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Abstract— Deep learning enabled by neural networks has been 

proven to be an effective Artificial Intelligence (AI) algorithm in 

sophisticated applications. The algorithm is normally divided into 

two phases: learning phase and inference phase. In this research, 

we assume the learning phase is already accomplished offline and 

focus on expediting the inference phase by replacing the 

centralized processing of Cloud with the distributed processing of 

Fog.  In our approach, inference algorithms in AI are distributed 

to multiple layers of Fog networking, constructed from oneM2M 

Middle Nodes.  We verify the performance improvement of our 

proposed distributed AI/Fog system by comparing it against a 

Cloud-centric system based on a use case of smart shopping mall. 

Keywords—Artificial Intelligence, Fog computing, IoT platform, 

oneM2M. 

I. Introduction 

Deep learning enabled by neural networks has been proven 
to be an effective Artificial Intelligence (AI) algorithm in 
sophisticated applications. Such an algorithm is normally 
divided into two phases: learning phase and inference phase. 
The wide deployment of IoT devices has enriched the input data 
required for the training phase.  Once well-trained, during the 
inference phase the algorithms with the populated knowledge 
then can be applied for sophisticated applications such as 
speech and image recognition. 

 Such an AI system normally resides in the Cloud. This 
implies a large amount of sensing data need be transferred to 
the cloud for both learning and inference phases.  This not only 
introduces significant delay in the response time of the AI 
system but also creates serious bandwidth shortage in the 
networks.  Taking smart surveillance in a shopping mall as an 
example, there are many floors of large areas need to be 
monitored. As a result, thousands of smart cameras will be 
deployed in the shopping mall. Sending these data to a 
centralized server in the cloud will become infeasible [1]. Even 
if the problem of data transfer is solved, there will still be 
difficulty in processing image recognition in a reasonable time 
due to the large amount of data and the centralization of 
processing units. 

In this research, we assume the learning phase is already 
accomplished offline and focus on expediting the inference 
phase by replacing the centralized processing of Cloud with the 
distributed processing of Fog.  In our architecture, inference 
algorithms in AI are distributed to multiple layers of Fog 

networking, constructed from oneM2M Middle Nodes [2].  The 
term, ‘Distributed Artificial Intelligence’ is widely used in 
literature recently [3][4], but this term does not have an official 
definition.  In our definition, we emphasize on the following 
key characteristics. 

•  Geographic distribution of computation resources 

•  Concurrent processing by independent nodes 

The rest of the paper is organized as follows.  In Section II, 
we will give a survey of related work and point out our unique 
contribution. In Section III, we will explain the high-level 
design of our proposed system and how it can be adopted to 
real-world use cases. Section IV then shows the implementation 
of our proposed system on a shopping mall use case. In Section 
V, the results of system evaluation will be presented.  Finally, 
Section VI gives our conclusion and discusses future work. 

II. Related Work 

How to train a high accuracy model and how to use the 
model for inference over distributed architecture are two 
important research topics in AI. As a result, we categorize our 
survey into these two areas. 

A. Learning over Distributed Architecture 

 In this research area, there are many papers [5][6] proposing 
different ways to coordinate heterogeneous devices to perform 
training and combine results. In particular, [7] and [8] present 
the methods for training machine learning models in a 
distributed system; they implement and test their solutions with 
real data in order to compare its accuracy against that of a 
centralized system. Although our system is focused on the 
inference phase, these papers provide good inspiration for our 
research. 

B. Inference over Distributed Architecture 

 With the emergence of IoT, many large-scale applications 
such as smart city [9][10], smart farming [10], are introduced. 
Inside many of these IoT systems, AI algorithms are widely 
used. For example, [11] introduced hierarchical Fog Computing 
architecture for big data analysis in which a large-scale smart 
city use case is mapped into this architecture for performing big 
data analysis to identify hazardous events. Also in [12], neural 
networks are used for image processing to detect plant disease 
and fruit grading in smart farming. 



