
Applying a Service-Based Architecture design style

to Network Functions Virtualization

Bruno Chatras

Orange Labs Networks

ORANGE

Châtillon, France

bruno.chatras@orange.com

Abstract— This article presents a proposed an evolution of the

Network Functions Virtualization (NFV) architectural

framework towards a Service-Based Architecture (SBA), where

management and orchestration services can be dynamically

registered and discovered.

Keywords—NFV, orchestration, service-based architectures

I. INTRODUCTION

After “network slicing”, the term Service-Based
Architecture (SBA) is about to become the next telecom
buzzword following 3GPP’s decision to apply an SBA
approach for designing the control plane of the 5G core
network [1]. SBA is an architectural style that places emphasis
on the services provided by individual architectural
components rather than on the relationships between pre-
defined pairs of architectural components. SBA is expected to
enable flexible and rapid development and deployment of 5G
services, as it becomes possible for a new architectural
component to connect to existing components without
introducing specific new reference points. Network Functions
Virtualization (NFV) is one of the key technologies
underpinning the transformation of Telecom networks. NFV is
regarded as a powerful means to simplify deployment and
operation of network services, which will also apply to the
deployment and operation of 5G network slices, for instance.
At the heart of an NFV system is a set of management and
orchestration functions, which itself could benefit from an SBA
approach to enable flexible development and deployment of
orchestration and management services.

Section II provides a short reminder about the NFV
architectural framework. Section III discusses the properties of
the SBA design style. Section IV describes several
transformation steps that can be applied to the NFV
architectural framework to leverage the SBA properties. It
should be observed that the application of an SBA approach to
the design of the NFV network services themselves is outside
the scope of this paper.

II. THE NFV ARCHITECTURAL FRAMEWORK

NFV refers to a transformation of the telecom industry,
where network functions traditionally hosted on bespoke
dedicated servers are moved to pools of standard industry
servers. NFV is a paradigm shift in network management,

towards a cloud model with automated deployment and
management capabilities. The NFV architectural framework
[2] developed by the European Telecommunications Standards
Institute (ETSI) identifies the key architectural components of
an NFV system. Virtualized Network Functions (VNF) are
deployed and executed on a distributed cloud infrastructure
known as the NFV infrastructure (NFVI). The deployment,
execution, and operation of VNFs and network services (NS) in
an NFVI are steered by a management and orchestration (NFV-
MANO) sub-system.

The NFV-MANO sub-system comprises three functional
blocks. The NFV orchestrator (NFVO) is the entry point for
other operations support systems (OSS) and business support
systems (BSS) deployed by network operators. The NFVO’s
main responsibility is the management of the lifecycle of NS
instances and the enforcement of the operator’s resource
management policies. The management of the lifecycle of VNF
instances constituting an NS instance is delegated by the
NFVO to one more or VNF managers (VNFMs). Both the
NFVO and the VNFMs use the services exposed by one or
more virtualized infrastructure managers (VIM) for allocating
NFVI compute, storage and network resources to the objects
they manage.

Fig. 1. NFV architectural framework

Fig. 1 depicts the ETSI architectural framework and
identifies the main reference points between architectural
components. ETSI provides REST API specifications for three

of these reference points: Os-Ma-nfvo between the NFVO and
the OSS, Or-Vnfm between an NFVO and a VNFM, Ve-Vnfm
between a VNFM and a VNF or an associated element
manager (EM). There are no ETSI standards that describe the
APIs exposed by a VIM on the reference point to an NFVO
(Or-Vi) and the reference point to a VNFM (Vi-Vnfm).
However, de-facto industry standards (e.g. OpenStack APIs)
are commonly used. Fig 1 also shows the list of APIs exposed
by the main functional blocks and thus the services they
provide. The specifications of these APIs are currently tied to
the reference point concept, a reference point representing the
association between two MANO functional blocks. ETSI
publishes a set of deliverables known as Group Specification
(GS), each covering the scope of one reference point. For
example, ETSI GS NFV-SOL 005 [3] specifies all APIs
exposed by an NFVO towards the OSS.

