
Onboard Android Sensor Access

Agenda

6:00 Install Android
Studio, your Android
device driver, connect
phone

6:15 Install your device
SDK, download/unzip
file linked in meetup
event comments

6:30-8:00 Primary
Workshop

IEEE DFW Sensor & IoT Forum

dallas-sensor.com

Speakers

Stacy Devino

Leroy Levin

John Lindsay

Wifi

SSID:

Password:

Onboard Android Sensor Access

Sensors
A device that measures something in the real world and

provides an output value proportional to the
magnitude of that “something”

Sensors in Apps
– Games (“Shake” apps, Pokemon and (Augmented

Reality) – device orientation)

– Fishing (pressure)

– Driving (speed, position, orientation)

Onboard Android Sensor Access: Overview

What sensors are necessary for the application?

What sensors are available on the device? Saturation?

How to retrieve the sensor data?

How to display the sensor data?

Post-retrieval sensor data processing?

Miscellaneous concerns
Battery, CPU, UI,

Our Best Friend:
https://developer.android.com/guide/topics/sensors/sensors_over
view.html

6:50

● Contact
◦ Big On Mobile (Texas dba)
◦ www.bigonmobile.com
◦ bigonmobile@gmail.com
◦ Twitter: @leroy2l

● Play Store app: “RV Expenses”

Leroy Levin

Was/Is● Was
– Hardware Tech
– Unix Software Contractor
– TI/Sterling/CA Contractor
– CA Employee (10+ years)
– Time off just because

● Now: into the IOT world
– Microprocessors, sensors, MEAN stack dev, Node Red,

M2X, Flow Designer, BlueMix, meetups, seminars, expos
– Looking for work tomorrow

STACY DEVINO

• Senior Android Innovator at The Home Depot Dallas

Technology Center

• Works on Consumer Mobile App and Internal Product

Innovation

• Six Sigma BlackBelt, Intel Innovator, DMS Member,

Vintage game collector/restorer

• Women Techmakers Lead for Dallas/ Ft. Worth

WEBSITES
www.stacydevino.com
www.ledgoes.com
www.openbrite.com

EMAIL
childofthehorn@gmail.com

G+
https://plus.google.com/+S
tacyDevino

TWITTER
@DoesitPew

http://www.stacydevino.com/
http://www.ledgoes.com/
http://www.openbrite.com/
mailto:childofthehorn@gmail.com
https://plus.google.com/+StacyDevino
https://plus.google.com/+StacyDevino

What Are Sensors
● Sensors are devices that measure a real world

physical property and return a data
representation of that property.

● Could be voltage/resistance/digital value

● Sensor are used for
– Environmental/health monitoring
– Location tracking/direction assist
– Gaming, Weather prediction
– Agriculture/crop management
– Industrial processing, home/personal security

Android Sensor Categories

● Category by sensor implementation
– Hardware (Base)
– Software, Virtual (Composite)

● Category by type of data returned
– Motion
– Positional
– Environmental

● Wake-up vs. non wake-up

Hardware/Software Sensors
● Hardware (Base) Sensors

– Single sensor data but not the raw output of a physical sensor,
bias/compensation may be applied

– Acceleration, geomagnetic, angular change
● Software/Virtual/Synthetic (Composite) Sensors

– Derive their data from one or more base sensors
– Linear acceleration, gravity sensor

Note: Android does not require device manufacturers to build any particular types
of sensors into their Android-powered devices, so devices can have a wide
range of sensor configurations.

Motion Sensors

● Accelerometer
● Gravity
● Gyroscope
● Linear Acceleration
● Rotation Vector
● Step Counter
● Step Detector

Position Sensors

● Game Rotational Vector
● Geomagnetic Rotation Vector
● Magnetic Field
● Orientation
● Proximity

Environmental Sensors

● Ambient Temperature
● Light
● Pressure
● Relative Humidity

● Wake-up sensors
◦ Can wake up an app to deliver the sensor event

● Non wake-up sensors
◦ App is not woken from suspend mode
◦ App must keep a partial wake lock if event needed
◦ Otherwise events stored in hardware FIFO
◦ Events lost if FIFO overflow

Wakeup vs. non Wakeup

Sensor Apps In Play Store

● Show sensor power consumption and sensor return
data
– AndroSensor

– Physics Toolbox Sensor Suite

– Sensor Box for Android

App Considerations

● When to enable the sensor
● Device resource consumption
● Data privacy/security

Manual vs. Automatic Sensing

● Manual/user enabled
– user must provide interaction, start/ stop sensing.
– user can on demand control duration of data gathered and stored
– user must have incentive to continue monitoring

● Automatic enabled
– user input is not required to start/stop data collection
– lots of data gathered, but how much and what part of the data is really

useful
– data filtering more imperative to reduce data quantity

Device Resource Usage

● Battery
– sensors themselves consume power. Sensor.getPower()
– Power for CPU processing of software sensor data
– App processing requirements
– radio power, if data is uploaded to the cloud