 As mentioned before, we focus on expediting the inference 
phase. To achieve our objective, we explore the approach of 
inference over distributed architecture. Our approach is 
characterized by the following unique features: (1) we replace 
the centralized processing of Cloud with the distributed 
processing of Fog, (2) we use standardized IoT platform, 
oneM2M, as the communications middleware between 
different layers of Fog nodes, (3) we adopt DNN (Deep Neural 
Network)  as our inference engine and (4) we solve the problem 
of transferring large data between different layers of Fog 
architecture. 

III. Proposed System Architecture  

 In this section, we explain the high-level design of our 
system including its functions and workflows. The functional 
architecture of the system is shown in Figure 1 where all the 
components required to construct an AI inference engine over 
distributed architecture are illustrated. This is a Fog distributed 
system of hierarchical architecture onto which a large-scale 
application can be decomposed and deployed. Starting from the 
bottom is Sensor Layer that collects the sensing data. Then each 
of lower layers in turn would produce data for the next higher 
layer until it reaches Cloud Layer.  

A. Layer-by-layer Explanation 

 Our system consists of three layers: Sensor Layer, Fog 
Layer, Cloud Layer and Actuator Layer. 

1) Sensor Layer 

 This is where the sensing data come from. Various types of 
sensors can be deployed in this layer. The system supports not 
only the sensors that generate simple raw data but also the ones 
that generate large data like videos and images. The task in this 
layer is just collecting and sending the data. Any further 
processing will be performed in the higher layers. 

2) Fog Layer 

 This is where the ‘edge intelligence’ resides. Fog Layer 
receives the input data from Sensor Layer and performs 
‘intelligent’ inference to produce useful insights. The tasks of 
the Fog nodes in this layer may include data preprocessing, 
feature extraction, knowledge inference or other AI algorithms. 
As a result, the Fog nodes deployed at this layer should be 
general-purpose and capable of performing any tasks 
mentioned above.  

 All these Fog nodes are architected in a hierarchical fashion 
as illustrated in Figure 1.  The standardized IoT platform, 
oneM2M [2], is used as the communications middleware 
between the successive levels of Fog nodes. They may consist 
of several levels depending on the requirements of use cases. 
For example, if the data in the use case require three different 
steps of processing, we can use three-level architecture. With 
Fog Layer, we can filter out lots of useless data and save 
significant network bandwidth by sending only a small amount 
of useful data to Cloud Layer.  

3) Cloud Layer 

 Depending on the use case, Cloud Layer would execute 
different AI algorithms for action decision. For instance, if the 
disease detection in smart farming is positive, the application in 
the cloud should decide how to react to this situation. It can 
either dispatch the cure or just send an alert to the farmer.  

4) Actuator Layer  

 The actuators in this layer receive the commands or data 
from Cloud Layer and carry out the actions. Note that the nodes 
at this layer normally do not perform any analysis. Some 
examples are shown in Figure 1 including a monitor to display 
the advertisement, a vehicle or robot to execute the command, 
or an alarm that simply plays the siren. 

 In Section IV, we will introduce a use case implementation 
of smart shopping mall to demonstrate the flexibility and 
generality of our design.  It illustrates how a real-world use case 
can be mapped to our proposed system architecture. 

B. Inter-Layer Communications 

 To add a hierarchical system of Fog nodes between IoT 
devices and the Cloud, a middleware is required to support 
connectivity and communications among these nodes. We 
propose to use the standardized IoT platform, oneM2M [2], as 
the middleware. There are several open source implementations 
of oneM2M and we have chosen OM2M [13], developed by 
LAAS-CNRS, in our initial trial. Though OM2M is not 
designed for efficiently handling big data such as images or 
videos, we alleviate this problem by designing an enhanced 
communication mechanism over OM2M. 

