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Abstract—Non-linear precoding gained attention recently in
3GPP (the third generation partnership project) as a possible
technique to improve the performance of multi-user multiple
input multiple output (MIMO). In this paper, research and stan-
dardization activities related non-linear precoding for 3GPP are
described. Implementation, performance evaluation of nonlinear
precoding and analysis of 3GPP specification impact are pre-
sented in this paper. Both system and UE throughput evaluation
results, conducted at both 5GHz and 30GHz, demonstrate that
non-linear precoding yield superior performance compared to
linear precoding. In addition, two novel non-linear precoding
based transmission schemes which require lower computational
complexities than conventional non-linear precoding schemes are
proposed. The first scheme separates UEs into linearly precoded
and nonlinearly precoded UEs, reducing computational com-
plexities required by non-linear precoding. The second scheme
is a precoding scheme which intentionally introduces inter-
UE interference through linear precoding and implements non-
linear precoding to remove inter-UE interference; multi-user
diversity gain and reduction in computational complexity are
obtained simultaneously. Finally, new abstraction performance
metrics for the proposed schemes are presented. The simulation
results demonstrate that the proposed methods outperform linear
precoding techniques and offer a tradeoff between computational
complexity and throughput performance.

Index Terms—Non-linear precoding, 3GPP, 5G, NR

I. INTRODUCTION

MIMO transmission has gained considerable attention re-

cently due to its potential to increase the system throughput

dramatically [1]. In the 5G NR (New Radio) interface spec-

ification approved in June 2018, multiple antenna techniques

are included to improve spectral efficiency and coverage for

sub and over 6GHz spectrum, respectively [2]. For multi-user

multiple input multiple output (MU-MIMO), linear precod-

ing (LP) is a conventional approach to separate users spa-

tially. Among various approaches in LP, block diagonalization

(BD) is a well-known technique to create prescribed nulls

for user equipment (UE) except for the target UE in order

to mitigate inter-user interference (IUI) [3]. BD precoding

is effective in a spatially-uncorrelated scenario and simplifies

receiver designs. However, by consuming degrees of freedoms

in MIMO systems to create perfect nulls for non-target UEs, a

tradeoff between interference mitigation and achievable spatial

diversity arises. Moreover, IUI mitigation performance of LP

degrades considerably in ill-conditioned or spatially-correlated

channels, limiting achievable throughput. Such channels can

be found in crowded environment where channels seen by UEs

may overlap spatially.

With full channel state information (CSI) at the transmitter

side, a non-linear precoding (NLP) technique such asDirty-

Paper Coding (DPC) that relies on a pre-subtraction of the

non-causally known interference can achieve the maximum

sum rate of the system and provide the maximum diver-

sity order [4]. Tomlinson-Harashima Precoding (THP) [5],

[6] is a simplified and efficient version of DPC, which is

less computationally demanding and thus more attractive for

practical implementation. NLP such as THP is able to provide

a significantly enhanced system performance as compared to

LP such as BD [7], especially for correlated channels where

the subspaces of UEs are overlapped.

However, there are several technical challenges to imple-

ment NLP.

• Large array: In NR MIMO systems, both the base station

and UEs are mounted with more antennas than those in

LTE systems, especially at the base station side, where

a large antenna array is usually applied. This may lead

to a prohibitively high complexity and overwhelming

overhead to implement NLP.

• Receive demodulation: When UE has multiple antennas

and the number of antennas is usually larger than the

number of data streams, receive combining at the UE

side that maps from antennas to streams is required. NLP

leads to different reception procedures at UEs.

• CSI sensitivity: NLP is more sensitive to CSI errors

than LP, since linear precoding is based on the spatial

signal subspace calculations, whereas THP precoding is

a non-causal interference pre-subtraction scheme.

