
Enhancing Semantic Discovery in oneM2M with

Direct Query

Setiawan Wibowo Purnomo

EECS International Graduate Program

National Chiao Tung University

Hsinchu, Taiwan

setiawantong.cs05g@nctu.edu.tw

Fuchun Joseph Lin

Department of Computer Science

College of Computer Science

National Chiao Tung University

Hsinchu, Taiwan

fjlin@nctu.edu.tw

Abstract—Semantic information has been proven to be

necessary in order to increase IoT interoperability by adding

meaningful annotations to the data under exchange. The

oneM2M as a global standard for IoT middleware has already

supported semantic capabilities and allows semantic information

to be annotated in its resources. Based on the added semantic

information, oneM2M can support more effective resource

discovery with semantic discovery. However, the oneM2M

approach for semantic discovery is based on indirect query that

requires pre-collection of all semantic information distributed in

the resource tree while performing the discovery, thus results in

very slow response. In this research, we propose a method of

direct query to expedite the function of semantic discovery in

oneM2M. In our approach, instead of storing the semantic

information in the resource tree, we store the semantic

information separately and centrally in a permanent RDF store.

Our method significantly reduces the response time when

performing semantic querying.

Keywords—Internet of Things; oneM2M; semantic discovery

I. INTRODUCTION

As predicted by analysts [1], there will be at least 20 billion
devices deployed in the cyber-physical world that blends
together our physical environment and cyber virtual world,
known as the Internet of Things (IoT) [2]. These devices are
connected and thus required to interwork with each other,
regardless their differences in type, purpose and model [3].
However, due to the heterogeneity of these devices they often
have troubles in understanding the data exchanged by each
other [4].

Semantic information helps to solve this problem by
providing the meaning of exchanged data with additional
annotations [5]. This adds a new level of interoperability
without having to memorize the syntactic structure of the
exchanged data [6][7]. Semantic information enables the
transmission of the knowledge regarding the exchanged data.

The oneM2M is a global middleware standard for the
machine-to-machine communications (M2M) [8]. It provides a
platform, called Common Service Entity (CSE), for IoT
devices to connect to each other with the support of common
service functions (CSFs) [9] such as data management and
repository (DMR), discovery (DIS), communication

management, subscription & notification and registration. The
oneM2M Release 2 specification added a semantic engine
(SEM) CSF [10] in its CSE, which provides a temporary RDF
store and an ability to execute a given semantic query on the
RDF store. In addition, its DMR CSF is enhanced to store the
semantic information, and its DIS CSF is enabled to collect the
semantic information stored inside DMR CSF.

The current oneM2M adopts an approach we refer to as
indirect query for semantic operations in oneM2M including (1)
manipulating semantic information and (2) discovering
resources based on semantic query, which is also referred as
semantic discovery. In this approach, DIS CSF has to explore
the semantic information of each resource in the DMR CSF
every time the semantic discovery is executed.

However, this approach is very time consuming and cannot
meet the low latency requirement of time-critical applications.
To solve this issue, we propose an approach of direct query to
improve the response time of semantic discovery. In ou
approach, the need for DIS CSF to collect semantic information
from DMR CSF is eliminated. The test result shows that our
method significantly shortens the response time of performing
semantic discovery and reduces the complexity of
implementation required.

The rest of this paper is organized as follows. Section II
focuses on the semantic information annotation, the
background of oneM2M and the indirect query. Section III
explains our proposed method of direct query. Section IV
shows the response time comparison of indirect query and
direct query in a smart-home environment. Finally, we present
our conclusion and future work in Section V.

II. BACKGROUND

This section briefly introduces the fundamental of
annotating semantic information, the functional architecture of
oneM2M and the indirect approach supported by oneM2M to
handle semantic discovery.

A. Semantic Information Annotation

Annotating resources with semantic information can be

done by describing the resource semantically in the form of

Resource Description Framework (RDF). The resource

description in RDF is expressed in a triple, which contains:

1. “Subject” (S): the annotated resource.

2. “Predicate” (P): an identifier that specifies the

relationship between the subject and the object.

3. “Object” (O): a resource or literal that has the relation

with the subject.

An example is illustrated Figure 1(a) where two triples are

used to describe an air conditioner located in a kitchen:

“Kitchen has an air conditioner” and “Air Conditioner is an

actuator”. In this example, the air conditioner can act as a

subject and an object, thus creating an information chain.

