
Practical Performance Degradation Mitigation 

Solution using Anomaly Detection for Carrier-Grade

Software Networks

Marius Corici1, Teodora Sandra Buda2, Ranjan Shrestha1, Eleonora Cau1, Taner Metin1, Haytham Assem2

1: Fraunhofer FOKUS Institute, Berlin, Germany, 

{marius-iulian.corici; ranjan.shrestha, eleonora.cau, taner.metin}@fokus.fraunhofer.de
2: IBM Ireland, Dublin, Ireland, {tbuda, haythama}@ie.ibm.com

One of the critical technologies required for the large scale 

acceptance of network functions virtualization within carrier-

grade communication systems is the maintenance of a predictable 

performance level for the software network functions. However, 

due to the specific resource allocation and to the implementation 

of the software itself, the performance of the network functions 

tends to degrade in time, thus, reducing the capacity of the 

system to serve the specific service requirements. This article 

introduces a practical solution for performance degradation 

detection and mitigation for telecom oriented software networks. 

Also. it includes the mechanisms to interact with the software 

network and a mechanism for abnormal behaviour detection, as 

basis for the performance degradation automatic decisions.

Furthermore, the solution is exemplified as an addition to the 

current 5G core network architecture and evaluated on a testbed 

based on the Fraunhofer FOKUS Open5GCore toolkit and IBM 

DeepAD. The measured results show that such a solution is 

feasible and should be further investigated to be integrated in the

next generation carrier-grade software networks management 

for enabling an autonomous long duration functioning of the 

network. 

Keywords— software networks, anomaly detection, machine 

learning, carrier grade 5G systems

I. INTRODUCTION

Currently, there is a wide acceptance of software network 
functions and networks to be deployed on top of cloud 
infrastructures. Building on these developments, the Network 
Functions Virtualization (NFV) initiative developed a set of 
management features able to satisfy the requirements of the 
carrier grade telecom networks, especially concentrating on the 
deployment and configuration of the software network 
functions and on the runtime adaptation towards a scalable and 
stable system.

With this functionality, full virtual networks can be 
deployed in parallel, on top of the same cloud infrastructures in 
a matter of minutes, customized and configured to address the 
specific requirements of the services. 

To fulfill the goal of carrier-grade systems, the 
management of these virtual networks should be able to 
monitor the status of the network and to adapt accordingly. 
This functionality is currently missing from the NFV 
standardization and initial de-facto platforms. 

Especially important is the maintenance of the specific 
level of performance for a large duration of time and for a large 

number of subscribers, while serving different momentary 
loads, as it is the case of the current physical networks.

However, software networks are prone to the degradation 
of performance in time, due to side effects from the 
programming and due to the cross-layer interaction with the 
underlying cloud system. Because of the long time duration in
which this performance degradation happens and due to the 
acceptance of flexible load levels through scaling procedures, 
such events are not noticeable to the current monitoring 
systems. Their effect is mainly to reduce the quality of the 
service offered to the subscribers and increase the usage of the 
network resources.

In this paper, we propose a comprehensive management 
solution to monitor, detect and mitigate the performance 
degradation within software telecom networks. The solution 
acts as an intelligent, extended “watch-dog” for the software 
components, determining when an anomaly in behaviour is 
happening, compared to an expected level of performance. As 
it is foreseen that parallel security solutions will be deployed, 
we assume that the performance degradation is due to the 
behaviour of the network functions, including faults in the 
software network functionality, and thus require a specific 
mitigation solution separated from misbehavior due to attacks.

The main contribution of this paper is the practical
implementation of such an end-to-end system, acting as an
initial best practice for the implementation of such features 
within software networks. Instead of concentrating on the 
development of new algorithms, the solution aims to provide 
the mechanisms through which such functionality can be 
implemented on top of cloud networks, through this opening 
the door for optimized intelligence within the management 
system. 

The solution is exemplified using the Fraunhofer FOKUS 
Open5GCore toolkit [5], as a standard-based, prototype 
implementation of a 5G system and the IBM DeepAD [7] as an 
evolved solution for anomaly detection using machine learning 
techniques.

