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Abstract— The Internet of things (IoT) fosters a hyper-
connected world in which billions of devices that range from 
higher-grade intelligent mobile terminals to resource-constrained 
sensors will be connected to the Internet anytime and anywhere. 
Nevertheless, one of the major obstacles facing the Internet of 
things is the high diversity of communication capabilities 
(protocols, technologies and hardware) of the IoT devices. This 
diversity leads to a highly fragmented IoT market, where various 
IoT solutions have been developed independently and separately 
to be used in legacy deployment, which prioritize the vertical 
optimization instead of the horizontal.  Therefore, in this 
research, in order to address this issue, we analyse the oneM2M 
specifications and propose an interworking architecture based on 
such specifications to support both the seamless interoperability 
of heterogeneous IoT devices and their integration with oneM2M 
ecosystem. We evaluate the feasibility of this architecture by a 
use case applied to under real scenario, which derives from an 
ongoing project.  

Keywords—Internet of things, oneM2M, interworking, 
interoperability, heterogeneous devices.  

I. INTRODUCTION AND RELATED WORK  
Recent advances in communication technologies, and in 

the capabilities of devices as well as their low cost furnish a 
great opportunity for the deployment and developed of IoT 
solutions that can be beneficially applied in various domains 
from intelligent vehicles, smart cities, smart grid, e-health/m-
health to industry control.  The rapid rise of this ecosystem is 
leading IoT towards a hyper-connected world, in which 
billions of devices that surround us will be connected to the 
Internet anytime and anywhere. Nevertheless, one of the major 
obstacles facing IoT is the high degree of diversity of such 
devices in terms of hardware, software, and communication 
protocols and technologies. This diversity leads to a highly 
fragmented IoT market, where various IoT solutions have 
been developed independently and separately focusing on a 
specific purpose and being isolated from the rest of the world. 
In particular, the interoperability of devices is one of the major 
challenges that must be achieved for facilitating the 
integration and development of services and IoT applications 
[1] [2] creating an ecosystem of interoperable IoT solutions. 
Indeed, the realization of 40% of the potential benefits of IoT 
depends upon Interoperability (protocols, data formats, 
content) [3]. However, achieving the interoperability is not 
straightforward. Toward this end, standards development 
organizations (e.g., oneM2M, ITU), research projects (e.g., 
Inter-IoT) and industrial consortiums (e.g., AllJoyn) have 
been actively conducted activities towards to achieve global 

interoperability in IoT. In particular, the global standards 
initiative-oneM2M, an international partnership project 
launched in 2012, by seven of the world’s major standards 
development bodies of Europe (ETSI), Japan (ARIB and 
TTC), USA (ATIS and TIA), Korea (TTA), and China 
(CCSA) have gathered their endeavours to minimize the 
current fragmentation of proprietary solutions present in the 
IoT market and in M2M communications through drawing 
up of broadly applicable interworking specifications 
independent of underlying access and network transmission 
technologies [4]. This interworking specifications seeking to 
ensure that IoT devices seamless interoperate between them 
on a global scale.  

Supporting the IoT devices interoperability using 
international standards has been research of particular 
relevance in IoT. Few studies have exploited the technical 
specifications provided by the oneM2M standard, which 
define how oneM2M can be used for interworking with legacy 
systems (i.e., non-oneM2M compliant systems) via 
specialized interworking proxy entities (IPEs). In this sense, 
Yun et al. [5] introduced an IPE for interworking oneM2M 
systems with legacy IoT consumer products from Nest, 
Jawbone, and Withings. The proposed IPE translates the 
protocol messages between oneM2M's request/response and 
binding target protocol's message of the servers that store the 
data of the devices rather than directly translates to protocol's 
message of the devices. Therefore, this solution requires that 
the web servers of each device app is in operation otherwise 
this solution will not work.  Likewise, other research proposed 
by Chia-Wei Wu et al. [6] designed an integration architecture 
based on IPE to address the interworking of specific IoT 
platforms (i.e., AllJoyn/IoTivity platforms) with oneM2M 
system. This IPE acts as middleware, which supports the 
mapping of device management functions among these 
platforms. They evaluate this solution by two interworking 
test cases. Although these integration designs are disclosed, 
there is no evidence that these designs provide the 
bidirectional communication between devices.  Finally, Kim 
et al. [7] demonstrated how the interworking procedures 
provided by IPE could be applied under real conditions such 
as smart cities for interworking multiple IoT services 
platforms.  Through the experiences, and lessons learned, the 
authors emphasized the advantages of the interworking 
feature.  

