
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

OneM2M based-Interworking Architecture for
Heterogeneous Devices Interoperability in IoT

Diana Yacchirema a b,*

aEscuela Politécnica Nacional,
Ladrón de Guevara E11-253, Quito

17-01-2759, Ecuador

Andreu Belsa Pellicerb,
Carlos Palau b, Manuel Esteve b

bUniversitat Politècnica de València,
Camino de Vera S/N, Valencia,

46022, Spain

Abstract— The Internet of things (IoT) fosters a hyper-
connected world in which billions of devices that range from
higher-grade intelligent mobile terminals to resource-constrained
sensors will be connected to the Internet anytime and anywhere.
Nevertheless, one of the major obstacles facing the Internet of
things is the high diversity of communication capabilities
(protocols, technologies and hardware) of the IoT devices. This
diversity leads to a highly fragmented IoT market, where various
IoT solutions have been developed independently and separately
to be used in legacy deployment, which prioritize the vertical
optimization instead of the horizontal. Therefore, in this
research, in order to address this issue, we analyse the oneM2M
specifications and propose an interworking architecture based on
such specifications to support both the seamless interoperability
of heterogeneous IoT devices and their integration with oneM2M
ecosystem. We evaluate the feasibility of this architecture by a
use case applied to under real scenario, which derives from an
ongoing project.

Keywords—Internet of things, oneM2M, interworking,
interoperability, heterogeneous devices.

I. INTRODUCTION AND RELATED WORK
Recent advances in communication technologies, and in

the capabilities of devices as well as their low cost furnish a
great opportunity for the deployment and developed of IoT
solutions that can be beneficially applied in various domains
from intelligent vehicles, smart cities, smart grid, e-health/m-
health to industry control. The rapid rise of this ecosystem is
leading IoT towards a hyper-connected world, in which
billions of devices that surround us will be connected to the
Internet anytime and anywhere. Nevertheless, one of the major
obstacles facing IoT is the high degree of diversity of such
devices in terms of hardware, software, and communication
protocols and technologies. This diversity leads to a highly
fragmented IoT market, where various IoT solutions have
been developed independently and separately focusing on a
specific purpose and being isolated from the rest of the world.
In particular, the interoperability of devices is one of the major
challenges that must be achieved for facilitating the
integration and development of services and IoT applications
[1] [2] creating an ecosystem of interoperable IoT solutions.
Indeed, the realization of 40% of the potential benefits of IoT
depends upon Interoperability (protocols, data formats,
content) [3]. However, achieving the interoperability is not
straightforward. Toward this end, standards development
organizations (e.g., oneM2M, ITU), research projects (e.g.,
Inter-IoT) and industrial consortiums (e.g., AllJoyn) have
been actively conducted activities towards to achieve global

interoperability in IoT. In particular, the global standards
initiative-oneM2M, an international partnership project
launched in 2012, by seven of the world’s major standards
development bodies of Europe (ETSI), Japan (ARIB and
TTC), USA (ATIS and TIA), Korea (TTA), and China
(CCSA) have gathered their endeavours to minimize the
current fragmentation of proprietary solutions present in the
IoT market and in M2M communications through drawing
up of broadly applicable interworking specifications
independent of underlying access and network transmission
technologies [4]. This interworking specifications seeking to
ensure that IoT devices seamless interoperate between them
on a global scale.

Supporting the IoT devices interoperability using
international standards has been research of particular
relevance in IoT. Few studies have exploited the technical
specifications provided by the oneM2M standard, which
define how oneM2M can be used for interworking with legacy
systems (i.e., non-oneM2M compliant systems) via
specialized interworking proxy entities (IPEs). In this sense,
Yun et al. [5] introduced an IPE for interworking oneM2M
systems with legacy IoT consumer products from Nest,
Jawbone, and Withings. The proposed IPE translates the
protocol messages between oneM2M's request/response and
binding target protocol's message of the servers that store the
data of the devices rather than directly translates to protocol's
message of the devices. Therefore, this solution requires that
the web servers of each device app is in operation otherwise
this solution will not work. Likewise, other research proposed
by Chia-Wei Wu et al. [6] designed an integration architecture
based on IPE to address the interworking of specific IoT
platforms (i.e., AllJoyn/IoTivity platforms) with oneM2M
system. This IPE acts as middleware, which supports the
mapping of device management functions among these
platforms. They evaluate this solution by two interworking
test cases. Although these integration designs are disclosed,
there is no evidence that these designs provide the
bidirectional communication between devices. Finally, Kim
et al. [7] demonstrated how the interworking procedures
provided by IPE could be applied under real conditions such
as smart cities for interworking multiple IoT services
platforms. Through the experiences, and lessons learned, the
authors emphasized the advantages of the interworking
feature.

