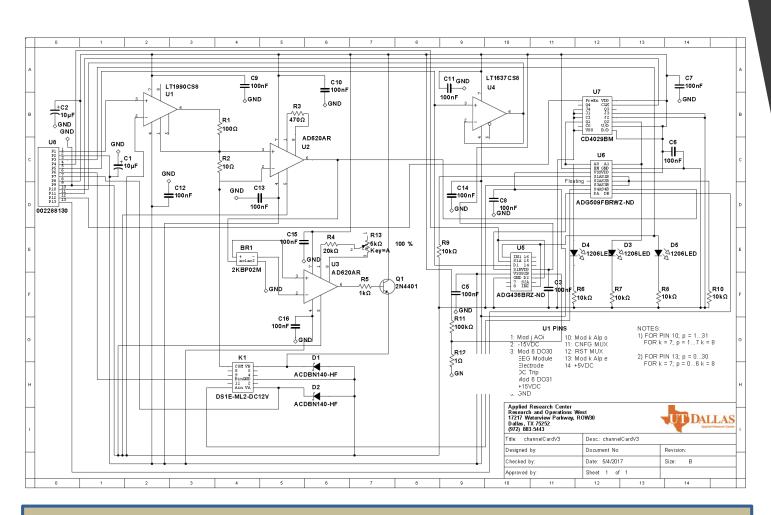
Avoid Raspberry Pi or Arduino if Trying to Bring a Product to Market

Not Available at MFG Quantities. You Will Have to Port

General Breadboarding Guidlines

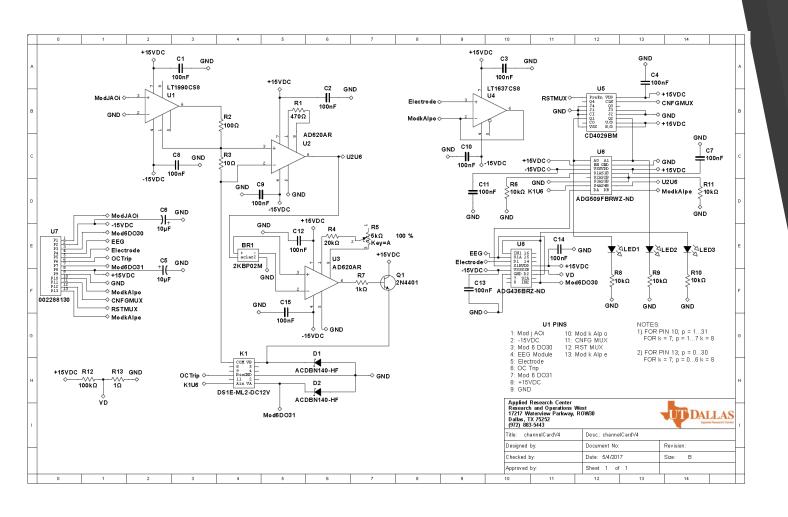


- Avoid Touching Breadboard/Prototypes When Power is On (Even if it is low voltage)
- Set up your measurements first, then power on
- Switch off and unplug
- Order more parts than you need

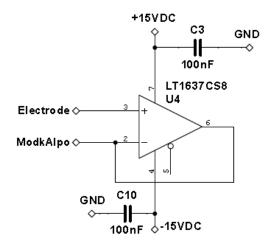


Circuit Design/Schematic Capture

Use Named Nets Instead of Wires on Schematics



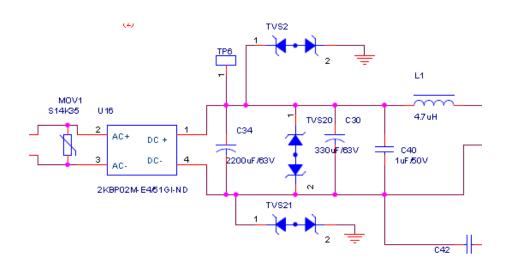
Use Named Nets Instead of Wires on Schematics



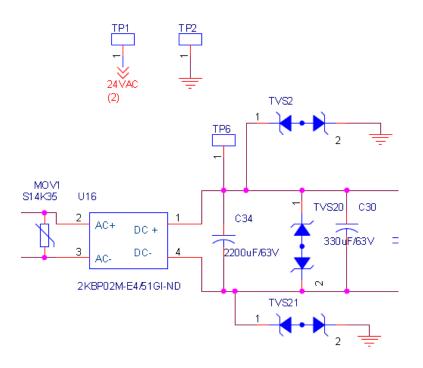
Bypass Caps Prevent Damage, and Ensure Proper IC Operation

DALLAS
Applied Research Center

- Every IC gets one
- Dual voltage IC's get two


Item	Digikey PN
10 uF Tantalum Cap	PN 399-5152-1-ND
0.1 uF Ceramic Cap	399-1249-1-ND