The main goal of this research consisting of the design and 
implementation of an interworking architecture to enable both 



the seamless interoperability of heterogeneous IoT devices and 
their integration with oneM2M ecosystem by implementing of 
an IPE, which runs on a low-cost resource-constrained device. 
Toward this direction, we extend the contents of 
our preliminary work presented in [8] by adding (i) new 
discussions on the internetworking of non-oneM2M compliant 
heterogeneous IoT devices with oneM2M platform, (ii) an IPE 
which performs resource mapping, (iii) integration with 
oneM2M platform, (iv) more details about the architecture 
developed, and (v) new results obtained as a key component of 
the proposed solution.  

This work continues with an overview of oneM2M 
functional architecture and interworking specifications (Section 
II) followed by the description of the proposed interworking 
architecture and its constituent components for interoperability 
of IoT devices and integration them with oneM2M ecosystem. 
After that, we explain the implementation of interworking 
architecture and evaluate its feasibility by a real use case in 
which several services are implemented as a result of the 
interoperability. Finally, we conclude the work and provide 
future research directions. 

II. BACKGROUND 

Toward a better understanding, in this section, we briefly 
introduce the oneM2M functional architecture and the 
oneM2M Interworking specifications based on IPE. 

A. OneM2M functional architecture 

The oneM2M defines a functional architecture consisting 
of two domains (infrastructure and field domain) as shown in 
Fig. 1. The infrastructure domain consists of an infrastructure 
Node (IN), which is a server housed on the transmission 
network side.  IN can be connected with INs of another 
oneM2M service providers. On the other hand, in the field 
domain, M2M nodes such as middle nodes (MNs) and M2M 
devices are included.   The different M2M devices can be 
located at different points of the M2M network and according 
to this can be called Application Service Nodes (ASN) or 
application dedicated Nodes (AND). The oneM2M defines 
two basic entities, which can be implemented as software 
functions within of each node.  

A logic node Common Services Entity (CSE) that supports a 
set of service middleware control functions for AEs and others 
CSEs such as data and device management, M2M 
subscriptions and location services. The CSE is deployed in 
M2M nodes and in each server node [9]. An application entity 
(AE) that contains the application logic of IoT or M2M 
solutions such as an application for transport and logistic, 
sleep apnea monitoring and agriculture. Fig. 1 shows how 
these entities are deployed within the nodes. In addition, 
oneM2M defines a network service entity (NSE) which 
involves basic network services such as transport and 
connectivity to be used by the CSEs. The connection and 
exchange information between these entities is done through 
reference points: Mca, Mcc, and Mcn.  The Mca reference 
point exposes the services included in the CSE to AE running 
on the devices.  The Mcc reference point allows a CSE to use 
the services included in another CSEs.  

 

Fig. 1. oneM2M High-Level Functional Architecture 

The Mcn reference point allows the CSE to use the supported 
services by the NSE [2]. 

The latest version of the oneM2M Release 2 was published 
in August 2016. This version is intended to provide new 
functionalities and capabilities for expanding the IoT 
ecosystem. The updated standard includes enhanced security, 
semantic interoperability, features for home and industrial 
domain enablement, and interworking with devices of industry-
driven IoT connectivity such as Open Mobile Alliance 
LWM2M, Open Connectivity Foundation (OCF) and AllSeen 
Alliance. These updates and their status are disclosed in [9]. In 
particular, the updated internetworking specifications 
incorporate improvements based on the early implementation 
experience in order to achieve high-level interoperability by 
supporting the interconnection of oneM2M with non-oneM2M 
complaint devices based on IPE.  