The two systems were combined into a comprehensive 
system in which the management of the carrier grade system 
interacts locally or remotely with the machine learning system 
for the transmission of monitoring information and for 
receiving insight when a performance degradation happens. 

The remainder of the paper is organized as follows: Section 
II provides an overview of the background technologies 
involved in the solution. Section III describes the concept and 
the architecture of the proposed solution. Section IV describes 



the practical implementation, while Section V presents the 
experimentation results and their assessment and in Section VI 
the conclusions are provided. 

II. PROBLEM STATEMENT

A first step of the deployment of the carrier-grade networks 
was the porting of the existing architectures for physical 
components to the cloud environment. In case of the 3GPP 
Evolved Packet Core and its evolution within the 5G Core 
Network, this included the porting of the control plane entities 
(represented by the Mobility Management Element – MME), 
the subscriber data bases (represented by the Home Subscriber 
Server – HSS) and the data plane entities (represented by the 
Serving and Packed Data Network Gateways – S-GW/P-GW). 

With the initial tests and deployments immediately it was 
observed that the network functions behaviour highly differs 
from one cloud environment to another, leading the software 
providers to require a large amount of testing as to be able to 
reduce the uncertainty of their software misbehaving. 

Additionally, as the resources were dynamically allocated 
on top of cloud infrastructures, the behaviour of such a system 
was prone to a large amount of side-effects from the parallel 
deployments and from the underlying resource allocation 
environment. Seen from the software network functions, such 
effects are drastically changing the performance of the end-to-
end system. 

Same effects could be seen from the mismatching between 
the planned resources scaling and the actual usage of the 
network. 

Furthermore, a software component may malfunction due 
to hardware failure or occurrence of anomalies in allotted 
resources at software level. The anomalies may vary from 
known to unknown types that may have been triggered from a 
large set of parameters or coming from the previously 
mentioned side effects.

To mitigate all of these at once, the current alternative is to 
reboot the complete system at given time intervals. Due to the 
high level of reliability expected (99,999% of time 
availability), such a reboot requires a large amount of 
resources, as it implies the need of a standby system to take 
over during the reboot [8].

A better alternative to this would be the detection of 
independent anomalies detected per component basis. This 
helps to find out which component is actually affected and 
which parameter actually triggering the anomaly in the system.

Furthermore, in these complex systems where anomaly can 
occur from any point, which can sometimes be hard to trace, an 
anomaly detection based only on static thresholds may not be 
accurate, as the usage of the resources is highly dependent on 
the system usage, which is specific to a given deployed service.

Instead, a more dynamic solution is required, able first to 
determine which is the normal usage for the specific deployed 
service and then to determine when the normal usage is 
consuming more resources than expected would fit better [1].

III. CONCEPT AND ARCHITECTURE

The sudden irregularities in system parameters of the 
components may degrade the performance of the overall 
system severely affecting its reliability and end-to-end services.
These anomalies or unusual data patterns which do not 

conform to expected behavior may be caused by system 
malfunction, change in network resources demand etc. The 
ability of the system deployed in any cloud environment must 
be able to offer and maintain minimum QoS defined by set of 
service KPIs in dynamic environment which is the measure of 
the reliability of the system. The overall concept is to maintain 
the reliability by engaging anomaly detection based Machine 
Learning (ML) algorithms on top of the NFV architecture. The 
role of machine learning is to extend currently available fault 
management system in NFV orchestration to detect more
foreseen/unforeseen anomalous events in dynamic 
environments and predict more accurate actions in order to 
maintain high availability of the system and keep it operational.

The anomaly detection based ML algorithms has various 
application domains such as fraud detection, health, network 
management etc which should be able to act proactively and 
generate actions before the failure of the monitored 
components.

The proposed performance degradation detection and 
mitigation solution is driven towards providing additional 
feature improvements in the existing infrastructure.

Based on the logged metric data, it is able to cluster 
different types of features that enables the grouping of 
specific components in several equivalence classes 
such as network usage or subscriber clustering.

The anomaly refers to the abnormal data patterns 
which can occur from subscribers’ level or 
malfunctioning in the network functions within the 
system. Such patterns to be detected on time to take 
proactive actions to main system’s reliability.