Item	Digikey PN
TVS Diode	296-41842-1-ND
Choke	PM3700-70-RCCT-ND



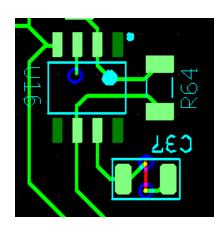
Good Practice in Prototyping Too

You can Never Have Too Many Test Points

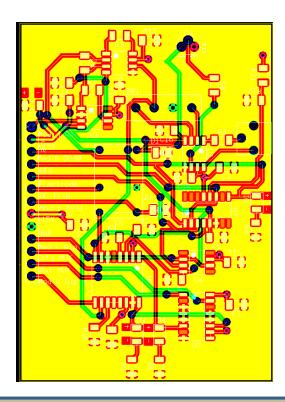
Especially ground points (you want to avoid making large loops with scope cables)

Provide Jumpers to Ground JTAG Lines, Especially Clock, When Using MCUs

Define JTAG


Digikey PN

S3404-ND

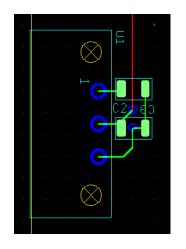


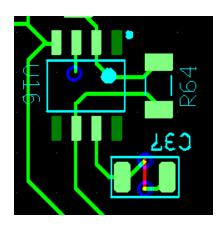
PCB Design

Always Use Copper Planes

- At Least Two One for Vdd and one for VSS
- Do Not run Copper Planes to Edges

If using a 4 layer board make the two internal layers power and ground plane – No signals on internal layers

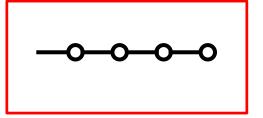


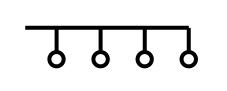


By-Pass Caps Should be as Close to IC's/Power Entry as possible

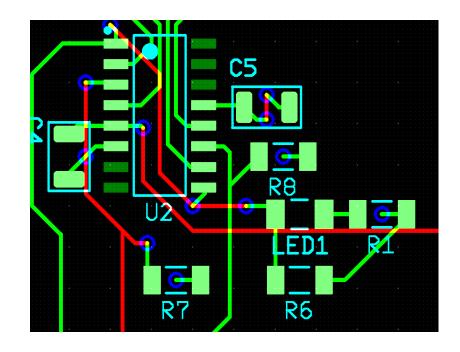
DALLAS
Applied Research Center

- Every IC gets one
- Dual voltage IC's get two



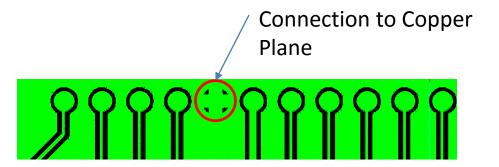

Item	Digikey PN
10 uF Tantalum Cap	PN 399-5152-1-ND
0.1 uF Ceramic Cap	399-1249-1-ND

Avoid Routing Traces Through Mounting Holes/Pads


No.
Removing one pad requires
two cuts and a bridge.
Also, Trace and pads act like a
heat sink – harder to solder.

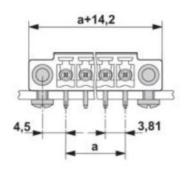
Yes.
Removing one pad requires one cut.

Avoid Placing Vias Under ICs, Esp. For Reflow



Solder can Bridge and You Will Not Know

Make Sure Copper Plane Connections Have Thermal Relief



Use Connectors When Connecting Wires to PCB

Item	Digikey PN
Male	277-5764-ND
Female	277-5714-ND

Require No Special Tools

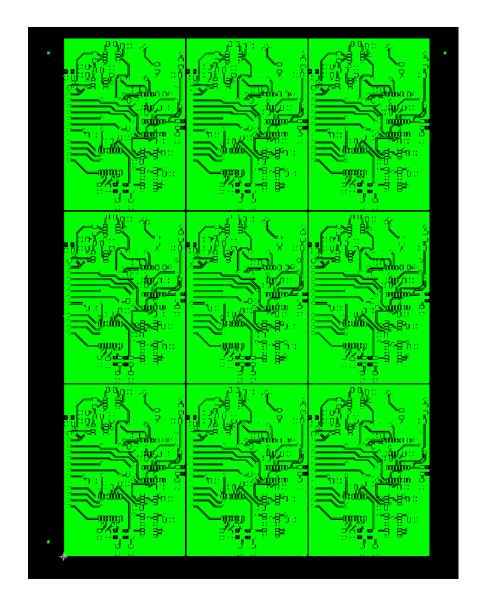
These Are Some General PCB Guidelines

- Use double sided board with power and ground planes on top and bottom
- Use Informative Silkscreen Labels Excessively
- If using a 4 layer board make the two internal layers power and ground plane – No signals on internal layers
- Use plated holes connected to ground for mounting holes watch your screw head size though (remember key takeaway #2)
- Hole diameter = 40 mils
- Track width = 10-60 mils (10 mil traces with 10 mil spacing is a good one, beef up any power traces)
- Circular pads = 80-120 mils
- Width/height for rectangular pads = 80-120 mils