 In our design, each Fog node is constructed as an oneM2M 
Middle Node – Common Service Entity (MN-CSE) as shown 
in Figure 3. Then the AI inference engine is deployed as an 
Application Entity (named AI-AE) on top of MN-CSE for 
distributed task allocation. For example, the first level of Fog 
nodes can be used for data preprocessing and feature extraction 
from the raw data collected at the sensor layer (marked as “A”). 
The second level of Fog nodes then takes the input from the 
first level of Fog nodes (marked as “B”) and performs further 
inference based on DNN models already trained. Then, the 
inference result of distributed Fog computing will be sent to the 
Cloud (marked as “C”).   Finally, the last of inference 
algorithms will be carried out by the Cloud in order to generate 
the decision commands to the actuator layer (marked as “D”). 

 In oneM2M, each MN-CSE can maintain its own resource‐
based information model called Resource Tree. Figure 4 shows 
an example of such resource trees maintained in MN-CSE. 
Each resource has its own Resource Type which represents the 

 
Figure 1. Proposed System Architecture 



semantics of the resource. Whenever information is to be saved 
in oneM2M, it will be treated as “resource” and maintained in 
the resource tree. To manipulate resources, oneM2M provides 
Restful API to perform Create, Read, Update, Delete, Subscribe 
and Notify.  

 Here we explain some of the most important Resource Type 
shown in Figure 4.  

1) <CSE-ID> 

 This is the ID of the MN-CSE or IN-CSE which the current 
MN-CSE registers to. In oneM2M, it is necessary to perform 
registration during the initialization phase of an MN-CSE. 

2) <AE> 

 Basically, AE is the resource for the application that is 
managed by the current MN-CSE. For example, in Smart 
Home, there are many different services running in a house 
such as air conditioner control, smart light control. These 
services will register to MN-CSE as an AE. 

3) <Container> 

 It is the resource maintaining multiple instances of real data. 
However, it can have more information than the raw data from 
sensors. For example, to provide automatic air conditioner 
control at Smart Home we not only keep track of temperature 
and humidity from sensors but also people count and other 
useful information. These data will be maintained in different 
Containers. 

4) <contentInstance> 

 This is the resource that stores a single instance of real data 
like “30 degree Celsius”. It is created as a sub-resource of 
Container. 

5) <Subscription> 

 The <Subscription> resource is the key mechanism in 
oneM2M that enables inter-node communications in our 
system. Creating this resource as a child under a parent resource 
means to subscribe to any update in the parent source.  Once a 
resource is subscribed, oneM2M will monitor the status of the 
resource and notify the subscribed AE whenever there is any 
new update to the resource. We make heavy use of this 
oneM2M subscription and notification mechanism for inter-

Fog nodes communications [14]. With this mechanism, data 
transmission among different levels of Fog nodes and between 
Fog nodes and the Cloud can be easily achieved. 

 Although our adopted oneM2M open source 
implementation, OM2M, can manage the resources in small 
scale without problems, it lacks the capability of dealing with 
large data files such as videos. We thus design an enhanced 
communication mechanism based on Secure Copy Protocol 
(SCP) for data transfer. In this design, the information stored in 
oneM2M container/contentInstance has become the path of the 
large data file.  A subscriber will receive the notification that 
contains only path information, but with this path information 
a subscriber will be able to set up an SCP connection and 
retrieve the actual transfer data. 

IV. Use Case Implementation 

We have implemented our system architecture described in 
Section III by applying it for a smart shopping mall use case. In 
this use case, the system objective is to increase the 
effectiveness of advertisement broadcasting in a shopping mall 
by estimating the distribution of age/gender for the incoming 
customers in each area and each floor of the mall.  Here we 
assume a shopping mall with multiple floors and each floor with 
many stores; cameras are deployed in front of every store to 
capture customers’ videos. Also, electronic billboards are 
placed on each floor of the mall to display advertisements. 
These advertisements will change dynamically according to the 
age/gender distribution of the customers. We assume the 
association between advertisement and age/gender has been 
established before system operations. 

