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My Background

= BSEE, University of Notre Dame, 1994
= Lockheed Martin Control Systems, Johnson City, NY

- 1994-1996

— Systems Engineer
= IBM, Research Triangle Park, NC

— 1996-Present

— Timing Verification

— Logic Verification

— Signal Quality Analysis

— EMC Design

= Simulation

= EMC Design Rule Checker development
= Research collaboration
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Outline

= Background
— Differential Signaling Pros/Cons
— Transmission line modes

= Common Mode

— Sources of CM signals

— S-Parameters primer

— Causes of mode conversion
= Radiation mechanisms

— Cables/connectors
= EMC Design Options

- CM filtering

— Absorbing material

= Summary
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Background

= Differential Signal
— 2-wire transmission system

- Signal is the voltage difference between
the 2 wires

— Current in the 2 wires is equal and
opposite

OO ===




Pros/Cons of Differential
Signaling

= Advantages = Noise immunity, loss tolerance
(0-crossing), minimal radiated EMI*

[aVplan =y oV :

Picture from: http://en.wikipedia.org/wiki/Differential_signaling

= Disadvantages = Requires 2 wires (wiring
density, weight, cost), routing challenges*
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Real-World

(PCB)

@ @ Microstrip
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Transmission Line Modes

= Even Mode

— Both signal conductors are
driven with same voltage
(referenced to 374 conductor)

- Vcomm = Veven = (Va+Vb)/2

_

Ze%

— Zcomm = Zeven / 2

= 0Odd Mode

— Signal conductors are driven
with equal and opposite voltages
(referenced to “virtual ground”
between conductors)

- Vdiff = Vodd * 2 =Va - Vb

_

- Zdiff = Zodd * 2




Microstrip Electric/Magnetic Field Lines
Even/Common Mode

Magnetic Field Lines
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Electric Field Lines

Field plot generated in Hyperlynx



Microstrip Electric/Magnetic Field Lines
Odd/Differential Mode

Virtual “Ground” Magnetic Field Lines
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Field plot generated in Hyperlynx




Electric/Magnetic Field Lines
Symmetrical Stripline (Differential)

Field plot generated in Hyperlynx
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Electric/Magnetic Field Lines
Asymmetrical Stripline (Differential)

Field plot generated in Hyperlynx
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=
Impact on Radiated EMI

= Experiment at 2012 IEEE EMC Symposium
— Dr. Tom Van Doren: “Electromagnetic Field Containment
Using the Principle of "Self-Shielding®
- When geometric centroids of currents are coincident, fields

cancel
- Example: twisted pair wiring reduces radiated EMI (assuming
twist length is small compared to wavelength)

= Apply geometric centroid concept to differential pair
— Common mode radiates

‘ b s /) Electric
¥ Lines

= Differential Mode Common Mode




Sources of Commmon Mode
Signals

= Common Mode Noise is very difficult to
avoid in real-world differential pairs

— Driver skew (IC+Package)
— Rise/fall time mismatch
- Amplitude mismatch
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Common Mode from Driver Skew

= Small amount of skew results in significant
CM

- As little as 1% of bit width (UI) for skew
can have significant EMI effects

- When Skew ~= Rise Time, CM amplitude
~= DM amplitude
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Individual Channels of Differential Signal with Skew
2 Gb/s with 50 ps Rise and Fall Time (+/- 1.0 volts)
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Common Mode Voltage on Differential Pair Due to In-Pair Skew

2 Gb/s with 50 ps Rise and Fall Time (+/- 1.0 volts)
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Common Mode Voltage on Differential Pair Due to In-Pair Skew

2 Gb/s with 50 ps Rise and Fall Time (+/- 1.0 volts)
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Common Mode from Rise/Fall
Time Mismatch

= Small amounts of mismatch create
significant CM noise
= Cause:

— IC driver
= Transistor sizing, parasitics
= Process variation

= Cannot compensate on PCB
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Example of Effect for Differential Signal with Rise/Fall Time Mismatch

2 Gb/s Square Wave (Rise/Fall =50 & 100 ps)
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50/100ps
50/150ps

—T/R
—T/R

Common Mode Voltage on Differential Pair Due to Rise/Fall Time Mismatch
2 Gb/s with Differential Signal +/- 1.0 Volts
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Common Mode Voltage on Differential Pair Due to Rise/Fall Time Mismatch
2 Gb/s with Differential Signal +/- 1.0 Volts
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Common Mode from Amplitude
Mismatch

= A small mismatch can result in large
harmonics in source spectrum

= Harmonics are additive with other
sources of CM noise

= Causes
— Imbalance within IC
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Common Mode Voltage on Differential Pair Due to Amplitude Mismatch
Clock 2 Gb/s with (100 ps Rise/Fall Time) Nominal Differential Signal +/- 1.0V
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PRBS Source Spectrum |,
Real-World vs Theory [ e
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Practical Takeaways

= Differential pairs will have CM noise on
them

= Skew and Amplitude Mismatch create
CM noise with odd harmonics of data
rate
-2 Gbps->1,3,5,7,9.. GHz

= Rise/Fall Time Mismatch creates CM
noise with even harmonics of data rate

-2 Gbps -> 2, 4, 6, 8, 10... GHz
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S-Parameter Primer

= Single-ended (unbalanced)
= Transfer function between ports
- S511,522,533,544 = Return Loss
- 513,531,524,542 = Insertion Loss
- Example with 4 ports (2 input, 2 output)

Drv | 1 2 3 4
Rcv

=




S-Parameter Primer (2)

= Mixed-mode (balanced)

= Transfer function between balanced ports

- Example with 2 ports (1 input, 1 output), 2
transmission modes (DM and CM)