B. Interworking proxy entity (IPE) 

IPE is a specialized AE defined to enable the interworking 
between a non-oneM2M compliant node (NoDN) and the CSE 
of oneM2M. In particular, the IPE is capable of interfacing 
with various NoDNs and reallocating the NoDN data models 
to oneM2M resources and vice versa through the oneM2M-
specified interfaces.  

An example of the operation of IPE is illustrated in Fig.  2 
(a), a NoDN (e.g., 6LowPAN-based motion MEMS sensor) is 
connected to an MN, which, in turn, is connected with an IN, 
which consists of a CSE to which an AE is enrolled. In order 
to provide interworking, the IPE needs to convert 6LowPAN-
based protocols from non-oneM2M device side to the 
common protocol like HTTP on the MN side. Furthermore, 
the IPE needs to map the data model used by the 6LowPAN 
device into oneM2M resources and then set up the respective 
resources in the IN-CSE using the MN-CSE services. The AE 
consisting of a mobile application for fall detection of elderly 
people, and registered in the IN-CSE can access to the 
acceleration data gathered from the NoDN.  

 



Fig. 2 (b), depicts some scenarios that can be supported by 
the result of interworking provided by IPE.  Several mixed 
deployments could be enabled by the combination of these 
scenarios. 

Fig. 2. (a) Example of the IPE operation. (b) Some possible scenarios 
supported by IPE.  

C. OneM2M Interworking specification via (IPE) 

The OneM2M defines three approaches that can be used to 
interworking NoDNs with oneM2M systems.   

1) Mapping all the NoDN data model to the oneM2M data 
model, based on containers. In this case, the IPE includes all 
the interworking protocol logic. Depending on the complexity 
of the NoDN data model, it may imply that the IPE builds a 
complex set of resource instances (from the oneM2M core 
resources) in the CSE. These resources are oneM2M 
representations of the legacy data model. They allow to CSEs 
and AEs access to NoDN entities. 

2) Using containers for the transparent transport of 
encoded NoDN data and commands through the Mca 
interface. Both data and commands are packaged in oneM2M 
containers. In this case, the CSE or AE need to know the 
specific protocol coding rules to the NoDN in order to be able 
to decode the contents of the containers. 

3) Using reassignment mechanisms. 

In this research, the interworking architecture via IPE is 
designed and implemented using the first approach, which has 
been chosen because it offers a unique solution to allow 
communications between different protocols. In addition, the 
data model of each NoDN (i.e., the non-oneM2M 
heterogeneous device) is which determines the representation 
of resource instances (the names, data types, and structure of 
the containers) in the M2M system. As a result, this approach 
allows the interworking of protocols, the exchange of 
syntactic information, the use and sharing of data between 
different solutions and deployments. 

III. INTERWORKING ARCHITECTURE 
An architecture for achieving the technical and syntactic 

interoperability of heterogeneous devices in the IoT 
was proposed in our preliminary work [8].  In this work, we 
extend this architecture for enabling the integration of these 
devices with oneM2M ecosystem through of the 
implementation of an oneM2M-based IPE.  The proposed 
interworking architecture integrates and consolidates several 
blocks as shown in Fig. 3 

The protocol translation block handles the reception and 
sending of messages to or from IoT devices. To do this, it 
coordinates communication tasks through different adapters 

and resolves the problem of incompatibility of different 
protocols by the encapsulation of the data sent by the source 
protocol in a format compatible with the destination 
communication protocol. This module enables the technical 
interoperability.  

The data transformation  block is focused on the data types 
and data schemas. Given that heterogeneity is also present in 
the different data formats supported by the different IoT 
devices. According to the type of data collected, this module is 
in charge of transforming this data to a common data standard 
defined in the architecture through a syntactic mapper, in order 
to enable IoT devices to recover the complete information 
contained in the message. The data-flow in this module is 
enabled by an interface engine. This module enables the 
syntactic interoperability. 

The integration block is represented by the IPE  and it 
facilitates the common understanding of the collected data, 
manage access, and extract knowledge from different IoT 
devices by describing the resource instances in the oneM2M 
system. This module enables the integration of NoDNs with 
oneM2M system. It includes eight modules that can interact 
with each other as shown in Fig. 3.  