For this use case, two levels of Fog nodes in a hierarchical 
structure are constructed between Sensor Layer and Cloud 
Layer.  The first level of Fog nodes is used to detect and retrieve 
the faces of customers from the video files collected by the 
cameras. The second level of Fog nodes then take the face 
inputs from the first level of Fog nodes and perform analysis 
based on Deep Neural Network (DNN) models to decide ages 
and genders of customers. The deployment of the Fog nodes 
can be quite flexible. For example, we can deploy the Fog nodes 
based on the layout of shopping mall. If the shopping mall has 
multiple floors and each floor has multiple areas, one first-level 
Fog node can be deployed in each area and one second-level 
Fog node can be deployed on each floor. Also, depending on 
the business nature of the area, more Fog nodes can be deployed  
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there to deal with unusual situations such as in the area of food 
court where it often attracts more crowd.  

After   finding   out    the   ages/genders of the customers, 
this information will be sent to Cloud Layer for further analysis 
in order to decide the best advertisement for Actuator Layer. 
The high-level system architecture is shown in Figure 2. To 
explain the data flow within the system more clearly, we will 
go through the lifecycle of data (video) in the following 
subsections. 

A. Video to Face 

In our experiment, the cameras are simulated by webcams 
on the laptops. As such, the captured video is saved in a file on 
the laptop directly. The paths of those files will be stored by the 
camera application in the resource tree of the MN-CSE on the 
laptop that captured the video.  The first level of Fog nodes will 
subscribe to the containers designed to keep the paths of these 
video files. Thus they will be notified about the availability of 
video files (in terms of path names) on the resource tree.  
Whenever this happens, the first level of Fog nodes will follow 
these paths to retrieve the video files via SCP, perform face 
detection and extract face information. In our implementation, 
we utilize “OpenCV”[15] to detect the faces from videos and 
‘pickle’[16] to convert the face data for storage and 
transmission.  By extracting only the relevant data from these 
large video files, the first level of Fog nodes would filter out 
useless data in the initial video files and reduce the amount of 
data to be transferred to the next level of Fog nodes.  After the 
faces in each video frame are found, they will be cut out and 
saved into a separate file.  The paths of these face files will 
again be saved in the local containers that have been subscribed 
by the Fog nodes in the second level.  

B. Face to Age/Gender 

The second level of Fog nodes will be notified about the 
availability of face data stored in the resource tree of the first 
level of Fog Node. They will retrieve the paths of these face 
files, follow these paths to retrieve the files and perform 
age/gender detection by analyzing the data in these files.  Here 
the Fog nodes will use a pre-trained DNN model to estimate the 
ages and genders of the given faces. The neural network we use 
is WideResNet trained by [17]. The DNN libraries we use is 
‘Keras’[18] based on ‘TensorFlow’[19] and ‘Theano’[20]. The 
environment is installed, configured and tested on Ubuntu 
16.04 and macOS 10.13. After the processing, all the ages and 

genders of the faces will be saved on the local resource tree 
that is subscribed by Cloud Layer.  

C. Age/Gender to Advertisement 

The age and gender data will be used by the Cloud. When 
this data is ready, the Cloud will receive the notification with 
age and gender data; then the Advertisement AE will perform 
analysis to find out the majority of the customers in terms of 
age and gender. In our experiment, we divide the ages from 10 
to 70 into 12 groups for each gender and map these to 24 
advertisements with one for each group. With this mechanism, 
the most effective advertisement that target at the specific age 
and gender can be chosen for display to maximize the 
efficiency and accuracy of the advertisement.  