These triples need to be serialized in other formats, such as

XML (See Figure 1(b)) to enable distribution from one entity

to another.

B. oneM2M

The oneM2M CSE consists of 13 CSFs and provides the
Mca reference point for an Application Entity (AE) to access
these CSFs. This Mca reference point currently supports five
operations: (1) CREATE, (2) RETRIEVE, (3) UPDATE, (4)
DELETE, and (5) NOTIFY [11], over several communication
protocols including HTTP.

In particular, the DMR (Data Management & Repository)
CSF is responsible for storing data from applications in a
resource tree as depicted in Figure 2. The root of the resource
tree is the <CSEBase> resource that consists of children
resources such as <remoteCSE>, <AE>, <container>, <group>.
Under an <AE> resource, there can be multiple <container>
resources that are used to store data. Both <AE> and
<container> resources can have semantic information stored in
the <semanticDescriptor> resource that contains several
important attributes (see Figure 3) as follows.

• “descriptorRepresentation” contains the serialization
format of the semantic information.

• “semanticOpExec” is for placing a SPARQL query to
update the semantic information.

• “descriptor” contains the semantic information of the
parent resource in a form of RDF graph data model.

• “ontologyRef” contains a URI that describes an
ontology used in the descriptor.

• “relatedSemantics” contains a list of URIs pointing to
other <semanticDescriptor> resources that have relation
with the current <semanticDescriptor> resource.

Figure 1. Example of semantic information in (a) triple and (b) XML

C. Indirect Query Supported by oneM2M

Semantic discovery in indirect query relies on three CSFs:

• DMR CSF to provide the <semanticDescriptor>

resources to store the semantic information that is

annotated on a resource.

• DIS (Discovery) CSF to collect semantic information

from each <semanticDescriptor> resource in the

resource tree.

• SEM (Semantic Engine) CSF to execute the given

semantic query on the extracted semantic information.

The process of semantic discovery in indirect query is

depicted in Figure 4, with the explanation as follows:

1. The requester sends an HTTP GET request with the

format as illustrated in Table I. The URI points to the

root of searching in the resource tree, and encodes two

parameters: a SPARQL query and a filterUsage “fu=1”

indicating a discovery request [12]. The header

contains the identity of the requester (“X-M2M-

Origin”  “user:password”).

2. The Mca reference point receives the request, marks it

as a RETRIEVE operation with discovery request, and

forwards it to the DIS CSF for further operation.

3. The DIS CSF explores <semanticDescriptor> resources

by performing breadth-first-search to traverse the

resource tree starting from the specified search-root

resource.

Figure 2. Resource tree in DMR CSF

Figure 3. <semanticDescriptor> resource

Figure 4. Process flow of semantic discovery

TABLE I. HTTP REQUEST PARAMETER IN INDIRECT QUERY

Description Content

Operation HTTP GET

URI http://<CSEAddress>/~/<searchRoot>

?smd=<SPARQLQuery>&fu=1

Header “X-M2M-Origin”  “user:password”

Body -

4. The semantic information of each

<semanticDescriptor> resource would be extracted and

stored in a temporary RDF store.

5. The SEM CSF will execute the given SPARQL query

on the temporary RDF store.

6. If the query returns any result, the URI of the resource

with the matched semantic information will be saved

and sent back to the DIS CSF.

7. The DIS CSF continues traversing the resource tree

and repeats Steps 4-6 until no more

<semanticDescriptor> resource can be found.

8. A response message is created containing all the saved

URIs. This response message is sent to the Mca

reference point to be forwarded to the requester.

9. The Mca reference point forwards the response

message to the requester.

Furthermore, extracting semantic information from a

<semanticDescriptor> resource requires more steps which are

depicted in Figure 5 and explained as follows:

1. The DIS CSF finds a <semanticDescriptor> resource.

2. The semantic information from the descriptor attribute

is extracted and put into a RDF Store.

3. If there is any URI in the relatedSemantics attribute, If

there is any URI in the relatedSemantics attribute, the

DIS CSF will proceed to analyze the

<semanticDescriptor> resource mentioned in the URI.

Figure 5. Process flow of extracting semantic information from a

<semanticDescriptor> resource

4. The semantic information from the descriptor attribute

on another <semanticDescriptor> resource is extracted,

and put in the same RDF store.