The main goal of this research consisting of the design and
implementation of an interworking architecture to enable both

the seamless interoperability of heterogeneous IoT devices and
their integration with oneM2M ecosystem by implementing of
an IPE, which runs on a low-cost resource-constrained device.
Toward this direction, we extend the contents of
our preliminary work presented in [8] by adding (i) new
discussions on the internetworking of non-oneM2M compliant
heterogeneous IoT devices with oneM2M platform, (ii) an IPE
which performs resource mapping, (iii) integration with
oneM2M platform, (iv) more details about the architecture
developed, and (v) new results obtained as a key component of
the proposed solution.

This work continues with an overview of oneM2M
functional architecture and interworking specifications (Section
II) followed by the description of the proposed interworking
architecture and its constituent components for interoperability
of IoT devices and integration them with oneM2M ecosystem.
After that, we explain the implementation of interworking
architecture and evaluate its feasibility by a real use case in
which several services are implemented as a result of the
interoperability. Finally, we conclude the work and provide
future research directions.

II. BACKGROUND

Toward a better understanding, in this section, we briefly
introduce the oneM2M functional architecture and the
oneM2M Interworking specifications based on IPE.

A. OneM2M functional architecture

The oneM2M defines a functional architecture consisting
of two domains (infrastructure and field domain) as shown in
Fig. 1. The infrastructure domain consists of an infrastructure
Node (IN), which is a server housed on the transmission
network side. IN can be connected with INs of another
oneM2M service providers. On the other hand, in the field
domain, M2M nodes such as middle nodes (MNs) and M2M
devices are included. The different M2M devices can be
located at different points of the M2M network and according
to this can be called Application Service Nodes (ASN) or
application dedicated Nodes (AND). The oneM2M defines
two basic entities, which can be implemented as software
functions within of each node.

A logic node Common Services Entity (CSE) that supports a
set of service middleware control functions for AEs and others
CSEs such as data and device management, M2M
subscriptions and location services. The CSE is deployed in
M2M nodes and in each server node [9]. An application entity
(AE) that contains the application logic of IoT or M2M
solutions such as an application for transport and logistic,
sleep apnea monitoring and agriculture. Fig. 1 shows how
these entities are deployed within the nodes. In addition,
oneM2M defines a network service entity (NSE) which
involves basic network services such as transport and
connectivity to be used by the CSEs. The connection and
exchange information between these entities is done through
reference points: Mca, Mcc, and Mcn. The Mca reference
point exposes the services included in the CSE to AE running
on the devices. The Mcc reference point allows a CSE to use
the services included in another CSEs.

Fig. 1. oneM2M High-Level Functional Architecture

The Mcn reference point allows the CSE to use the supported
services by the NSE [2].

The latest version of the oneM2M Release 2 was published
in August 2016. This version is intended to provide new
functionalities and capabilities for expanding the IoT
ecosystem. The updated standard includes enhanced security,
semantic interoperability, features for home and industrial
domain enablement, and interworking with devices of industry-
driven IoT connectivity such as Open Mobile Alliance
LWM2M, Open Connectivity Foundation (OCF) and AllSeen
Alliance. These updates and their status are disclosed in [9]. In
particular, the updated internetworking specifications
incorporate improvements based on the early implementation
experience in order to achieve high-level interoperability by
supporting the interconnection of oneM2M with non-oneM2M
complaint devices based on IPE.

B. Interworking proxy entity (IPE)

IPE is a specialized AE defined to enable the interworking
between a non-oneM2M compliant node (NoDN) and the CSE
of oneM2M. In particular, the IPE is capable of interfacing
with various NoDNs and reallocating the NoDN data models
to oneM2M resources and vice versa through the oneM2M-
specified interfaces.