III. SERVICE-BASED ARCHITECTURES

There is no formal definition of what SBA really means. In
the technical literature, the definition actually varies according
to the authors. In some cases, SBA is used as a portmanteau
word encompassing Service Oriented Architectures (SOA),
Resource-Oriented Architectures (ROA), Microservices
architectures and other Component-Based Software
Engineering (CBSE) variants. In other cases it is regarded as a
way of combining the best of both SOA (service registration
and discovery) and ROA (RESTful design). Sometimes, SBA
is also pitched as a middle ground between SOA and
Microservices [4].

When it comes to applying the SBA style to network
standards, the most noticeable difference with a conventional
approach is the way interactions between functional blocks are
specified. As already alluded to when introducing the NFV
architectural framework, a conventional approach is centered
on the specification of information flows between specific pairs
of functional blocks. With SBA, every functional block
provides one or more services that can be consumed by any
other functional block and the information flows for consuming
these services are specified independently of the actual
consumer functional blocks. With an SBA design, the focus is
on the services provided by the functional blocks rather than on
specifying reference points between them. All functional
blocks can communicate with each other as if they were
connected to a shared Enterprise Service Bus (ESB) as shown
in Fig. 2. One functional block can use the services provided
by the other functional blocks, like in software development a
main program can call external functions through an API. By
analogy, functional blocks in an SBA are said to communicate
through APIs, which in practical terms often means they
communicate using the Hypertext Transfer Protocol (HTTP)
according to a REST pattern.

Fig. 2. From conventional architecture design to SBA

Two additional characteristics are typically associated to an
SBA design and are leveraged by 3GPP as well: dynamic
service registration and discovery, and the use of a common
data storage service. Dynamic registration and discovery relies
on a registry where all service instances available in a
functional block are registered and can be discovered by other
service instances in the same or different functional blocks (See
Fig. 3). When a functional block instance is deployed, the
services it provides and the mechanisms to invoke them are
registered. Similarly if a functional block instance is removed
from the network, the corresponding entries are deleted from
the registry. A functional block that requires a particular
service can then discover and select a functional block instance
that provides this service.

Fig. 3. SBA Registration and Discovery

SBA, as a design style, does not require a common data
storage approach but goes well with it. Some functional blocks
on the “service bus” can expose a data storage service that
other services can use to store any kind of data, including state
information. Separation between processing and data means
that all data used by the services are stored in logically
centralized data repositories, which in some way makes these
services stateless, although they might store state information
in these external repositories. This is intended to increase
resilience of the overall system and facilitate data sharing
across multiple services.

The “service bus” interconnecting the functional blocks and
the services they provide is an evocative expression, used in
analogy with a computer hardware bus. SBA does not mandate
a particular type of communication bus. In a rather primitive
form, the communication services provided by the bus can be
limited to basic IP routing (e.g. when the communication bus is
implemented as a layer 3 VPN overlaid on the network of a
data center). In such cases a functional block willing to
consume a service must have the processing logic to discover
and select a functional block instance providing this service.
This typically involves retrieving a list of candidate instances
and selecting one of them according to a load balancing
algorithm and querying the Domain Name Service (DNS) to
determine its IP address. More advanced forms of the service
bus can reduce complexity at the client side, by providing
application-layer message routing or by distributing messages
according to a publish/subscribe pattern. The aforementioned
registry functionality is then embedded together with the
communication service, in the service bus functionality;
thereby enabling client functional blocks to offload the
selection of a target service instance and the determination of

its IP address. Advanced communication buses may even
provide fast failover functionality and message transformation
capabilities to enable connecting non-compatible clients and
servers.

IV. SBA APPLIED TO NFV

NFV-MANO, the subsystem of the NFV architectural
framework in charge of management and orchestration
functions, is likely to be a good candidate to undergo an SBA
transformation. NFV-MANO functional blocks provide
management and orchestration services, each of which is
already exposed through a dedicated REST API/interface.
Moreover, the granularity of an NFV-MANO service sounds
compatible with the spirit of an SBA design. For example, an
NFVO provides services such as VNF package management or
network service lifecycle management (LCM), network service
performance management, etc. Several incremental steps can
be envisioned to transform NFV-MANO into an SBA.