 A message broker that enables communication streams 
between IPE components using a publish/subscribe 
mechanism. Each component can adopt the role of 
publisher, subscriber, or even both in order to fulfill the 
needed functionality.  The red and blue dashed lines 
represent these communication streams. 

 An activator that is in charge of activating and deactivating 
the IPE by the implementation of the start () and stop () 
method.  

 A controller that performs two tasks: On the one hand, it 
starts and stops the IPE’s internal components and handles 
the creation of oneM2M resources in the CSE at the start of 
the IPE.   On the other hand, it executes the received 
request (e.g., retrieve the state of a device, change their 
state, etc.) from the oneM2M interface on the resource 
instances of the devices.  

 An event handler able to real-time act by sending 
commands to the several NoDNs (e.g. actuators).  

 An M2M resources mapper is the main component of the 
integration block that enables the reassignment of the 
received data model from the data transformation block in 
an oneM2M resources format through oneM2M interfaces.   

 A monitor that retrieves the data of each device exposed to 
the oM2M system and push such data into the CSE using 
the data model provided by the M2M resources mapper.  

 A router that defines a unique path to handles all request 
addressed to IPE in a simple resource controller and send 
the request to the corresponding method of the controller 
module. This module implements the interworking service 
interface.  

 A request sender that is designed to create oneM2M 
requests to send to the CSE and provide the response of 
these requests.  

The IPE is registered with the MN-CSE with the aim of 
hosting the interworking service, which enables the 



synchronization the registered IoT devices with the resource 
instances that these represent in the oneM2M system. 

 
Fig. 3. Interworking architecture via IPE 

IV. TESTBED IMPLEMENTATION 
In this work, a testbed is implemented in order to validate 

and exploit the oneM2M-based interworking architecture. In 
particular, we first describe a real scenario and, then, detail the 
implementation of this architecture and setup on a low-cost 
resource-constrained device. In addition, we describe various 
services created as a result of the interoperation, data sharing, 
cooperation among IoT devices (see Table I) and their 
integration with oneM2M system.  

A. Use case 
In the interest of furthering cooperation of IoT platforms 

through the seamless interoperability of heterogeneous IoT 
devices and enable the creation of new smart services, a 
testbed based on Inter-LogP use, which derives from an 
ongoing project, was carried out.  

 
INTER-LogP use case [10] illustrates the need to achieve 

seamless interoperability of different heterogeneous IoT 
platforms, oriented to port transport and logistics at different 
levels or layers: device, networking, middleware, application 
and services.  In this work, we focus the use case to achieve 
the interoperability at the device level.  

 
The scope of the INTER-LogP includes several scenarios, 

in this work, we focus on the scenario of access control, 
traffic, and operational assistance. In this scenario, the 
interoperability can be directed at resolving several issues. A 
major issue in port container terminals is the high-level of 
traffic and congestion at the entrance of terminal gates in peak 
times. This is caused by the absence of coordination among 
terminal operators and road hauliers and aggravated by the 

continuous and fast increase of containers at the port.  For 
instance, the freight forwarder informs the road haulier about 
the estimated date to pick up or deliver the goods in the 
container but the container terminal typically is not aware of 
the date and time the truck arrives at its gate. This lack of 
information prevents an optimal planning of the port terminal 
operations, and favors a massive arrival of trucks at the end of 
closing times, instead of having a more regular flow during 
the operational time. Consequently, on peak hours there are 
long queues in the port terminal gate and inside the container 
yard, thus affecting the quality, safety, and timing of the 
container handling operations. This inefficiency problem 
causes long waiting times to hauliers in the terminal and it is 
translated into a lower performance of terminal operations, 
loss of time and economic resources and more pollution. 
Traffic congestion can ultimately lead to considerable delays 
or even cancellations of transportation orders, becoming an 
important performance problem in the road transportation, the 
container terminal, and the port.  Two global IoT platforms are 
involved to facilitate processes in the use case studied: 
Terminal IoT Platform (TIP) associated to NOATUM 
container terminal and Port IoT Platform (PIP) associated to 
the port authority. 

  
Table I summarizes the different technologies and data 

shared with these platforms in the context of the IoT devices 
interoperability.  