An example of the operation of IPE is illustrated in Fig. 2
(a), a NoDN (e.g., 6LowPAN-based motion MEMS sensor) is
connected to an MN, which, in turn, is connected with an IN,
which consists of a CSE to which an AE is enrolled. In order
to provide interworking, the IPE needs to convert 6LowPAN-
based protocols from non-oneM2M device side to the
common protocol like HTTP on the MN side. Furthermore,
the IPE needs to map the data model used by the 6LowPAN
device into oneM2M resources and then set up the respective
resources in the IN-CSE using the MN-CSE services. The AE
consisting of a mobile application for fall detection of elderly
people, and registered in the IN-CSE can access to the
acceleration data gathered from the NoDN.

Fig. 2 (b), depicts some scenarios that can be supported by
the result of interworking provided by IPE. Several mixed
deployments could be enabled by the combination of these
scenarios.

Fig. 2. (a) Example of the IPE operation. (b) Some possible scenarios
supported by IPE.

C. OneM2M Interworking specification via (IPE)

The OneM2M defines three approaches that can be used to
interworking NoDNs with oneM2M systems.

1) Mapping all the NoDN data model to the oneM2M data
model, based on containers. In this case, the IPE includes all
the interworking protocol logic. Depending on the complexity
of the NoDN data model, it may imply that the IPE builds a
complex set of resource instances (from the oneM2M core
resources) in the CSE. These resources are oneM2M
representations of the legacy data model. They allow to CSEs
and AEs access to NoDN entities.

2) Using containers for the transparent transport of
encoded NoDN data and commands through the Mca
interface. Both data and commands are packaged in oneM2M
containers. In this case, the CSE or AE need to know the
specific protocol coding rules to the NoDN in order to be able
to decode the contents of the containers.

3) Using reassignment mechanisms.

In this research, the interworking architecture via IPE is
designed and implemented using the first approach, which has
been chosen because it offers a unique solution to allow
communications between different protocols. In addition, the
data model of each NoDN (i.e., the non-oneM2M
heterogeneous device) is which determines the representation
of resource instances (the names, data types, and structure of
the containers) in the M2M system. As a result, this approach
allows the interworking of protocols, the exchange of
syntactic information, the use and sharing of data between
different solutions and deployments.

III. INTERWORKING ARCHITECTURE
An architecture for achieving the technical and syntactic

interoperability of heterogeneous devices in the IoT
was proposed in our preliminary work [8]. In this work, we
extend this architecture for enabling the integration of these
devices with oneM2M ecosystem through of the
implementation of an oneM2M-based IPE. The proposed
interworking architecture integrates and consolidates several
blocks as shown in Fig. 3

The protocol translation block handles the reception and
sending of messages to or from IoT devices. To do this, it
coordinates communication tasks through different adapters

and resolves the problem of incompatibility of different
protocols by the encapsulation of the data sent by the source
protocol in a format compatible with the destination
communication protocol. This module enables the technical
interoperability.

The data transformation block is focused on the data types
and data schemas. Given that heterogeneity is also present in
the different data formats supported by the different IoT
devices. According to the type of data collected, this module is
in charge of transforming this data to a common data standard
defined in the architecture through a syntactic mapper, in order
to enable IoT devices to recover the complete information
contained in the message. The data-flow in this module is
enabled by an interface engine. This module enables the
syntactic interoperability.

The integration block is represented by the IPE and it
facilitates the common understanding of the collected data,
manage access, and extract knowledge from different IoT
devices by describing the resource instances in the oneM2M
system. This module enables the integration of NoDNs with
oneM2M system. It includes eight modules that can interact
with each other as shown in Fig. 3.

 A message broker that enables communication streams
between IPE components using a publish/subscribe
mechanism. Each component can adopt the role of
publisher, subscriber, or even both in order to fulfill the
needed functionality. The red and blue dashed lines
represent these communication streams.

 An activator that is in charge of activating and deactivating
the IPE by the implementation of the start () and stop ()
method.

 A controller that performs two tasks: On the one hand, it
starts and stops the IPE’s internal components and handles
the creation of oneM2M resources in the CSE at the start of
the IPE. On the other hand, it executes the received
request (e.g., retrieve the state of a device, change their
state, etc.) from the oneM2M interface on the resource
instances of the devices.

 An event handler able to real-time act by sending
commands to the several NoDNs (e.g. actuators).

 An M2M resources mapper is the main component of the
integration block that enables the reassignment of the
received data model from the data transformation block in
an oneM2M resources format through oneM2M interfaces.

 A monitor that retrieves the data of each device exposed to
the oM2M system and push such data into the CSE using
the data model provided by the M2M resources mapper.