While a considerable amount of standardization work re-

lated to 5G MIMO is being conducted in 3GPP [8], [9],

outcome of discussions on NLP in 3GPP considering the pre-

viously described challenges in various 3GPP 5G scenarios is

summarized in [10]. In this paper, research and standardization

activities related NLP for 3GPP are described. Furthermore,

solutions to reduce computational complexity of NLP are

introduced. Finally, impact of NLP on the 3GPP specification

and performance evaluation results of the proposed schemes

considering CSI error are shown in this paper.
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II. NON-LINEAR PRECODING AND LINEAR PRECODING

Let us introduce a NRx,i×NTx channel matrix Hi capturing

channel coefficients between ith UE and transmitter, where

NRx,i and NTx denote the number of receive antennas for the

ith UE and transmit antennas at the base station, respectively.

We also denote the total number of receive antennas as NRx =
∑K

i=1 NRx,i.

We assume that there are K UEs in the system and 1 ≤

Nst,i ≤ NRx,i, NRx ≤ NTx , where Nst,i is the number of data

streams transmitted to the ith UE. If we denote NTx×Nst,i Bi

as the precoding matrix for the ith UEs symbols, the precoded

channel matrix can be written as follows,











H1B1 H1B2 · · · H1BK

H2B1 H2B2 · · · H2BK

...
...

. . .
...

HKB1 HKB2 · · · HKBK











. (1)

In conventional precoder designs, the LP matrices should

be designed such that null beams are created for unintended

UEs. Thus, the desired channels after precoding can be written

as follows











H1BBD,1 0 · · · 0
0 H2BBD,2 · · · 0
...

...
. . .

...

0 0 · · · HKBBD,K











, (2)

where the ith UE does not experience any interfering beams

from other UEs.

NLPis used to cancel IUI, simultaneously obtaining multi-

user diversity and received signal which is free of IUI. The

following example demonstrates how LP can be used to

introduce intentional interference to obtain MU diversity and

use NLP to resolve IUI. In the first step, LP matrix is

Inter-UE

interference 

removal

Linear decoding

Channel 

estimation

Modulo

Linear decoding

Channel 

estimation

(a) (b)

Remove 

interfernece

Linearly 

precoded 

channel 

matrix

Linear 

precoding
Linear 

precoding

Modulo

Demodulated 

symbols

Demodulated 

symbols

Transmitted 

signal

Transmitted 

signal

T
r
a
n
s
m
it
t
e
r

R
e
c
e
iv
e
r

Contains inter-

UE interference

before

modulo

Linearly 

decoded 

channel 

matrix

Linearly 

precoded 

channel matrix

Fig. 3: Comparison of data processing at both transmitter and

receiver for (a) linear precoding and (b) block triangulation

designed, or other known block triangulation (BT) techniques

are implemented, such that HiBj = 0 for i < j, which

produces the following channel matrix,










H1BBT,1 0 · · · 0
H2BBT,1 H2BBT,2 · · · 0

...
...

. . .
...

HKBBT,1 HKBBT,2 · · · HKBBT,K











. (3)

In the second step, the remaining IUI due to the non-

diagonal blocks in (3) is cancelled at the transmitter by ap-

plying NLP using a feedback filter. An illustrative comparison

between LP and NLP is shown in Figure 1. An example of a

block diagram of NLP based transmitter and receiver is shown

in Figure 2. A flowchart illustrating data processing at both

transmitter and receiver is shown in Figure 3. For BT, non-

linear precoding is implemented at the transmitter to perform

pre-cancelation of inter-UE interference. Pre-cancellation of

inteference leads to increase in peak to average power ratio

(PAPR). Thus, modulo operation is implemented to maintain

PAPR at a reasonable level. At the receiver side, UE performs

modulo operation to demodulate data symbols.

To illustrate and compare obtained signal to interference

noise ratio (SINR) between LP and NLP, heat maps are shown

in Figure 4. In Figure 4, eight UEs are placed in front of the

base station while one of the UEs is the target UE. Difference
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Fig. 4: Comparison of SINR heat map between block diagonal

precoding and block triangular precoding with THP

in the effect of precoding between LP and NLP is illustrated

by showing the acquired SINR map. From the figure, it is clear

that SINR at the target UE is higher for NLP, demonstrating

its ability to isolate the target UE and reduce IUI.