5. If there is no more URI in the relatedSemantics

attribute, the process of extracting semantic

information is considered finished. The RDF store is

now ready for the SEM CSF to execute the semantic

query.

III. PROPOSED METHOD

In this research, we propose a new approach of “direct

query” for the semantic discovery in oneM2M. The idea is to
allow the semantic information to be stored in a permanent
RDF store residing in the SEM CSF than in the
<semanticDescriptor> resources. Our approach has the
following benefits:

1. Reducing the coding complexity by unifying the
HTTP request parameters on both semantic
information manipulation and semantic discovery.

2. Faster processing time on semantic discovery.

Since the <semanticDescriptor> resource is no longer used,
the need for DIS CSF to collect and extract semantic
information from the <semanticDescriptor> resources can be
eliminated to simplify the process of semantic discovery. The
process would no longer be triggered by a RETRIEVE
operation of discovery request in indirect query. Instead, it
requires the support of a new operation type “QUERY” at the
Mca reference point, that redirects the request to the SEM CSF
for executing the given SPARQL query. This QUERY
operation type is mapped to an HTTP POST with a Content-
Type “query”.

In a direct query, the process flow of manipulating

semantic information and discovering resources with semantic

query are the same. They are all accomplished by SPARQL

with different types: SPARQL INSERT DATA to create new

semantic information, SPARQL DELETE to delete the

existing semantic information, and SPARQL SELECT to

perform semantic discovery.

The whole process of direct query is depicted in Figure 6,

with the explanation as follows:

1. The requester sends an HTTP POST request (see the

format in Table II) with a URI pointing to the CSE.

The header contains the identity of the requester and

the type of the content “query” to indicate a semantic

query request. The SPARQL query is carried in the

HTTP body without any encoding format.

2. The Mca reference point receives the request, marks it

as a QUERY operation, and forward it to the SEM

CSF for further operation.

3. The query engine in the SEM CSF executes the given

SPARQL query on the RDF store.

4. The SEM CSF creates a response message containing

the execution result from executing SPARQL query.

For SPARQL SELECT query, the response message

is expanded with the result from the execution if any.

This response message is sent to the Mca reference

point to be forwarded to the requester.

5. The Mca reference point forwards the response

message to the requester.

Figure 6. Process flow in direct query

TABLE II. HTTP REQUEST PARAMETER IN DIRECT QUERY

Description Content

Operation HTTP POST

URI http://<CSEAddress>/~/in-cse/

Header “X-M2M-Origin”  “user:password”

“Content-Type”  “query”

Body <SPARQLQuery>

 However, removing the <semanticDescriptor> resource

brings in two new issues: First, the relation between the

semantic information and the annotated resource disappears.

Second, it becomes incapable of sharing semantic information

between resources. To overcome the first issue, the URI of the

annotated resource is used as the subject in the RDF triple as

illustrated in Figure 7. Note that the semantic information in

direct query is exactly the same as that in the

<semanticDescriptor> resource in indirect query, except that

the subject in the RDF triple is replaced with the URI of the

annotated resource “AC”.

Figure 7. Example of using the URI of a resource as the subject in direct query

Figure 8. An example of relatedSemantics attribute containing a URI to

another <semanticDescriptor> resource

Figure 9. Sharing semantic information in direct query

 As an example of the second issue, note that the

<semanticDescriptor> resource has the relatedSemantics

attribute to allow including some existing external semantic

information as a part of the semantic information of the

annotated resource. With this resource, semantic information

can be shared between different resources. For example,

Figure 8 shows that an air conditioner “AC” contains three

properties: “DesiredTemperature”, “CoolingSpeed”, and

“Power”. Each property contains <semanticDescriptor>

resource with a relatedSemantics attribute referring to the

<semanticDescriptor> resource of its parent “AC”.

 The direct query approach disables the sharing of related

semantic information due to the removal of the

<semanticDescriptor> resource. To solve this issue, we put the

resource with the semantic information to be shared as the

parent in the RDF store, and other resources that depend on

the shared semantic information as the children. An example is

illustrated in Figure 9 where the “AC” has semantic

information to be shared with its properties. As these

properties of the “AC” depend on the semantic information of

the “AC”, they are put as the children of “AC” so that they can

share the semantic information of “AC”.