 A router that defines a unique path to handles all request
addressed to IPE in a simple resource controller and send
the request to the corresponding method of the controller
module. This module implements the interworking service
interface.

 A request sender that is designed to create oneM2M
requests to send to the CSE and provide the response of
these requests.

The IPE is registered with the MN-CSE with the aim of
hosting the interworking service, which enables the

synchronization the registered IoT devices with the resource
instances that these represent in the oneM2M system.

Fig. 3. Interworking architecture via IPE

IV. TESTBED IMPLEMENTATION
In this work, a testbed is implemented in order to validate

and exploit the oneM2M-based interworking architecture. In
particular, we first describe a real scenario and, then, detail the
implementation of this architecture and setup on a low-cost
resource-constrained device. In addition, we describe various
services created as a result of the interoperation, data sharing,
cooperation among IoT devices (see Table I) and their
integration with oneM2M system.

A. Use case
In the interest of furthering cooperation of IoT platforms

through the seamless interoperability of heterogeneous IoT
devices and enable the creation of new smart services, a
testbed based on Inter-LogP use, which derives from an
ongoing project, was carried out.

INTER-LogP use case [10] illustrates the need to achieve

seamless interoperability of different heterogeneous IoT
platforms, oriented to port transport and logistics at different
levels or layers: device, networking, middleware, application
and services. In this work, we focus the use case to achieve
the interoperability at the device level.

The scope of the INTER-LogP includes several scenarios,

in this work, we focus on the scenario of access control,
traffic, and operational assistance. In this scenario, the
interoperability can be directed at resolving several issues. A
major issue in port container terminals is the high-level of
traffic and congestion at the entrance of terminal gates in peak
times. This is caused by the absence of coordination among
terminal operators and road hauliers and aggravated by the

continuous and fast increase of containers at the port. For
instance, the freight forwarder informs the road haulier about
the estimated date to pick up or deliver the goods in the
container but the container terminal typically is not aware of
the date and time the truck arrives at its gate. This lack of
information prevents an optimal planning of the port terminal
operations, and favors a massive arrival of trucks at the end of
closing times, instead of having a more regular flow during
the operational time. Consequently, on peak hours there are
long queues in the port terminal gate and inside the container
yard, thus affecting the quality, safety, and timing of the
container handling operations. This inefficiency problem
causes long waiting times to hauliers in the terminal and it is
translated into a lower performance of terminal operations,
loss of time and economic resources and more pollution.
Traffic congestion can ultimately lead to considerable delays
or even cancellations of transportation orders, becoming an
important performance problem in the road transportation, the
container terminal, and the port. Two global IoT platforms are
involved to facilitate processes in the use case studied:
Terminal IoT Platform (TIP) associated to NOATUM
container terminal and Port IoT Platform (PIP) associated to
the port authority.

Table I summarizes the different technologies and data

shared with these platforms in the context of the IoT devices
interoperability.

TABLE I. DEVICES AND DATA SHARED THROUGH THE INTERWORKING
ARCHITECTURE IN THE USE CASE

Devices Data Communication
technology

IoT
Platforms

GPS NEO-6 sensor Truck GPS
location Bluetooth TIP, PIP

Crowtail-weight
sensor

Container
status (loaded
or unloaded)

ZigBee PIP

MC-38 wired
door/windows
sensor magnetic
switch

Opening or
closing of the
truck’s doors
and windows

Wi-Fi-MQTT TIP

Light alarm
actuator IKS01A2 Truck control 6LowPAN-

CoAP TIP

B. Implementation of the interworking architecture
We have implemented the interworking architecture

employed only open standards, avoiding technological
dependence on proprietary solutions and favoring the
customization and development of new functionalities. All
the architecture blocks are programmed in Python language,
and the communication channels are defined through function
calls. Python was chosen because of its inherent advantages
for the development. It is an open source GPL-compatible
distribution and facilitates the integration of application
developed in different programming languages. In addition, it
can be run on any machine and has a wide support in any
operative system.

The architecture interworking along with the CSE are
running in the same execution environment on a smart IoT
gateway acting as MN and deployed on a Raspberry Pi 3.

Fig. 4 shows the IoT system implemented for the use case,
which affords an overview of how our architecture is
integrated within an oneM2M environment. The system
consists of a gateway, an oneM2M IoT Server Platform and
the IoT platforms of the stakeholders involved in this use case.