III. 3GPP SPECIFICATION IMPACT

NLP requires specific receive procedures at UEs. As usu-

ally mounted with multiple antennas, UEs should carry out

receive combining before weighting and demodulating non-

linearly precoded data. We propose two modes for the UE

reception procedure to implement receive combining. Such

receive combining is designed independent of or dependent

on the NLP procedure, according to the beamformed CSI or

the full downlink CSI. The latter can be applied to achieve a

performance enhancement.

To acquire full downlink CSI in the 3GPP framework,

sounding reference signal (SRS) supported in NR can be used

in reciprocity based CSI acquisition in TDD. In addition, Type-

II based CSI feedback using codebooks with higher resolution

or analog feedback can also be considered for CSI feedback

methods for NLP. NLP requires accurate CSI to achieve

perfect interference cancellation at the transmitter. Thus, a

mechanism such as the aforementioned techniques for the

transmitter to acquire accurate CSI in a timely manner is

needed.

NLP or LP can be switched dynamically or used jointly with

LP. Since the modulo operation is needed at the receiver for

optimal demodulation of NLP signals, the transmitter needs

to signal precoding type to UE. In terms of reference signals,

demodulation reference signal (DMRS), defined in 3GPP spec-

ification to estimate channels during demodulation, need to be

designed for NLP. For linearly precoded systems, UEs can

estimate fading channels combined with precoding matrices

since precoding matrices are transparent to UEs. Moreover,

interference from other UEs can be estimated using DMRS

assigned to different UEs. Using nonlinearly precoded signals,

estimation of the channel or interference is not straightforward.

Thus, treatment of DMRS for NLP requires careful inspection.

Mod(  )

U
s
e
r 

G
ro

u
p
in

g

s
tr

e
a
m

s

p
o
rt

s

.
.
.

group 1

group g

linear precoder

.
.
.

non-linear precoder THP

PSfrag replacements
F

FF

FB

B

Fig. 5: Block diagram of the proposed advanced NLP scheme.

One solution is to use LP and NLP for DMRS and data

transmission, respectively.

IV. ADVANCED NON-LINEAR PRECODING TECHNIQUES

A. Reduced rank precoding

Firstly, a novel precoding scheme which splits UEs into

linearly precoded UEs and non-linearly precoded UEs is

described here. In NR networks, there will be various types

of UEs, where some UEs are legacy ones and some are NLP

capable UEs. The base station should be able to accommodate

different UEs and carry out advanced precoding techniques

for a performance enhancement. To improve the system as

well as UE’s performance and meanwhile to alleviate the

complexity for large-scale antenna systems, we propose a

reduced-rank precoding technique as described in Figure 5.

It is assumed that the scheduled users are divided into several

groups. The whole precoding procedure consists of two stages.

The outer LP acts like a low-rank transformation, mapping

from antenna elements at the base station of a dimension NTx

to the sum of the antenna elements at each UE group. It

aims at mitigating inter-group interference (or decoupling),

which can be designed based on the long-term CSI, for

example, using the BD or Signal-to-Leakage-and-Interference

Ratio (SLNR) algorithm. Alternatively, the outer processing

can also be implemented by analog beamforming, where each

analog beam is directed to the corresponding group of users

and those beams are kept as separated as possible. The inner

precoding is carried out in a reduced dimension in parallel for

groups, where either LP or NLP can be applied to effectively

suppress the IUI within each group.

This proposal supports both linear and NLPfor various UEs

simultaneously as well as dynamic changes of precoding types

for UEs at different occasions. Figure 6 shows one example

of a communication network including both LP and NLP for

various types of UEs. It is a single-cell scenario, where one

base station serves 8 UEs simultaneously. At time t, UEs

marked with numbers 1 - 5 that form the group 1 are linearly

precoded and UEs with 6 - 8 in group 2 are non-linearly

precoded. At time t+∆t, UE 5 moves and gets closer to the

UEs in group 2, indicating a worse channel condition. The

base station tries to improve UE 5’s performance by NLP.



The proposed precoding technique allows the base station

to dynamically update its precoding by re-decoupling of UE

groups and to perform precoding for each group.
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Fig. 6: One example of a communication network including

both LP and NLP for two groups of UEs.