The undesired faults may occur which the system can 
recognize as the variation in resource intake by the 
network functions and indicate orchestrator to take 
appropriate actions.

The monitoring of the overall health of the system is 
essential for all the network functions. The logging of 
the metrics in the components can be done varying 
from small to large intervals of time depending on their
nature.

The proposed solution is adapted from the generic architecture 
in CogNet [2], which on its own it is built on top of ETSI NFV 
architecture. The 5G components are deployed based on ETSI 
NFV architecture in a cloud environment. In order to have this 
customized and extended framework design, additional 
components are added mainly for monitoring of the 
components and running machine learning algorithms to be 
able to gain insight on the monitored data and to trigger 
automatic network management decisions [1].

1. Log and Monitoring: 

To know the real-time status of the network functions, these 
components need to be monitored and logged constantly. There 
are various types of system related and customized metrics that 
are sent to this component. It stores and maintain the data in its 
database which are categorized in various topics for easy 
retrieval. The measurement intervals of metrics from each 
network function can be configured ranging from a second to 
hours depending on how critical and closely the component 



needs to be monitored. The data can be viewed in the form of 
time series and it exposes various APIs so that other 
component can retrieve and utilize these monitored data.

2. CogNet Smart Engine (CSE)/ Machine Learning Engine:

The machine learning algorithm is deployed in CSE unit which 
is used to solve the existing problems of system reliability by
vigorous learning and understanding using different 
methodologies based on different datasets and ultimately
making intelligent decisions. The datasets from network 
functions are classified by features which get translated into 
KPIs of different types (Infrastructural KPIs, Component 
resource KPIs, Service KPIs, Reliability KPIs etc) by
monitoring component that gather huge amount of information
which is then forwarded as an input to the ML block. Those 
KPIs are collected on different interval periods which can 
further be aggregated which is enough for the ML algorithm to 
produce sensible results aiming to increase the reliabity and 
high availability of network functions.

As shown in the Figure 1, the output of the CSE is sent to 
policy engine responsible for translating output result to 
policies that are further sent to the NFV components for 
applying appropriate actions. The policy engine consists of 
following components described briefly.

The Clustering Decision Management (CDM) unit receives 
the result from CSE and applies it to the network functions.
In subscriber clustering, the subscribers are grouped in 
different classes that have common behavior which are based 
on mobility information, resource consumption, and
subscription profiles etc. The mobility information depends 
on subscribers’ movement (speed, direction, area of service).
The subscribers are also classified based on patterns of 
resource usages so that resources can be accordingly 
allocated for better user experience. The subscribers’ profile 
based clustering help to execute customized policies 
targeting specific cluster unit. The network clustering can be 
achieved by placing the network function functionalities on 
the edge of the network which can receive set of allocated 

resources depending on its usage based on location, time of 
use etc.

The Anomaly Detection Management (ADM) has the 
function to send CSE anomaly detection module to the 
orchestrator towards NFV components. The anomaly 
detection can detect known and unknown anomalies. The 
known and unknown anomalies are both abnormal behaviors 
where the mitigation procedures are known for the former 
and for the latter, it hasn’t occurred previously.

IV. TESTBED IMPLEMENTATION

The testbed implementation [4] is based on the above 

mentioned framework which can logically be categorized into 

different components which run in Ubuntu 14/16 environment. 

The Open5GCore [5] toolkit is a functioning packet core unit, 

a reference implementation for carrier grade standard software 

network deployed in OpenStack environment. The 

Open5GCore consists of all the required 5G components of 

which only the important and interesting ones are shown in

Figure 2. The packet core is deployed with overprovisioned 

MMEs: one is active MME and another one is hot standby 

MME which replicates the states of subscribers with the help 

of Redis server. The MME-Load Balancer (MME-LB) knows 

the state of both MMEs and when request comes from 

subscribers for attachment procedures, it directs the control 

plane data via the active MME. To have the network resources 

available despite an anomaly in active MME predicted by 

anomaly detection engine, MME-LB is able to execute a 

complex procedure to transfer load to the hot standby MME 

by making it active MME and bringing up the service in 

anomalous MME and its status switched to hot standby. The 

Benchmarking Tool (BT) is basically an emulator for running 

benchmark tests and is used to excite the system by executing 

attachment/detachment procedures (generating traffic) which 

registers large number of subscribers to the system. This 

action loads the active MME with large number of requests 

which may trigger anomaly in that component which is of our 

interest to investigate. This packet core is implemented in 

Figure 1 – Architecture of the Proposed Solution



C/C++. In both MMEs, separate python scripts run whose task 

is to receive the trigger from the orchestration of Network 

Management System and based on the policy, they stop and 

start the MME service.