TABLE I.  DEVICES AND DATA SHARED THROUGH THE INTERWORKING 
ARCHITECTURE  IN THE USE CASE 
 

Devices Data Communication 
technology 

IoT 
Platforms 

GPS NEO-6 sensor Truck GPS 
location Bluetooth TIP, PIP 

Crowtail-weight 
sensor 

Container 
status (loaded 
or unloaded) 

ZigBee PIP 

MC-38 wired 
door/windows 
sensor magnetic 
switch 

Opening or 
closing of the 
truck’s doors 
and windows 

Wi-Fi-MQTT TIP 

Light alarm 
actuator IKS01A2 Truck control 6LowPAN-

CoAP TIP 

B. Implementation of the interworking architecture 
We have implemented the interworking architecture 

employed only open standards, avoiding technological 
dependence on proprietary solutions and favoring the 
customization and development of new functionalities.  All 
the architecture blocks are programmed in Python language, 
and the communication channels are defined through function 
calls. Python was chosen because of its inherent advantages 
for the development.  It is an open source GPL-compatible 
distribution and facilitates the integration of application 
developed in different programming languages. In addition, it 
can be run on any machine and has a wide support in any 
operative system.  

The architecture interworking along with the CSE are 
running in the same execution environment on a smart IoT 
gateway acting as MN and deployed on a Raspberry Pi 3.  



Fig. 4 shows the IoT system implemented for the use case, 
which affords an overview of how our architecture is 
integrated within an oneM2M environment.  The system 
consists of a gateway, an oneM2M IoT Server Platform and 
the IoT platforms of the stakeholders involved in this use case.  

 

 

 

 

 

 

 

 

 

Fig. 4. Integration of proposed interworking architecture with the oneM2M 
ecosystem.  

As oneM2M IoT Server Platform, we used the IN-CSE 
software provided by the Eclipse OM2M project, which is 
running on a private cloud server so that only platforms IoT 
concerned can to access the sensors data. 

 
For the operation of the system, several oneM2M resource 

entities have been created from devices data.  Once registered 
MN-CSE with IN-CSE, an <AE> resource type called “Smart 
truck” is created in the smart IoT gateway (MN-CSE) for 
mapping the truck to the oneM2M resource, through the IPE. 
The IoT platforms (i.e., TIP and PIP) are subscribing oneM2M 
IoT Server Platform (IN-CSE) so that any updates in the 
sensor readings will be notified to these platforms. Then, once 
the IoT devices are connected to the gateway (MN), the 
protocol translation block executes the discovery of devices 
and established the communication with them by a specific 
adapter according to the communication technology used. 
Each message received from devices is transformed to 
common data format defined in the system (i.e., JSON) 
through the transformation data block, in order to get data 
format suitable for IPE.   Then, IPE determines the devices to 
be exposed to the oneM2M system and create a <container> 
resource type for each device under AE, according to the type 
sensor.  In addition, the IPE also creations a <container> 
resource type called “Control” use for representing control 
data for the truck in the oneM2M system. Subsequently, the 
IPE translates the device’s data encapsulated in a JSON object 
to oneM2M resource model and send to gateway (MN-CSE) 
via the creation of a <contentInstance> resource type, which 
has attributes that represent to the device’s properties (e.g., 
value, unit, type, data type, technology). After this, the 
gateway (MN-CSE) responds with the content of instance 
created. Figs. 5 and 6 show an example of such reply and a 
view of the GUI of the oneM2M server (which depicts the 
oneM2M resource tree generated), respectively. 

 
 
 
 
 
 
 
 
 

Fig. 5. Reply to the creation of a ContentInstance. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6. OneM2M resource structure created for the use case. 

The device’s data are stored in a database integrated with 
the oneM2M platform, which implements persistence services. 
Finally, the oneM2M IoT Server Platform (IN-CSE) 
propagates these data to IoT platforms using the oneM2M 
subscription/notification services. 

 
In order to establish the bidirectional communication, 

when a state change in IoT devices (i.e., actuator) is required, 
a <contentInstance> resource instance of <container> 
“Control” is created through the IPE. Then IPE maps the data 
to the NoDN data model supported by the IoT device (e.g., 
light alarm actuator) on which the action is executed.  