A. Testing Scenario

Inspired from ADREAM Smart Building Use Case [13],

we assume a smart home with multiple rooms, where each

room consists of various kinds of actuators and sensors

including lamp, air conditioner, humidifier, luminosity sensor,

temperature sensor, and humidity sensor. Each device is

connected to a CSE through the Mca reference point.

We designed an ontology as depicted in Figure 10 for the

Figure 10. Ontology for the smart-home environment

TABLE III. TESTBED HARDWARE CONFIGURATION

Type Value

Processor Intel i5-6200U clocked to 2.08 GHz

RAM 8 GB DDR3L 1.6 GHz

Storage 256 GB SSD – R/W up to 560MBps/320MBps

Operating System Microsoft Windows 8.1 x64

smart home environment. This ontology provides the guidance

for annotating semantic information on smart home resources.

It combines existing ontologies such as SAN [14], SSN [15],

and QUDT [16]. Each actuator (Lamp, Air Conditioner, and

Humidifer) in Figure 10 is of (rdf:Type) SAN:Actuator and

controlled by its own unique properties (SAN:controlledBy);

these properties are of (rdf:Type) SAN:ActuatorInput. The

actuators act on a specific quantity kind (Lamp, Temperature,

and Humidity) (SAN:actsOn), which is of qudt:QuantityKind.

Similarly for sensors (Luminosity Sensor, Temperature Sensor,

and Humidity Sensor) in Figure 10, they are of (rdf:Type)

ssn:Sensor, which senses a specific quantity kind in the

environment (ssn:observes), and generates an output value

(Luminosity Value, Temperature Value, and Humidity Value)

(ssn:hasOutput), which is of (rdf:Type) ssn:Output.

The testing begins with the installation of three sensors in

multiple rooms. The sensors start their operations by

periodically sensing the Assuming that the CSE finds the

resources that match with the request criteria, the CSE will

respond with the URIs of the resources containing the sensed

values of the corresponding sensors. Then, the actuator would

update its status based on the value of the corresponding

sensor. Lastly, the actuators are removed from the

environment, followed by removing the sensors.

B. Testing Method

To compare the response time of the direct query with that

of the indirect query in performing semantic query request, we

constructed two systems based on OM2M, which is a

oneM2M open source project developed by LAAS-CNRS and

managed by the Eclipse Foundation.environment and

uploading the sensed value to the CSE. Then, three actuators

are also installed in the same rooms. The actuators start their

operations by periodically sending a semantic discovery

request to the CSE in order to find its corresponding sensors in

the same room and discover the resources where the sensed

value from these sensors are stored.

 The response time test is done by running OM2M as the

oneM2M CSE, and a smart-home simulator as an AE over the

CSE, in a hardware configuration as specified in Table III. The

response time is measured on 3 operations:

1. Creating semantic information, when a device is

installed.

2. Performing semantic discovery, when an actuator

finds the sensed value of the corresponding sensor.

3. Deleting semantic information, when a device is

removed.

The measurement is also done on 3 different environments:

1. Environment A: One device of each type (See Figure

10) installed in a room (total 6 devices)

2. Environment B: One device of each type installed in

two rooms (total 12 devices)

3. Environment C: One device of each type installed in

five rooms (total 30 devices)

C. Testing Result

The response time in Figure 11 is obtained by calculating

the average of all response times collected from 100

executions of each operation in each environment. The results

show that the direct query performs significantly faster than

the indirect query in performing semantic discovery. This

improvement is because the direct query does not traverse the

resource tree to explore and extract the semantic information

from <semanticDescriptor> resources as in the indirect query.

On the other hand, the direct query requires more time to

create or delete semantic information when compared to

indirect query. As the amount of the semantic information in

RDF store is increasing, the direct query requires more time to

perform these operations. In direct query, the new semantic

information is inserted in a specific element according to its

relation with other semantic information. Thus deleting

semantic information requires searching a specific information

to be deleted among numerous of semantic information in the

RDF store. These operations are more time-consuming than in

the case of indirect query where inserting and deleting

semantic information are treated as creating or deleting a

<semanticDescriptor> resource that is a fast operation.

In summary, the direct query should be preferred in a

system that highly depends on semantic discovery than on

semantic information manipulation. However, the indirect

query is still considered a better solution in a dynamic system

that requires lots of semantic information manipulation than

semantic discovery.