The logging and monitoring of the network functions are 

performed by Zabbix server. The system level and customized 

metrics of the network functions are sent to the Zabbix server 

of which the interesting ones for our experimentation are

CPU, memory, network usages. A python script is executed 

which uses Zabbix APIs to retrieve the CPU metric data from 

both MMEs. Then, they are sent as a stream on specific Kafka 

topics to the Kafka server deployed in Common Infrastructure 

(CI) in another cloud environment. The message that is sent on 

the Kafka topic is a json object containing the timestamp,

hostname, metric name and metric value of the component.
The anomaly detection in CSE (DeepAD) leverages various 

explicit generalization models, including deep learning models, 
to learn the normal behaviour of the data and utilizes a dynamic 
sliding window for determining a dynamic threshold fitted for 
each time-series under analysis [7]. DeepAD aims to predict 
the behavior of the system after having the model trained with 
huge dataset. One of the models employed is Long Short Term 
Memory (LSTM) which is a type of recurrent neural network 
that introduces gates which remember or forget information 
when passed through them. It is quite applicable for time series 
data when there are some long or unknown gaps between 
important events. DeepAD discovers anomalies without the 
need of golden labels through a dynamic threshold approach,
while maintaining the highest levels of true anomaly detection, 
and reducing the number of false positives compared to the 
best available technique. In the implementation, a comparison 
is made between the predicted and actual values for each data 
point and when the squared difference of those data points 

exceed the threshold, it is marked as an anomaly. The threshold
is determined using a dynamic window which is adjusted for 
each point to contain past rescaled squared errors to ensure the 
accuracy is highest. The dynamic threshold approach is used to 
determine anomaly exploiting the squared prediction error 
between the actual and predicted values without the need of 
labels. To determine the dynamic threshold, a set of prior 
squared errors are stored where scaling function is applied to fit 
those squared errors between 0 and 1.

The data point is considered anomalous if the squared error 
of the predicted value is higher than ten times the standard 
deviation of the prior squared scaled errors. The squared error 
and threshold are dynamic that influence the prediction at every 
data point change in order to adapt to better accuracy. The 
initial 50 timestamps are not considered while calculating the 
standard deviation so as to reduce the number of false positives 
[3] [7].

The anomaly detection engine in CSE which is also 
deployed in CI, listening on some specific Kafka topics get 
triggers and it receives the CPU metrics data of MMEs. The 
ML algorithms used by DeepAD which are previously trained 
with thousands of training data is able to predict if there is any 
anomalous behavior in the real-time data. The anomaly label is 
marked 1 or 0 depending on if the anomaly is predicted or not 
by the algorithm. For every set of input to the CSE, an output 
result is generated in real-time and sent back to the
orchestration unit in Network Management System via socket 
connection. In this unit, a nodejs JavaScript is listening on 
socket connection that receives the policy. Based on the policy, 
if there is any anomaly, the active MME receive trigger in the 
running python script which then stops and re-starts the MME 
service, else, it is ignored. The MME-LB is able to quickly 
switch between the MMEs to make hot standby to active state 
and maintains constant end to end service.