C. Services offered by interworking architecture 
Several services could be developed and delivered to the 

top the interworking architecture in order to solve existing 
issues in the access control, traffic and operational assistance 
scenario, including the following.  

1) Improved the access control to port facilities service 

Currently, the trucks for accessing the port must have a 
valid transport order and an appointment time. Through the 
use of proposed interworking architecture, the gateway 
automatically propagates the truck’s GPS location and the 
number plate of the truck to oneM2M IoT Server Platform. 
Thus, based on this information, the PIP is able to early check 
the validity of the transport order whereas the TIP can do a 
cross-checks to validate the appointment. Once the truck 
arrives in the port, it is identified by means of an LPR 
(number plate reader) and the port gate is activated 
automatically by the PIP, thanks to the information provided 



by the oneM2M IoT Server Platform. In the same way, when 
the truck arrives in the container terminal, the TIP allows the 
truck access to terminal facilities to deliver and/or collect 
containers.  

2) Guidance service 

Frequently, some trucks do not immediately find the right 
route to the container collection and/or delivery points. The 
haulier may resort to the GPS guidance service on his cell 
phone as a mobile application offered by the port authorities 
by sharing the truck’s GPS location through our IPE. The 
mobile application guides the truck haulier directly to the 
container or pick-up point. The transition from the terminal 
area to the port would be transparent for the user and would 
not require switching over to a different application. This 
service would be active while the truck is inside the port or 
terminal areas. 

3) Improved inspection of empty containers service 

In addition, the information sharing by the gateway 
through IPE supports a more effective and efficient inspection 
of empty containers. Trucks exit the port through the empty 
lane in case they carry an empty container. With current 
procedures, the containers are randomly selected for 
inspection. As an improvement for this process, the load 
sensor installed on the container can provide container status 
information through our IPE. Therefore, all platforms that 
register this information in their systems can receive this 
information from oneM2M IoT Server Platform. So once a 
truck arrives at the port gate in the empty lane, the TIP or PIP 
can inform to the border police whether the container should 
be checked or not.  In the case that it is not necessary, the exit 
will be automatic. 

4) Improved the Dynamic Lighting service 

Currently, the Dynamic Lighting System (DLS) [11] of 
TIP in container port terminal is capable to significantly 
reduce the luminary energy consumption an intelligent and 
efficient way at night time. Though, in the use case scenario, 
DLS requires to be aware of the GPS position of every vehicle 
in the terminal area be able to apply the low-consumption 
lighting mode. If not, the terminal area will be fully 
illuminated for security reasons. Thus, it is only active if there 
are no trucks operating in the container terminal, which is a 
rare situation. The DLS could know this information by 
sharing the truck’s GPS location through our IPE. As a result, 
the DLS can operate at its full potential, being the low-
consumption mode active the whole night time, achieving 
energy savings up to 78% (based on the initial results provided 
by the port terminal) compared to the results previous to the 
sharing of trucks’ GPS position. 

These services verify that the implementation of our 
proposed interworking architecture to the access control, 
traffic and operational assistance scenario can achieved 
several benefits including the minimization of queues and 
waiting times at the entrance of the terminal, the increase of 
control and security in the port area, the regulation of the 
traffic flows inside the terminal and the optimization of port 
operations. 

V. CONCLUSIONS AND FUTURE WORK 
The lack of interoperability between IoT devices is a 

significant barrier to the development and deployment of 
horizontal IoT solutions able to interoperate with each other. 
This paper discusses the interoperability of IoT devices and 
their integration with oneM2M system using international 
standards specifications. We have proposed and deployed an 
interworking architecture through an IPE. This architecture 
enables the interworking of different protocols and 
communication technologies, the exchange of syntactic 
information, a continuum use and sharing of data among 
heterogeneous devices.  Moreover, it can interoperate with 
external parties (e.g., IoT platforms, services, and 
applications) interested in using the information coming from 
IoT devices through the oneM2M platform as well as send 
control messages to IoT devices in a ubiquitous way. A use 
case derived from an ongoing project validates the feasibility 
of the architecture proposed that facilitates the creation of 
smart services in a real IoT scenario focused on transport and 
logistic. 
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