A. Initial Step

The first step towards SBA would merely be a re-
documentation exercise, consisting in decoupling the
specification of APIs from the concept of reference point. In
other words, APIs would be specified from the point of view of
the API producer only. The scope of an ETSI GS would no
longer be a reference point but a single API/service or a set of
API/services produced by the same functional block. This
would not prevent these specifications to include appropriate
provisions to describe consumer-dependent specifics (e.g. a
while the VNF lifecycle management API exposed by a VNFM
can be consumed by an NFVO or a VNF, a VNF cannot use
the API to create itself). Although not part of NFV-MANO,
the Software-Defined Networking (SDN) controllers deployed
in an NFVI could also be integrated into the SBA approach.
This would enable any NFV-MANO functional block (i.e. not
just the VIM), the OSS and some VNFs to access the services
they provide to steer the traffic according to application-
specific needs. In line with the SBA design style, the full set of
functional blocks would appear as if they were all connected to
a single service bus (See Fig. 4). As a side note, it should be
observed that while SBA enables any functional block to
communicate with any other one, there is no implication that
any functional block is authorized to invoke any service
provided by any other functional block. The API framework
for NFV-MANO already incorporates role-based authorization
mechanism, where every client is associated to a role verified
at authentication time. This role determines what a particular
client is allowed to do.

Fig. 4. An SBA view of the NFV Architectural Framework

This transformation would not bring any new management
feature to NFV but would be a first step towards a fully-
fledged SBA approach, as well as a means to clarify to the
industry that ETSI NFV API specifications can adapt to
various architectural changes. For example, an SBA approach
would facilitate extending the NFV architectural framework
with a security orchestrator [5] that would be able to interact
with all other functional blocks via the “service bus”.

B. Dynamic Registration and Discovery

Another step towards an SBA approach consists in enabling
dynamic registration and discovery of instances of NFV-
MANO functional blocks and of the services they provide. As
already alluded to, this would require a registry to be added to
the management service bus (See Fig. 5). New NFV-MANO
functional block instances would be registered once created
and deregistered before being taken out of service. Various
communication modes can be envisioned with the registry,
including query/response and subscribe/notify. NFV-MANO
and other OSS functional block instances would then be able to
discover other instances they need to interact with.

Registry entries would typically contain a description of the
APIs / services exposed by these functional blocks, including
for each service a description of the means to invoke them (e.g.
an HTTP URI in case of a REST API), a list of supported
versions and where it makes sense a list of supported features.
For example, by interacting with the registry, an NFVO would
then be able to select a VNFM that provides the services and
the features it needs to manage a particular VNF, or to select a
VNFM that supports the direct or indirect mode of
communication with the VIM, depending on its own
preferences.

Fig. 5. Dynamic Discovery of NFV-MANO functional blocks

A variant of the above design would consist in offloading
the discovery of network functions and services to the service
bus. For example, with such an approach, an NFVO would no
longer select the VNFM instances where to send VNF
instantiation requests but would send these requests to an
abstract “service type” address and let the service bus select the
appropriate VNFM instance and even translate the request into
a language understood by this VNFM.

C. Towards a common data storage approach

Another property typically associated to SBA is to make
service implementations dataless and stateless, by moving all
data handled by these services in an external high-availability
database that can potentially be accessed by all services.
Applying this principle to NFV-MANO would imply
extending the functional architecture with a MANO data
storage service functional block as shown in Fig. 5. This
functional block would host VNF and NS catalogues (i.e.
collections of NS and VNF deployment templates), as well as
run-time information about VNF instances and NS instances.
All or part of the NFVI resources catalogue could also be
hosted in this repository. This transformation step, combined
with the previous one, would simplify NFVO / VNFM fast
failover. It would thus increase the availability of the NFV-
MANO subsystem, which is crucial when considering
commercial NFV deployments, as a failure of any NFV-
MANO component will have huge network-wide
consequences [6]. Furthermore, a side benefit of this
evolution is to make the NFV inventory independent from the
NFVO, directly accessible by any other functional block,
thereby offloading the NFVO of its proxy tasks.