B. Block multiple diagonal precoding

The proposed precoding scheme which yields multi-user

diversity at low computational complexity is described in this

subsection. The aim is to introduce correlation among several

UEs in a group and implement NLP to eliminate inter UE

interference while maintaining low computational complexity.

Computational complexity required for interference cancella-

tion is proportional to the number of off-diagonal matrices in

the equivalent channel matrix. Assuming K is an even number,

it is clear that from (3) and (4) that there are
K(K−1)

2 and

K−1 off-diagonal matrices, respectively. Thus, computational

complexity can be reduced by K/2 fold. Through grouping,

spatial diversity gain can be obtained. In the proposed method,

namely block multiple diagonal (BMD) precoding, UEs are

grouped such that NLP is performed within the group. Let

us denote B
′
i and GS as the BMD precoding matrix for the

ith UE and number of UEs in a group, respectively. In this

paper, it is assumed that all groups contain the same number

of UEs. Then, the precoded matrix can be characterized as

HiB
′
j = 0 for i < j and for i ≥ j +GS . Detailed procedure

to generate precoding matrices is described in [11]. As an

example, the precoded channel matrix with a pair of UEs in

a group, GS = 2, can be written as follows,















H1B
′
1 0 · · · 0 0

H2B
′
1 H2B

′
2 · · · 0 0

0 H3B
′
2 · · · 0 0

...
...

. . .
... 0

0 0 · · · HKB
′
K−1 HKB

′
K















. (4)

It should be noted that assignment of UEs to groups depends

on scheduling and UEs are grouped according to the distance

between each other; UEs who are located in the similar

Azimuth direction with respect to the base station are grouped

together.

V. EVALUATION METHODOLOGIES: SYSTEM LEVEL

EVALUATION IN THE PRESENCE OF CSI IMPERFECTIONS

System level evaluations consider system parameters such

as scheduling algorithms, traffic pattern and locations of UEs

with respect to the base station [12]. To analyze system level

performance of MU-MIMO schemes, system level simulations

must be conducted. To expedite evaluation, one approach to

characterize link-level performance of a scheme is to abstract

link-level performance so that a look up table, which associates

SINR and a performance metric, can be used to assess the

performance. In the following, examples of abstraction metrics

which incorporate CSI estimation error for LP, NLP and hybrid

method are described.

A simple but accurate error model for channel estimations

is required to evaluate NLP schemes. The model that allows

expressing the channel estimation error as SINR degradation

or as an additional noise term can be considered. The per-

formance of an estimator is approximated by modelling the

channel estimation error as a modified Gaussian noise. The

erroneous channel can be written as Herr = H + ∆H ,

where ∆H is the channel estimation error added to the

perfect CSI H . The precoding matrix B is designed based

on Herr and the resulting effective channel can be written

as HB = HerrB − ∆HB. For LP such as BD, the first

term has a block diagonal structure and the error term ∆HB

causes non-zeros at off-diagonal entries. If we represent the

effective channel after decoding as Ĥ , assuming the equal

power allocation is used for transmission, the received SINR

for the l-th data stream can be approximated by

SINRl ≈

PT

r

∣

∣

∣
Ĥ(l, l)

∣

∣

∣

2

σ2
n +

PT

r

r
∑

i=1,i6=l

∣

∣

∣
Ĥ(l, i)

∣

∣

∣

2
(5)

where r, PT and σ2 are the total number of data streams,

transmission power and the noise covariance respectively. The

interference term in the denominator occurs in the presence of

channel imperfections.

For NLP with BT, by assuming that the statistics of

signals at the output of the feedback structure approximate

those of the original data except for a power loss, a similar

SINR calculation as that for LP can be derived. Given

that the feedforward filter of THP is also denoted by B =



[

B1 B2 . . . BK

]

∈ C
NTx×NRx based on the channel

matrix H =
[

H
T
1 H

T
2 . . . H

T
K

]T
∈ CNRx×NTx , the

total effective channel before receive processing H̃ = HB

becomes lower triangular as shown in (3), where the upper

triangular entries turn out to be zeros, i.e., HiBj = 0, j > i,
in the ideal case. Based on the effective channel H̃ and the

equivalent residual error term from the interference ∆H̃ after

weighting at the receiver, the SINR for the l-th data stream is

computed by

SINRl =

PT

r

∣

∣

∣
H̃(l, l)