Fig. 4. Integration of proposed interworking architecture with the oneM2M
ecosystem.

As oneM2M IoT Server Platform, we used the IN-CSE
software provided by the Eclipse OM2M project, which is
running on a private cloud server so that only platforms IoT
concerned can to access the sensors data.

For the operation of the system, several oneM2M resource

entities have been created from devices data. Once registered
MN-CSE with IN-CSE, an <AE> resource type called “Smart
truck” is created in the smart IoT gateway (MN-CSE) for
mapping the truck to the oneM2M resource, through the IPE.
The IoT platforms (i.e., TIP and PIP) are subscribing oneM2M
IoT Server Platform (IN-CSE) so that any updates in the
sensor readings will be notified to these platforms. Then, once
the IoT devices are connected to the gateway (MN), the
protocol translation block executes the discovery of devices
and established the communication with them by a specific
adapter according to the communication technology used.
Each message received from devices is transformed to
common data format defined in the system (i.e., JSON)
through the transformation data block, in order to get data
format suitable for IPE. Then, IPE determines the devices to
be exposed to the oneM2M system and create a <container>
resource type for each device under AE, according to the type
sensor. In addition, the IPE also creations a <container>
resource type called “Control” use for representing control
data for the truck in the oneM2M system. Subsequently, the
IPE translates the device’s data encapsulated in a JSON object
to oneM2M resource model and send to gateway (MN-CSE)
via the creation of a <contentInstance> resource type, which
has attributes that represent to the device’s properties (e.g.,
value, unit, type, data type, technology). After this, the
gateway (MN-CSE) responds with the content of instance
created. Figs. 5 and 6 show an example of such reply and a
view of the GUI of the oneM2M server (which depicts the
oneM2M resource tree generated), respectively.

Fig. 5. Reply to the creation of a ContentInstance.

Fig. 6. OneM2M resource structure created for the use case.

The device’s data are stored in a database integrated with
the oneM2M platform, which implements persistence services.
Finally, the oneM2M IoT Server Platform (IN-CSE)
propagates these data to IoT platforms using the oneM2M
subscription/notification services.

In order to establish the bidirectional communication,

when a state change in IoT devices (i.e., actuator) is required,
a <contentInstance> resource instance of <container>
“Control” is created through the IPE. Then IPE maps the data
to the NoDN data model supported by the IoT device (e.g.,
light alarm actuator) on which the action is executed.

C. Services offered by interworking architecture
Several services could be developed and delivered to the

top the interworking architecture in order to solve existing
issues in the access control, traffic and operational assistance
scenario, including the following.

1) Improved the access control to port facilities service

Currently, the trucks for accessing the port must have a
valid transport order and an appointment time. Through the
use of proposed interworking architecture, the gateway
automatically propagates the truck’s GPS location and the
number plate of the truck to oneM2M IoT Server Platform.
Thus, based on this information, the PIP is able to early check
the validity of the transport order whereas the TIP can do a
cross-checks to validate the appointment. Once the truck
arrives in the port, it is identified by means of an LPR
(number plate reader) and the port gate is activated
automatically by the PIP, thanks to the information provided

by the oneM2M IoT Server Platform. In the same way, when
the truck arrives in the container terminal, the TIP allows the
truck access to terminal facilities to deliver and/or collect
containers.

2) Guidance service

Frequently, some trucks do not immediately find the right
route to the container collection and/or delivery points. The
haulier may resort to the GPS guidance service on his cell
phone as a mobile application offered by the port authorities
by sharing the truck’s GPS location through our IPE. The
mobile application guides the truck haulier directly to the
container or pick-up point. The transition from the terminal
area to the port would be transparent for the user and would
not require switching over to a different application. This
service would be active while the truck is inside the port or
terminal areas.

3) Improved inspection of empty containers service

In addition, the information sharing by the gateway
through IPE supports a more effective and efficient inspection
of empty containers. Trucks exit the port through the empty
lane in case they carry an empty container. With current
procedures, the containers are randomly selected for
inspection. As an improvement for this process, the load
sensor installed on the container can provide container status
information through our IPE. Therefore, all platforms that
register this information in their systems can receive this
information from oneM2M IoT Server Platform. So once a
truck arrives at the port gate in the empty lane, the TIP or PIP
can inform to the border police whether the container should
be checked or not. In the case that it is not necessary, the exit
will be automatic.