D. Service Exposure

Making the services accessible by a 3rd party is a property
that is often expected from a service-based architecture. This
is typically achieved by adding a service exposure function on
the service bus, acting as a gateway to external administrative
domains. This function, also visible in Fig. 5, typically carries
out stronger authentication and authorization procedures than
those used inside the SBA domain. It can also act as an
application-layer firewall, a reverse-proxy and collect API
usage metrics for accounting. Such a functional block could
also be added to an SBA-oriented NFV-MANO architecture,
to support inter-domain management and orchestration
procedures in a secure way, without exposing more
information than strictly necessary about the two
communicating NFV systems.

E. Towards the disappearance of functional blocks

A further and more radical transformation step would be to
get rid of functional blocks, in other words the way elementary
services/functions are grouped would no longer be considered a
standardization matter. Existing functional blocks could still be
mentioned in ETSI standards but would just represent
examples of typical product packaging strategies. Fig. 6
illustrates a configuration where the NFVO and the VNFM are
decomposed into a set of elementary services, each
corresponding to one of the APIs currently provided by these
two functional blocks. Similarly the OSS functional block
could be disaggregated in multiple smaller services such as
event tracking and analytics, application orchestration, slice
management, policy management, etc. This would allow for
more flexibility in mapping the functional architecture to
software implementations. While this might be perceived as
disruptive by some industry players, it should be noted that
most open source communities developing NFV-MANO

solutions implement the NFV-MANO functional blocks in the
form of Microservices interconnected via some form of service
bus. Another interesting side-effect of the disaggregation is the
ability to specify, deploy, update and package elementary
management and orchestration services, in various ways,
depending on the actual requirements.

Fig. 6. SBA with disaggregated functional blocks

V. CONCLUSION

This paper has reviewed the transformation steps that the
NFV architectural framework could undergo in order to benefit
from an SBA design style. An SBA approach to NFV would
increase the resilience of the NFV-MANO system itself thanks
to data/state externalization and to the ability to dynamically
discover fallback instances for each NFV-MANO functional
blocks. This transformation would also make the NFV
architectural framework more future-proof, facilitating its
evolution from both a specification and implementation
viewpoint. This includes allowing new pairs of existing
functional blocks to communicate with each other without
creating new APIs, new functional blocks to consume services
exposed by existing NFV-MANO functional blocks or
providing new services to existing functional blocks.
Integration in the NFV-MANO architecture of new functional
blocks specified by other SDOs or developed by open source
communities would also be facilitated. The disaggregation of
the main functional blocks would also bring more flexibility in
deploying and packaging the management and orchestration
services, according to real needs.

REFERENCES

[1] Frank Mademann, “The 5G system architecture”, Journal of ICT
Standardization, Vol.6, Combined Special Issue 1 & 2, May 2018.

[2] ETSI GS NFV 002: Network Functions Virtualization (NFV);
Architectural Framework.

[3] ETSI GS NFV-SOL 005: Network Functions Virtualisation (NFV)
Release 2; Protocols and Data Models; RESTful protocols specification
for the Os-Ma-nfvo Reference Point.

[4] N. Ford, “Comparing Service-based Architectures”, available on-line
http://nealford.com/downloads/Comparing_Service-
based_Architectures_by_Neal_Ford.pdf.

[5] Bernd Jaeger, “Security Orchestrator: Introducing a Security
Orchestrator in the context of the ETSI NFV Reference Architecture”,
IEEE Trustcom/BigDataSE/ISPA 2015.

[6] A.J. Gonzalez and al, “Dependability of the NFV Orchestrator: State of
the Art and Research Challenges”, IEEE Communications Surveys and
Tutorials, April 2018, in press.