∣

∣

∣

2

σ2
n +

PT

r

r
∑

i=l+1

∣

∣

∣
H̃(l, i)

∣

∣

∣

2

+
PT

r

l−1
∑

i=1

∣

∣

∣
∆H̃(l, i)

∣

∣

∣

2
,

(6)

where interference term occurs when channel imperfections

are present. For NLP with BMD, the following approach can

be taken to obtain the abstraction metric. Let us assume that

all UEs receive the same number of streams, i.e., Nst = Nst,i

∀i. Then, the SINR expression for the ith UE can be writte

as follows,

SINRl =

PT

r

∣

∣

∣
H̃(l, l)

∣

∣

∣

2

σ2
n +

PT

r

(

αl +
l−1
∑

i=1

∣

∣

∣
∆H̃(l, i)

∣

∣

∣

2
) , (7)

with αl =
∑l+Gst−1

i=l+1

∣

∣

∣
H̃(l, i)

∣

∣

∣

2

+
∑r

i=l+Gst

∣

∣

∣
∆H̃(l, i)

∣

∣

∣

2

and

Gst = GSNst. By observing αl, inter-stream interference and

IUI from UEs outside of the group contribute to degradation

in performance.

VI. EVALUATION RESULTS: LINK LEVEL SIMULATION

RESULTS

In this section, simulation results are presented to compare

performance of the proposed methods against conventional

methods. Performance evaluation is conducted at 5GHz and

30GHz, reflecting “FR1” an “FR2” spectrums defined for

NR [2]. Firstly, we evaluate the cell throughput and UE

throughput performance of various precoding schemes for

5GHz. The terms ’BD’ and ’THP’ correspond to the cases

when all the UEs are either linearly or non-linearly precoded,

respectively. The proposed hybrid technique is referred to

as ’THP-BD’. In the experiment we consider two groups

of UEs denoted by (X,Y ), where one with X UEs uses

LP and the other one with Y UEs applies NLP. We apply

the local area small office scenario defined in the WINNER

II channel model [13], where the base station is mounted

with 16 antennas and in total 8 UEs, each with 2 antennas.

Detailed simulation parameters can be found in Table I. In

the table, “chunk size” refers to the duration in both time and

frequency during which the same precoding matrix is used. For

30 GHz simulation, clustered delayed model (CDL)-D defined

in [14] is implemented. The channel model is modeled based

on indoor hotspot environment and characterized by its strong

line of sight (LoS) component.

TABLE I: Simulation Setup

Carrier frequency 5 GHz 30 GHz

Channel model WINNER II Local area CDL-D [14]
small office scenario[13]

Bandwidth 89 MHz 95MHz

Chunk size 8 subcarriers 12 subcarriers
15 OFDM symbols 14 OFDM symbols

Antennas at 16 ULA 16 subarrays
base station 64 elements/subarray

Antennas at UEs 2 ULA Bipolar antenna

UE velocity 3 km/h {0, 3} km/h

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cell Throughput (Gbps)

C
D

F

THP (no decoupling)

BD (no decoupling)

THP�BD (5,3)
THP�BD (4,4)

THP (no decoupling)

BD (no decoupling)

THP�BD (5,3)

THP�BD (4,4)
n� ��	 
�ror

w�t
 ��� error

Fig. 7: CDF of the cell throughput performance of the pro-

posed technique with and without CSI error.

Figures 7 and 8 depict the cumulative distribution function

(CDF) of the cell throughput as well as the UE throughput

for different precoding schemes with and without CSI error.