Figure 2 - Testbed implementation for performance degradation mitigation



V. EXPERIMENTATION RESULTS EVALUATION

In this experiment, two scenarios are considered. The first one 

doesn’t involve ML component but is set with a fixed 

threshold for CPU utilization. When the BT component 

generates traffic by attaching a number of subscribers, the 

CPU utilization increases and if it exceeds the threshold, a 

trigger is sent to stop the active MME service. The MME-LB

switches to hot standby MME to handle the requests. Another 

scenario involves CI that includes CSE docker container. The 

anomaly detection based on LSTM is trained with more than 

50000 normal data points. Then, the CPU utilization metric 

dataset is sent every 5 seconds as data stream to the Kafka 

server in the CI. The CSE processes the metric dataset and 

predicts anomaly by setting anomaly label to 1 even before the 

occurrence of it else anomaly label is set to 0. The evaluation 

results are categorized as follows [4]:

A. Anomaly detection evaluation results

The anomaly detection module can function in batch or hybrid 
mode. In batch mode, the model is trained and deployed for 
scoring on offline collected data from the testbed. In hybrid 
mode, the model is trained in batch layer but deployed for 
scoring in near-real time layer. The evaluation parameters such 
as precision1, recall2 and F1-score3 are calculated in batch 
mode based on whether the anomalies detection are within the 
anomaly window of true anomalies. An anomaly is detected 
when it occurs within the anomaly window defined in [6] and 
expressed as 10% of dataset length divided the number of 

1 Defined as number of true anomalies found to total of anomalies discovered.
2 Defined as number of true anomalies discovered, out of total number of true 

anomalies.
3 Defined as a harmonic mean of precision and recall.

anomalies present. This offers flexibility to detect an anomaly a 
bit earlier or later than its actual occurrence.

The Figure 3 (first plot) shows predicted versus the actual 
data points for CPU utilization metric. The predicted data 
points are generated using the trained model which is based on 
normal dataset. The Figure 3 (second plot) illustrates the 
SError representing the deviation between the actual and 
predicted values along with the AnomalyLabel which is set to 1 
upon anomaly occurrence else set to 0 for normal behavior.
The dashed lines indicate true anomalies which are labelled 
during data collection.

The ML module is able to detect all nineteen true anomalies 
leading to a recall of 1 and from the anomalies reported during 
data collection phase, two false positives are reported leading 
to a precision of 0.9 and F1-score of 0.95. The different 
measure of errors such as RMSE4, MAE5, and R26 are 
calculated to be 0.1426, 0.0636, and 0.8238 respectively which 
explains low error values and high variance. This shows that 
the trained model is capable of predicting the output well.

B. Testbed evaluation results

Based on the two scenarios with or without DeepAD as 

described in above section, the total round trip time (RTT) are 

calculated for both MMEs as shown in Figure 4. With 

DeepAD involvement, the RTT is time required for metrics 

data input to reach CSE through Kafka to the time the 

response payload containing result is received back. On the 

other hand, without DeepAD, the metric data input is locally 

processed. It is observed that the rate of reaction is around 

4 RMSE: Root Mean Square Error, defined as square root of mean of square of 

deviations between predicted and actual values.
5 MAE: Mean Absolute Error, defined as difference between mean predicted 

and actual values.
6 R2: Coefficient of Determination, defined as the difference between 1 and 

sum of squares of residuals divided by total sum of squares.

Figure 3 - DeepAD applied to MME1 CPU utilization metric dataset from testbed

(Blue – Actual Anomalies, Orange – Predicted Anomalies)



100ms with DeepAD which is quite fast in real time mode to 

predict an anomaly to take proactive action. Without DeepAD,

it is only around 5-7 ms which is obvious as it is handled

locally.

Figure 4 - Rate of reaction measurements using RTT method

The Table 1 illustrates the CPU metrics values of MME1 with 

DeepAD when number of subscribers are attached to the 

network with help of BT. The three parameters used for the 

attachment procedure represents number of subscribers, 

operations per second (set at 15) and mode of operation (set to 

0) which determine the applied load to the system. The 

average duration represents the total time required to complete 

the attachment procedure. It is observed that the anomaly label 

is set to 1 which means the anomaly has occurred for 

subscribers’ attachment from and above 500 where CPU 

utilization values are higher and possible consistencies are 

detected by the ML algorithm.
Attachment

(with MME1)

Average 

duration(ms)

CPU 

utilization

Anomaly

Label (1/0)