IV. CONCLUSION AND FUTURE WORK

In the direct query approach, the semantic information is

stored in a permanent RDF store instead of in

<semanticDescriptor> resources. This eliminates the need of

DIS CSF to discover the <semanticDescriptor> resources and

extract their semantic information. On the other hand, it

requires the support of a new operation type “QUERY” that

would forward the request directly to the SEM CSF.

When compared the response time of the direct query with

that of indirect query in a smart-home environment, the result

Figure 11. Response time benchmark result

shows that the direct query performs significantly faster than

indirect query in discovering resources with semantic query.

In the future, we plan to design a new hybrid method that

combines both indirect query and direct query to achieve

optimal performance.

ACKNOWLEDGEMENT

The project reported in this paper is sponsored by Institute for

Information Industry in Taiwan under the 2017 Initiative on

Docker-based OpenFog IoT Technologies and the 2018

Initiative on Gateway Site Fog Computing.

REFERENCES

[1] A. Nordrum, "The internet of fewer things [News]," in IEEE Spectrum,
vol. 53, no. 10, pp. 12-13, October 2016.

[2] V. Jirkovský, M. Obitko and V. Mařík, "Understanding Data
Heterogeneity in the Context of Cyber-Physical Systems Integration," in
IEEE Transactions on Industrial Informatics, vol. 13, no. 2, pp. 660-667,
April 2017.

[3] I. Yaqoob et al., "Internet of Things Architecture: Recent Advances,
Taxonomy, Requirements, and Open Challenges," in IEEE Wireless
Communications, vol. 24, no. 3, pp. 10-16, June 2017.

[4] P. Desai, A. Sheth and P. Anantharam, "Semantic Gateway as a Service
Architecture for IoT Interoperability," 2015 IEEE International
Conference on Mobile Services, New York, NY, 2015, pp. 313-319.

[5] W. Li, G. Privat and F. Le Gall, "Towards a semantics extractor for
interoperability of IoT platforms," 2017 Global Internet of Things
Summit (GIoTS), Geneva, 2017, pp. 1-6.

[6] H. Dibowski, "Semantic interoperability evaluation model for devices in
automation systems," 2017 22nd IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), Limassol,
2017, pp. 1-6.

[7] Fortino, Giancarlo, et al. "Towards multi-layer interoperability of
heterogeneous IoT platforms: the INTER-IoT approach." Integration,
Interconnection, and Interoperability of IoT Systems. Springer, Cham,
2018, pp. 199-232.

[8] V. Gazis, "A Survey of Standards for Machine-to-Machine and the
Internet of Things," in IEEE Communications Surveys & Tutorials, vol.
19, no. 1, pp. 482-511, Firstquarter 2017.

[9] oneM2M. TS 0001 Functional Architecture v2.10.0. [Online]. Available:
http://www.onem2m.org/images/files/deliverables/Release2/ TS-0001-
%20Functional_Architecture-V2_10_0.pdf

[10] oneM2M. TR 0007 Study of Abstraction and Semantics Enablements

v2.11.1. [Online]. Available: http://www.onem2m.org/images/files/
deliverables/Release2/TR-0007-Study_on_Abstraction_and_Semantics_
Enablement-V2_11_1.pdf

[11] oneM2M. TS 0004 Service Layer Core Protocol Specification v2.7.1.
[Online]. Available: http://www.onem2m.org/images/files/deliverables
/Release2/TS-0004_Service_Layer_Core_Protocol_V2_7_1.zip

[12] oneM2M. TS 0009 HTTP Protocol Binding v2.6.1. [Online]. Available:
http://www.onem2m.org/images/files/deliverables/Release2/TS-0009-
HTTP_Protocol_Binding-V2_6_1.pdf

[13] M. B. Alaya, S. Medjiah, T. Monteil and K. Drira, "Toward semantic
interoperability in oneM2M architecture," in IEEE Communications
Magazine, vol. 53, no. 12, pp. 35-41, Dec. 2015.

[14] LAAS-CRNS and IRIT. SAN [Online]. Available: https://www.irit.fr/
recherches/MELODI/ontologies/SAN.html

[15] W3C Semantic Sensor Network Incubator Group. Semantic Sensor

Network Ontology [Online]. Available: https://www.w3.org/2005/
Incubator/ssn/ssnx/ssn

[16] Linked Models. Quantities, Units, Dimensions and Types Catalog

[Online]. Available: http://www.linkedmodel.org/catalog/qudt/1.1/
index.html