Final Assembly

ALWAYS clean your PCB with Alcohol First

Digikey PN


473-1150-ND

Don't Touch it After You Clean It. Handle Like a Record

For Multiple Boards Consider Panelizing

These are Some Good Solder Choices

- 63/37 RA/RMA for hand soldering
- 42/57.6/0.4 for Reflow Soldering

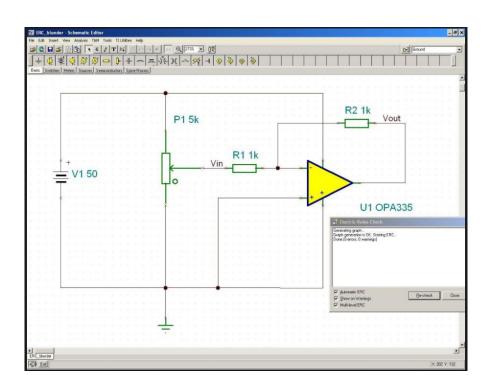
Item	Digikey PN
63/37 Solder Wire	KE1400-ND
42/57.6/0.4 Solder Paste	SMDLTLFP-ND

Weld	T (deg C)	Minutes
Pre-heat	100	1
Heat	150	1
Melt	170	0.5
Cool	170	-

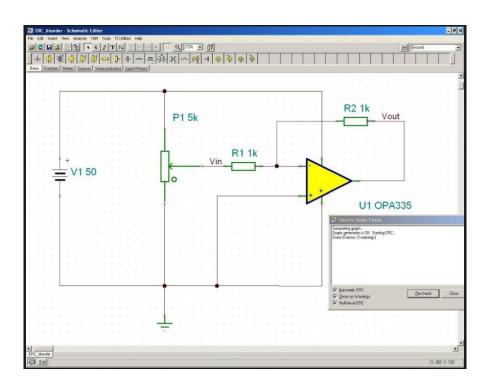
This Profile Works Well for 42/57.6/0.4 with Single Chamber Reflow Ovens

Always Store Solder Paste in the Fridge, Remove 24 Hours Before Use

Some Final Comments on ASSM



- You can use conformal coating to "seal" your board after it has been soldered. Protects agains condutction and moisture
- Watch your packaging when ordering – reals are a pain if not using P and P

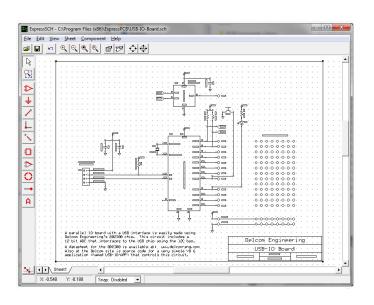

Free Tools

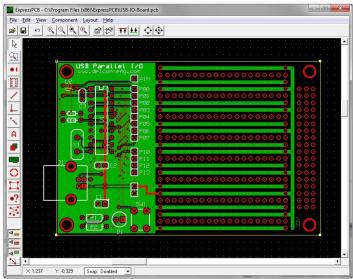
TINA is a Free SPICE-based Analog Simulation Program

- DC, Transient & Frequency Analysis
- Virtual Tools Including Oscope and Probes

http://www.ti.com/tool/tina-ti

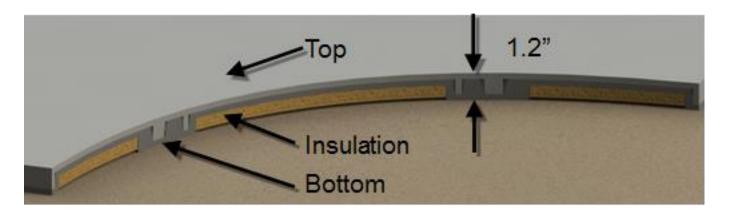
Webench is an Online Design Tool Power, Lighting, Filtering, Clocking and Sensing Circuits


:H® Des	<i>My</i> Desig			
Sensors	Interface	Reference		
FPGA/µP	LED	Clocks		
ency	Output F	requency		
MHz	24	MHz		
	27	MHz		
	25	MHz		
ons	Star	t Design		
	Sensors FPGA/μP	ency Output F MHz 24 27 25		


http://www.ti.com/lsds/ti/analog/webench/overview.page

Express PCB is A PCB MFG That Makes Cheap Boards, Provided They're Designed with Their Tool

https://www.expresspcb.com/free-cad-software/



Design For Manufacture

Make sure you have fillets, drafts, clearances, tolerances

Gemini Plastics, Inc. is a great plastic manufacturer

http://www.gplastics.com/index.html

Jeremy O'Connell 920-336-2525

joconnell@gplastics.com

Communicate with your potential manufacturer ahead of time to get a sense of what their tools can and cannot do

These are My Best Practices

Your best practices depend on what you do, in your work there are elements just like this.

Think through your work process to save yourself time and money

Questions?