From Figure 7 we can observe that the ’THP’ scheme provides

the best performance under the perfect CSI condition for all

UEs, while a large performance degradation is observed in the

presence of CSI error especially for the cell-edge UEs. The

’BD’ precoding method is also affected by the CSI error, but is

not that sensitive as compared to THP. The performance of the

proposed ’THP-BD’ scheme lies between that of the standard

BD and THP methods. We consider two cases, where one

corresponds to (5,3) and the other is (4,4), indicating that for

the latter one UE has changed its precoding type from ’BD’

to ’THP’, as depicted in the scenario Figure 6. It is obvious

that the cell throughput performance improves if more UEs are

non-linearly precoded. The performance of individual UEs in

the presence of CSI error is also shown in Figure 8. It can

be observed that if all the UEs are non-linearly precoded by

’THP’, good performance can be achieved but at the expense

of a high system complexity. The UE’s performance does

not vary much for different UE conditions if LP ’BD’ is

used. For the proposed scheme, the UE who has changes

its precoding type (with the star marker) obtains a great

performance enhancement.
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Fig. 9: Location of UEs and base station for 30GHz evaluation

In the following, throughput evaluation assumptions and

evaluation results for 30GHz are shown. The evaluation pa-

rameters are shown in Table I. Due to sensitivity of UE

locations and height of base station on simulation results at

30GHz, detailed parameters of the simulated environment are

illustrated in Figure 9. In addition, performance of LP and

NLP are evaluated with two different densities of UEs. Both

dense and sparse UE densities, illustrated in Figure 10, are

used in the evaluation. CDF of the cell and UE throughput

are shown in Figure 11 and 12, respectively. The performance

curve labeled “BMD” indicates the performance of BMD

when NLP is implemented to cancel IUI among the grouped

UEs. The performance curve labeled “THP-BD (4,4)” indi-

cates the performance of the hybrid scheme in which 8 UEs

are split into two groups and THP and BD are implemented

separately. A random scheduling algorithm was implemented

to separate UEs into two groups. From the figures, it is clear

that THP yields the best throughput performance compared

to BD or BMD. Thanks to the diversity gain obtained from
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Fig. 10: Dense and sparse UE placement for 30GHz evaluation

grouping UEs and use of THP, BMD yields better performance

compared to BD. It is also noticeable that the performance gap

between BMD and hybrid scheme is small. It is also clear

from the figures that CSI error degrade performance of both

LP and NLP based methods. Finally, effect of density of UEs

is evaluated in the simulation. In the sparse condition, due

to insignificant amount of IUI, better throughput performance

can be obtained for all schemes. It is also noticeable that the

performance difference among various methods is small. In the

dense environment, due to severe IUI among UEs, throughput

performance degrades. However, using THP, BMD or hybrid

method, IUI can be removed and throughput performance can

be improved, compared to BD.

Finally, tradeoff between computational complexity and

system throughput performance is illustrated in Figure 13

for CDF=20% and CDF=90%. Computational complexity is

estimated by the number of off-diagonal matrices in the

precoded channel matrix. The system throughput in Figure 13

is obtained when UEs are stationary and placement of UE is

dense, as illustrated in Figure 10. In addition, it is assumed

that ideal channel estimates are available at UEs. It is clear

from the figure that while the best throughput performance

can be obtained by THP at the expense of complexity, both

hybrid method and BMD offer tradeoff between computational

complexity and system throughput.

VII. CONCLUSION

Performance evaluations of various NLP schemes and effect

of channel estimation error are investigated in this paper.

NLP schemes with lower computational complexity are pro-

posed and performance metrics that can be used for ab-

straction for system level simulations are introduced in the

paper. In addition, specification impacts created by NLP on

3GPP specifications are explained. From the evaluation results,

NLP based method yield better performance at both 5GHz

and 30GHz. Moreover, the proposed methods, which offer a

tradeoff between performance and computational complexity,

yield comparable throughput performance to THP schemes.

The proposed techniques combined with rate splitting tech-

niques [15] can be investigated in the future for further per-



Fig. 11: CDF of the cell throughput of BD, THP, BMD and

hybrid scheme with and without CSI error for different UE

densities at 30GHz

Fig. 12: CDF of the UE throughput of BD, THP, BMD and

hybrid scheme with and without CSI error for different UE

densities at 30GHz

formance improvement. The technical proposals, SINR based

metric for system level performance evaluation and discussions

on specification impact in 3GPP presented in this paper will

hopefully motivate investigations of applicability of NLP for

5G NR and create new areas for technical proposals.
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