D. Advertisement Display 

In our implementation, we design an electronic billboard 

application to complete our use case. This electronic billboard 

will receive the analysis result from the Cloud via a TCP 

connection and display the best suited advertisement to 

encourage the customer to buy. In a shopping mall, the 

electronic billboards can be placed in strategic locations such 

as at the entrance or in the customer help desk area to display 

special promotion advertisement. In addition, to achieve 

effective promotion, we have to constantly track the change of 

customer composition and update the advertisement 

dynamically as needed. 

V. System Evaluation 

To verify the efficiency of our proposed system vs. that of 

the traditional cloud-centric system, we define three evaluation 

metrics: amount of data transferred, length of execution time 

for face/age/gender determination, and length of end-to-end 

response time. These three metrics are chosen due to the 

following considerations: First, the amount of data transferred 

is the major problem we want to solve to prevent network 

congestion as mentioned from the very beginning. Second, one 

of the biggest differences between the centralized and the 

distributed systems is how a task is separated into several 

subtasks. As a result, the execution time of these tasks plays an 

important factor as we compare two systems. Third, in our 

proposed system, we add Fog Layer between end-devices and 

Cloud Layer. With this design, the generated data can be 

processed immediately without traveling far to the cloud. 

Consequently, the length of end-to-end response time is also 

used as one of the metrics for comparison. 

The computer environment used for centralized and 

distributed system testing is shown in Table 1.  To ease our 

testing procedure, we have sampled six short videos of various 

people walking flows with each lasting 5-10 seconds as our 

testing data. Each video has different characteristics that can 

simulate diverse environments in a shopping mall. We separate 

these videos into three categories which are corridor, shopping 

area, and food court. The sampled videos contain various 

mixtures of people with different ages and genders. As a result, 

we can simulate various distributions of age and gender in 

different areas of a  shopping  mall  and  test  the  capability  of  
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displaying the advertisements dynamically depending on the 

age/gender distribution.  

 
A. Amount of Data Transfer 

In our distributed system there are two additional levels of 
Fog nodes between end devices and the cloud. The first level of 
Fog nodes will perform face extraction while the second level 
of Fog nodes will analyze the faces using a pre-trained DNN 
model to estimate their ages and genders. After being processed 
by these two levels of Fog nodes, the original large video file 
would eventually be reduced to a short string (e.g. <32, Male>, 
<45, Female>).  Figure 5 illustrates how much data transfer is 
reduced after being processed by each level of Fog Nodes. The 
size of video file, 5500 KBs, is the amount of data to be 
transferred from Sensor Layer to Cloud Layer in a cloud-centric 
system. However, in our proposed system, the results show that 
the first level of Fog nodes is able to reduce about 50% of total 
data amount while the second level of Fog nodes can reduce up 
to 99.9997% of total data amount.  This truly demonstrates a 
great saving on network resources by a Fog system.  

B. Execution Time for Face/Age/Gender Determination 

In a Fog distributed system the program execution flow is 
separated into two phases (face detection and age/gender 
estimation).  Hence, the execution time has to be calculated for 
each phase individually; then two results would be summed up 
to derive the total execution time. 

Figure 7 shows a comparison of the execution time between 
the centralized system and the distributed system for one video 
file processing. As we can see from the result, the performance 

of the centralized system is slightly better than that of the 
distributed system due to the better computational resources of 
the centralized system. Nevertheless, the difference is only 
three percent, indicating that the distributed Fog system is a 
viable choice even for the extreme case of processing one video 
file.  

In the case of processing multiple video streams, the Fog 
architecture will exhibit much better execution time by utilizing 
parallel computation enabled by multiple Fog nodes at the same 
level.   

C. End-to-End Response Time 

 One of the major differences between Cloud and Fog 
Computing is where the sensor data will be processed.  In the 
Cloud architecture, the data need to be sent a long way to Cloud 
for processing. In Fog Computing, Fog nodes are deployed 
much closer to Sensor Layer, so the network condition is much 
more stable compared to the centralized architecture. During 
the preprocessing executed on Fog nodes, the input data will 
become smaller when they are sent to the higher layer of Fog 
nodes. As a result, the large data on lower layer will be sent 
through the stable network while only a small amount of data 
will be transferred from Fog Layer to Cloud Layer as we 
showed in Section V-(A). 