4) Improved the Dynamic Lighting service

Currently, the Dynamic Lighting System (DLS) [11] of
TIP in container port terminal is capable to significantly
reduce the luminary energy consumption an intelligent and
efficient way at night time. Though, in the use case scenario,
DLS requires to be aware of the GPS position of every vehicle
in the terminal area be able to apply the low-consumption
lighting mode. If not, the terminal area will be fully
illuminated for security reasons. Thus, it is only active if there
are no trucks operating in the container terminal, which is a
rare situation. The DLS could know this information by
sharing the truck’s GPS location through our IPE. As a result,
the DLS can operate at its full potential, being the low-
consumption mode active the whole night time, achieving
energy savings up to 78% (based on the initial results provided
by the port terminal) compared to the results previous to the
sharing of trucks’ GPS position.

These services verify that the implementation of our
proposed interworking architecture to the access control,
traffic and operational assistance scenario can achieved
several benefits including the minimization of queues and
waiting times at the entrance of the terminal, the increase of
control and security in the port area, the regulation of the
traffic flows inside the terminal and the optimization of port
operations.

V. CONCLUSIONS AND FUTURE WORK
The lack of interoperability between IoT devices is a

significant barrier to the development and deployment of
horizontal IoT solutions able to interoperate with each other.
This paper discusses the interoperability of IoT devices and
their integration with oneM2M system using international
standards specifications. We have proposed and deployed an
interworking architecture through an IPE. This architecture
enables the interworking of different protocols and
communication technologies, the exchange of syntactic
information, a continuum use and sharing of data among
heterogeneous devices. Moreover, it can interoperate with
external parties (e.g., IoT platforms, services, and
applications) interested in using the information coming from
IoT devices through the oneM2M platform as well as send
control messages to IoT devices in a ubiquitous way. A use
case derived from an ongoing project validates the feasibility
of the architecture proposed that facilitates the creation of
smart services in a real IoT scenario focused on transport and
logistic.

ACKNOWLEDGEMENTS
This work has received funding from the European

Union's “Horizon 2020” research and innovation programme
as part of the “Interoperability of Heterogeneous IoT
Platforms” (INTER-IoT) under grant agreement no 687283;
ACTIVAGE project under grant agreement 732679; the
Escuela Politécnica Nacional, Ecuador; and SENESCYT,
Ecuador.

REFERENCES
[1] ETSI, “Interoperability Best Practices,” 2013.
[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M.

Ayyash, “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” IEEE Commun. Surv. Tutorials, vol.
17, no. 4, pp. 2347–2376, 2015.

[3] Mckinsey Global Institute, “the Internet of Things : Mapping the
Value Beyond the Hype,” 2015.

[4] J. Swetina, G. Lu, P. Jacobs, F. Ennesser, and J. Song, “Toward a
standardized common M2M service layer platform: Introduction to
oneM2M,” IEEE Wirel. Commun., vol. 21, no. 3, pp. 20–26, 2014.

[5] J. Yun, R. C. Teja, N. Chen, N. M. Sung, and J. Kim, “Interworking
of oneM2M-based IoT systems and legacy systems for consumer
products,” in 2016 International Conference on Information and
Communication Technology Convergence (ICTC), 2016, pp. 423–
428.

[6] C. W. Wu, F. J. Lin, C. H. Wang, and N. Chang, “OneM2M-based
IoT protocol integration,” in 2017 IEEE Conference on Standards
for Communications and Networking, CSCN 2017, 2017, pp. 252–
257.

[7] J. Kim, J. Yun, S. C. Choi, D. N. Seed, G. Lu, M. Bauer, A. Al-
Hezmi, K. Campowsky, and J. Song, “Standard-based IoT platforms
interworking: implementation, experiences, and lessons learned,”
IEEE Commun. Mag., vol. 54, no. 7, pp. 48–54, 2016.

[8] D. Yacchirema, C. Palau, and M. Esteve, “Smart IoT Gateway For
Heterogeneous Devices Interoperability,” IEEE Lat. Am. Trans.
VOL. 14, NO. 8, AUG. 2016, vol. 14, no. 8, pp. 3900–3906, 2016.

[9] OneM2M, “TS-0001 Functional Architecture 2.19.0,” 2018.
[10] Inter-IoT, “Interoperability of Heterogeneous IoT Platforms,” 2018.
[11] Valenciaport, “Dynamic real-time lighting system for port

terminals,” 2015.