Drv | D1 D2 C1 C2
Rcv

D1

D2

C1

C2
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S-Parameter Primer (3)

Drv

Rcv

D1

D2 C1 C2

D1

D2

C1

C2

How much of the differential signal
driven at Port 1 is converted to CM
signal by the time it reaches Port 2

30

1 —-Sdcll —Sdc21 —Sccll —Scc21 =7
Absorption, Multiple Reflection,
Radiation



Sources of Mode Conversion

= Routing asymmetries cause in-pair skew
- Length mismatch
— Diff Pair near edge of reference plane
— Return via placement
- Weave effects in dielectric material
- Reference plane interruptions
- Line width variation
- Unequal stub lengths
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Skew from Length Mismatch

e
»
»
*
‘e
e
.
e
*
-----------------
’/

Escapes from pin fields

Turns add length often require one line to
to outside line be longer

32



-
o — Skew from Pair Near
——— | Edge of Reference Plane

Extra Skew from Close Proximity to Plane Edge
1 cm Microstrip (5 mil wide, 3 mil height, 1/2 0z)
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Skew from Return Via
Asymmetry

= Significant CM created!

Signal Vias
Top
VleW ‘ ‘ ______ -‘ _______________ -
GND Via
50 mils
Side View

GND Via
Signal Vias
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Differential to Single Ended Via Mode Conversion

Due to GND Via Asymmetry (In Line)
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Return Via Symmetry Effect — Escape

from SAS Connector

asymmetrlc and via (layouf)

Effect of GND Via Symmetry on
Mode Conversion IEQEE‘J}
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Top View of the Board:
Different GND configurations

GND @60 deg,f
20 mils GND @45 deg, 4

20 mils GND @15 deg

20 mils |
\ : y P(EDRT 3
\\ ‘ PORT1-/2- ¢
\\ : ,/
\\\ : ,,/
\~~~- L ——"f
GND 1
1000 mils ! X
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-
Asymmetric Ground Via Effects

The effect of asymmetric GND configuration on:
Common Mode Noise {warm colors) and Differential Mode Noise {cool colors)
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=
Asymmetry with Two GND Vias

TOP VIEW

PROFILE
VIEW

40
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Transfer Function: Differential Port to Cavity Port (worst case considering all cavity ports)
Distance of GND vias from origin: r = 80mil
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Return Via Symmetry Effect — Bus of
Diff Pairs with DC Blocking Caps

Mode Conversion (Scd21)

oo o no return vias with return
on ends vias on ends

LELLELLLL  —m—

S 5 “ Chl

- 2 .

| | g e S ol :
I e b It e ynatH
port  part port 'Eﬂm e:-'t;u &0 'E{iﬂ Iflﬂ 80
I ) ’ channel-to-channel pitch channel-to-channel pitch

{mils) {mils)

K.J. Han, X. Gu, Y. Kwark, Z. Yu, D. Liu, B. Archambeault, S. Connor, J. Fan, “Parametric Study on the Effect of Asymmetry in

42 Multi-Channel Differential Signaling,” in Proceedings of IEEE International Symposium on EMC 2011.



Skew from Weave Effects

S+ S-

= Effective dielectric
constant is different
under S+ and S-

- Propagation

Epoxy Fiber velocities will vary
bundle  _ skew of 5-10 ps/in
IS common
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Skew from Reference Plane
Interruptions

Antipads

Split between power
Islands
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Other Issues with Reference Plane

Interruptions
Where does CM return current flow?

* Lowers parasitic
capacitance

e Improves
differential
Insertion loss
(Sdd21)

 What about

Cutout area under DC blocking caps common mode
(Sccll, Scc21)?
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Radiation Mechanisms

= Microstrip traces
= Connectors

- Many are longer than
1” (half wavelength
between 5-6 GHz)

= Cables
— Electrically long Y - ANANRAN R .1m;_- T O
- Weakness in outer ! !ﬁ' F ECEEW' I”f“ -1Hl- ' 'I =
shield or backshell | L RY. ELL
connection causes
problem

— Consider SE +
|Scd21| performance
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EMC Design Options

= Common mode filtering

— Common mode choke coils work for lower-
speed interfaces

- Integrated magnetics in RJ-45 connectors
- Looking at planar EBG structure for higher-
speed (5-10 GHz) signals
= Absorbing materials
— Absorption reduces radiation from cables

— Proper placement could add loss to even mode
fields without affecting odd mode field
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Common Mode Filtering - EBGs

vt |
EBG layer -* ( . [ -

Solid layer . yt .
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Ref.: Publications by
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DesignCon and IEEE
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Absorbing Material on Cables

S21-Magnitude [dB]

-60

-0
1
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Measurements of lossy material on cables

! [ T | |
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Regular Ether.

Zinch-sectional
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Absorbing Material near
Differential Pairs

= Minimal impact to differential mode signal
= Some attenuation of common mode signal

Magnetic Magnetic

: - Field Lines Electric
Field Lines Mag. Absorber]  Faq
\ ‘I’ .«’/ " /’////_/ e T ‘\\\ \ | “;’} /,/ P "g\ Jf //’ I ‘\\X

Common Mode Differential Mode
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Summary

= The differential signals in our circuit boards,
connectors, and cables all support even
(common) mode transmission

= Driver skew, rise/fall time mismatch, and
amplitude mismatch all create common mode
noise on differential pairs

= Physical channel asymmetries create common
mode noise through mode conversion

- Asymmetries must be eliminated when possible
and minimized when unavoidable

Common mode noise radiates

= CM filtering and absorption are effective at
reducing radiation from differential pairs

(]
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