 In our testbed, we use Wi-Fi to connect the devices. To 
simulate the difference between the centralized system and the 
distributed system, we weaken Wi-Fi signals to slow down the 
transmission speed to simulate the long haul communication 
between Fog and Cloud but use normal signal strength to 
simulate the short distance communication among Fog nodes 
and between devices and Fog nodes. In our experiment, we are 
able to simulate the normal speed at 5.3MBps and the lower 
speed at 0.67MBps. With the results shown in Section V-(A), 
we can estimate the end-to-end response time of centralized and 
distributed system.  In the centralized system, video files are 
directly sent from Sensor Layer to Cloud Layer, so the 
estimated transmission time will be the size of video file 
divided by transmission speed. The result is 8.209 seconds. In 
the distributed system, the video files need to go through Sensor  

  
Figure 7. Execution Time of Centralized vs. Distributed System 

 
 

Figure 8. Data Size Transferred between each Layer 

 

Table 2. Tested Environment 

 
Operating 

system 
CPU RAM GPU 

Centralized 

System 
macOS 10.31 

Intel(R) 

Core(TM) i5-

6360U CPU @ 

2.00GHz 

8192 MB 

Intel Iris 

Graphics 

540 1536 

MB 

Distributed 

System 
Ubuntu 16.04 

Intel(R) 

Core(TM) i5-

6360U CPU @ 

2.00GHz 

4096 MB Disabled 

 



Layer, two levels of Fog nodes, and Cloud Layer. However, the 
size of age/gender data is less than 0.01 KB, so we can ignore 
the data transmission time between second level of Fog nodes 
and Cloud Layer. Consequently, total data transmission time in 
our implementation will become the sum of the time to transmit 
video and face files. The final result will be 1.585 seconds 
which is 80.67% less than centralized system. This experiment 
demonstrates the benefits of data preprocessing and close 
proximity of fog networking. 

 Combining the results of execution time and end-to-end 
data transmission time, we can estimate the total response time 
which is the time required to make the input (video file) become 
the output (age/gender). The result is shown in Figure 9. In our 
testbed, the total response time of the centralized system is 
9.219 seconds while that of the distributed system is 2.615 
seconds which is 71.63% reduced. We thus believe the 
distributed system is a viable solution in implementing large 
scale use cases. 

VI. Conclusion and Future work 

In this paper, we introduced a distributed AI system enabled 
by oneM2M and Fog Networking.  We discussed the 
construction of a hierarchical structure of Fog nodes between 
the Cloud and end devices by utilizing oneM2M as the 
communication middleware.  Then we showed how AI 
inference algorithms can be distributed among Fog nodes to 
enable efficient IoT applications. We designed and tested our 
system using a use case of “smart shopping mall” where the 
ages and genders of visiting customers will be collected and 
analyzed in order to deliver the most effective advertisements.  
Our evaluation showed that this Fog-based AI system can solve 
several common problems such as lack of network and compute 
resources. In addition, the use of IoT platform, oneM2M, 
greatly enhanced the capability of connecting multiple level of 
Fogs and Cloud into a coherent system in a large-scale use case 
[21]. 

 We believe our system design is general and flexible 
enough that it can be applied to many other use case scenarios. 
In the future, we plan to extend our proposed system to support 
the capability of distributed learning [22] and combine it with 
the capability of distributed inference discussed in this paper. 
Another potential improvement is to run our experiments with 
real-time video streaming than pre-stored video clips. Also, we 
believe it is worthwhile to explore the separation of neural 

networks inside our proposed system such that different parts 
of the neural networks can be executed on multiple Fog nodes 
in parallel in order to further increase execution speed. 
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