100 15 0 381.4 0.3574 0

200 15 0 390 0.6046 0

300 15 0 557.5 0.5365 1

400 15 0 574 0.5342 0

500 15 0 540 0.744 1

600 15 0 708 0.8949 1

700 15 0 724.7 0.9944 1

800 15 0 889 1.275 1

900 15 0 925.4 1.8931 1

1000 15 0 942 1.92 1
Table 1 Subscribers’ attachment to the network with DeepAD involved

Attachment

(with MME1)

Average 

duration(ms)

CPU 

utilization

Threshold 

exceeded(1/0)

100 15 0 600 0.933 0

200 15 0 619.88 1.4693 0

300 15 0 613.8 1.5154 0

400 15 0 639.42 1.6878 0

500 15 0 626.45 1.9207 0

600 15 0 712.4 2.43 0

700 15 0 812.11 2.59 1

800 15 0 889.24 2.78 1

900 15 0 945.8 2.98 1

1000 15 0 1012.4 3.16 1
Table 2 Subscribers’ attachment to the network without DeepAD

The Table 2 shows the subscribers’ attachment to the network 

without DeepAD along with the CPU utilization values and 

threshold set to 2.5. If the threshold is exceeded, it represents 

an anomaly otherwise normal operation. The threshold value 

of 2.5 is selected after a number of experiments. But, of 

course, it can’t be better than the prediction made by ML 

algorithm which is dynamic and based on model which is 

trained.

VI. CONCLUSIONS 

This ML algorithm powered the reliability framework is 
designed on top of ETSI NFV architecture primarily is able to 
tackle the problem of sudden increase in workload from 
external sources and infrastructure level unexpected events 
such as rapid increase in subscribers’ connectivity on the 
network and failure network functions or malfunction in 
software components respectively. In order to maintain the 
minimum QoS level, anomaly detection ML algorithms are 
proven to be efficient to take proactive actions based on the 
input metric data. The framework optimizes towards higher 
availability of network functions and efficient use of network 
resources leading to the better end to end service reliability of 
the system. This helps to maintain the overall users’ 
connectivity and network service experience.

As observed in the experimental results, the processing of 
data points and predictions is done in real-time under 100 ms 
which allows to take actions quickly compared to the reactive 
solution which takes around 500 ms for overall switching of 
the contexts.

It is to be noted that the CSE is running in Common 
Infrastructure in a cloud environment whereas the network 
functions are deployed at Fraunhofer FOKUS premises. Thus, 
the testbed not only showed the feasibility of the solution, but 
also that the machine learning decision may be centralized and 
offered as a service by a cloud provider even for deployments 
which have different locations. Through this, a new market 
opportunity appears for machine learning based services which 
could be offered by third parties and not necessarily requiring 
the embedding into the active system. 

Following this key findings, as a next step, the software 
testbeds offered will include a remote network data analytics 
function which will remain centralized for a large number of 
testbeds and it will use anomaly detection for determining that 
the specific testbeds are appropriately functioning. 

ACKNOWLEDGMENT

This work was supported by the EU project CogNet, 671625 

(H2020-ICT-2014-2, Research and Innovation action).

REFERENCES

[1] CogNet, deliverable 5.1, Network Security and Resilience Initial Design

[2] CogNet project: http://www.cognet.5g-ppp.eu/

[3] CogNet, deliverable 5.3, High Availability Framework Engineering 
Release 2

[4] CogNet, deliverable 5.4, Network Resilience Evaluation Framework

[5] Fraunhofer FOKUS Open5GCore toolkit , www.open5GCore.org;

[6] Lavin, Alexander and Ahmad, Subutai. Evaluating Real-Time Anomaly 
Detection Algorithms -- The Numenta Anomaly Benchmark. 14th IEEE 
International Conference on Machine Learning and Applications 
(ICMLA), 2015. 

[7] Teodora Sandra Buda, Bora Caglayan, Haytham Assem. DeepAD: A 
Generic Framework based on Deep Learning for Time Series Anomaly 
Detection. 22nd Pacific-Asia Conference on Knowledge Discovery and 
Data Mining (PAKDD), 2018.

[8] R. Natella D. Cotroneo J. Duraes and H. Madeira "On fault
representativeness of software fault injection " Software Engineering 
IEEE Transactions on vol. 24 no. 7 pp. 1