● Data usage/storage
– Data plan usage for uploading data to the cloud
– batch data uploads to reduce radio startup/power down power

consumption
– Local data store
– any in app advertising will increase data usage

Sensor Data and Privacy
● Personal space

– Only a concern is device is lost/stolen
● Group sharing

– limited to authorized access, may be full or partial data
sharing

● Community sharing
– user are anonymous, limit type of data shared, ensure

privacy is respected
● May require user to explicitly grant permission

Know your design

● Which sensors are required, which are optional?
– Can you support reduced functionality or should you deny support for

reduced device

● Is default API sufficient or do you need to roll your own
sensor data algorithms

● How pervasive is the support for your target sensors?
– Android does not require a specific sensor support on a target device

● Will you Seamlessly support device upgrade
– Easy transfer of any on device data store

Sensor Best Practices
● Unregister sensor listeners, else they continue to

consume power
● Test on real devices
● Verify sensors exist before you try to use them
● Only sensor that are absolutely necessary
● Choose sensor deliver rate carefully
● Consider contextual enable/disable of sensors
● Be aware of startup time required for newly activated

sensor to become stable (GPS satellite detection for
instance)

Sensor Best Practices
● Unregister sensor listeners, else they continue to

consume power
● Test on real devices
● Verify sensors exist before you try to use them
● Only sensor that are absolutely necessary
● Choose sensor deliver rate carefully
● Consider contextual enable/disable of sensors
● Be aware of startup time required for newly activated

sensor to become stable (GPS satellite detection for
instance)

Onboard Android Sensor Access

Recall from 7/14: Only ~4.5 Lines of “Necessary” Code
.5 – Tell Android Studio that you'll implement sensor functionality

• implements SensorEventListener

1.5 – Get instance of SensorManager (system service that manages sensors)
• getSystemService(SENSOR_SERVICE)

2.5 – Get instance of a Sensor (an individual sensor)
• SensorManager.getDefaultType(int typeOfSensor)

3.5 – Register SensorEventListener (for callback functions on sensor events)

mSensorManager.registerListener(SensorEventListener sensorEventListener, Sensor
sensor,

int rate);

4.5 – Retrieve Values on a SensorEvent (something happens with the sensor)
event.values[0]

6:45

Onboard Android Sensor Access

Default Android Class Declaration Statement for An Activity
public class MainActivity extends Activity

.5 Telling Android Studio that you'll implement sensor functionality
public class SensorRawAccelerometerActivity extends Activity implements SensorEventListener

Exercise 1 (Group, ~10 minutes)

– Download the project from Meetup event comments and unzip

– In Android Studio: File, Open

– Tell Android Studio that you'll implement sensor functionality

• Also Uncomment “@override ” by onAccuracyChanged and
onSensorChanged (// = comments in Android)

– Launch the app on your device (“Play” button)

• Choose your phone
• You'll only see “SensorRawValues” title now and labels

7:00

Onboard Android Sensor Access

Android Activity lifecycle – onCreate(), onResume(), onPause()

1.5 Get SensorManager instance
mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);

2.5 Attempt to get sensor instance

Supported sensor types in Android

SensorManager.getDefaultType(int typeOfSensor)

Today - we're using accelerometer
if (!null == (mAccelerometer =

mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER)))

// do stuff;

7:10

Onboard Android Sensor Access

3.5 Tell Android to listen for sensor events

New values, accuracy change

Register SensorEventListener (onResume())
mSensorManager.registerListener(SensorEventListener sensorEventListener, Sensor sensor,

int rate); (rate in microseconds)

(Be Kind) Unregister SensorEventListener (onPause())
mSensorManager.unregisterListener(this);

7:20

Onboard Android Sensor Access

4.5 Retrieve Values on a SensorEvent

public void onSensorChanged(SensorEvent event)

if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER)

float x = event.values[0]
Data is sensor specific (Table 1)

Accelerometer – float values for x, y, and z

float x = event.values[0];

float y = event.values[1];

float z = event.values[2];

Exercise 2 (~20-30)

get SensorManager instance(onCreate()), accelerometer instance(onCreate()), register
SensorEventListener (onResume()), retrieve accelerometer values (onSensorChanged)

– Set breakpoints, Run in Debug mode to confirm values

7:50

Code Walkthrough: Onboard Android Sensor Access

How to display sensor data ?

Normal Android Activity layout fields

Retrieved Sensor Data :
float x = event.values[0];

float y = event.values[1];

float z = event.values[2];

Output Display Fields
mXValueView.setText(String.valueOf(x));

mYValueView.setText(String.valueOf(y));

mZValueView.setText(String.valueOf(z));

Exercise 3 (~10)

– Setup display fields

– Run App

8:05

	Slide 1
	Slide 2
	Slide 3
	Leroy Levin
	Was/Is
	STACY DEVINO
	What Are Sensors
	Android Sensor Categories
	Hardware/Software Sensors
	Motion Sensors
	Position Sensors
	Environmental Sensors
	Wakeup vs. non Wakeup
	Sensor Apps In Play Store
	App Considerations
	Manual vs. Automatic Sensing
	Device Resource Usage
	Sensor Data and Privacy
	Know your design
	Sensor Best Practices
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

