
Availability Aware VNF Deployment in Datacenter
Through Shared Redundancy

Defang Li, Peilin Hong, Jianing Pei, Wenzhe Wang
The Key Laboratory of Wireless-Optical Communications, Chinese Academy of Sciences,

School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China.

ldf911@mail.ustc.edu.cn, plhong@ustc.edu.cn, jianingp@mail.ustc.edu.cn, wzwang@mail.ustc.edu.cn

Abstract—Network function virtualization (NFV) has brought
great cost reducing and operation flexibility to network services,
in which users’ service requests are accomplished by softwares on
the common-off-shelf servers rather than dedicated proprietary
hardware middleboxes. Then how to guarantee the availability of
these services is coming correspondingly owing to the error prone
nature of softwares. Resource redundancy has been seen as an
efficient way. Moreover, the resource orchestration of softwares
is more flexible than that of physical machines. Therefore, how
to design a resource efficient solution to assure the availability
of network services in NFV environment has been attracting
attentions in academics and industries. Network services are
usually finished by service function chains (SFC) in NFV, and
an SFC is composed by several virtual network functions (VNF)
in order. In this paper, we study the availability aware VNF
deployment problem considering users’ SFC requests (SFCr). To
improve the resource efficiency, a Joint Deployment and Backup
scheme taking advantage of Shared Redundancy (JDBSR) is
proposed. Through the thorough simulations, the results show
that our solution has a great advantage over the benchmarks.

Index Terms—Network Function Virtualization, SFC, VNF
Deployment, Availability, Shared Redundancy

I. INTRODUCTION

Network function virtualization (NFV) enhances the flex-

ibilities and conveniences of cloud services. With the help

of NFV, many small and medium businesses can outsource

their IT infrastructures to the cloud, saving a great of capital

expenditures and operating expenses (CAPEX/OPEX) as a

result. Generally, the network services (NS) proposed by users

are accomplished by service function chains (SFCs) in NFV,

which are composed of a series of virtual network functions

(VNFs) in specified order.

Despite the advantages that NFV brings, how to deploy

the related VNFs to serve the tenants in cloud optimally is a

tricky problem, which is usually known as the VNF deploy-

ment/placement problem [1][2]. And researchers have made

plenty of efforts with diverse optimal targets and constraints.

The targets can be minimizing the total resource consumption

[1], minimizing the number of consumed physical machines

(PMs) [2], and minimizing the total service delay [3]. As

for the constraints, resource capacity, service latency are two

mostly considered factors.

In this paper, we study the VNF deployment problem

considering availability of users’ SFC requests (SFCr), which

are different from each other. To meet these availability

requirements, redundancy is the de-facto technology [4]. But

a resource efficient redundancy scheme needs to be well

designed.
In [4], the reliability/availability model and principle about

how to assure the end to end (E2E) reliability/availability of

SFCs are demonstrated clearly by European Telecommunica-

tions Standards Institute (ETSI). In [5], the authors tended

to backup the most unreliable VNFs to improve the total

reliability of SFCs. Ding et al. in [6] improved the selection

model of VNFs to be backuped based on the Cost-aware

Importance Measure (CIM) they designed, to improve the

backup cost efficiency. Also, researchers in [7][8][9] proposed

their solutions to make a balance between the backup cost and

the reliability requirements of SFCs.
Redundancy is also used in our scheme to guarantee the

availability. Compared with the works in existing literatures,

the pattern of VNF resource consumption is classified more

specifically in this paper, which is divided into two kinds. One

is the overhead when instantiating a VNF, for example, the

resource consumption to maintain the image of the VNF. It

is called basic resource consumption (BRC) in our previous

work [10]. The other part is computing resource to accomplish

the regular functioning of one VNF, and the computing

redundancy can be pooled and shared by different VNFs

utilizing the resource scaling scheme [11][12], to improve the

resource efficiency of the backup scheme.
In summary, given a set of SFCrs proposed by users, we

need to map them into the cloud datacenter, and then deploy

and chain the related VNFs to serve them, while guaranteeing

availability requirement of each SFCr. To make a balance

between availability and backup cost, the sharing mechanism

of computing redundancy is used. The problem is NP-hard,

so an efficient heuristic is proposed, named Joint Deployment

and Backup scheme through Shared Redundancy(JDBSR).

Our major contributions can be summarized as below:

• We clarify the overhead (BRC) and computing resource

clearly when instantiating VNFs.

• We utilize the sharing mechanism to improve the redun-

dancy efficiency when providing backups to the primary

VNFs, and clarify the availability modification model

based on the shared redundancy.

• We formulate the availability aware VNF deployment

problem and propose a Joint Deployment and Backup

scheme utilizing Shared Redundancy, JDBSR. Then the

performance of the solution is evaluated through numeri-

cal simulations in detail, and the results show that JDBSR

outperforms the benchmarks apparently.

The rest of our paper is organized as follows. We state

and formulate the problem in Section II. Then the proposed

solution is described in Section III, and Section IV demon-

strates the simulation results. Finally, our work is concluded

in Section V.

II. PROBLEM STATEMENT AND FORMULATION

In this section, we make clear some related concepts firstly,

and then demonstrate and formulate the problem respectively.

A. Network Model

Fat-tree [13] is the frequently used topology in datacenter

[14][15]. In this topology, the size of the network is deter-

mined by the number of ports in the switches. For a k-ary

fat-tree topology, there are (k/2)2 k-port core switches; k
pods, each of which containing two layers of k/2 switches;

and k3/4 PMs.

The substrate network is represented as an undirected graph

G = (Ns, Es), where Ns indicates the set of total nodes in

substrate network and Es indicates the link set of the substrate

network. Specifically, P is used to indicate the set of total

PMs.

B. Availability Model For an SFC

Link and switch failures are not considered, as modern

datacenters typically have rich path diversity between any

pair of PMs, which can effectively protect over these failures

[15][16]. So we only consider the VNF failures. Moreover, the

failures among the VNFs are usually assumed as independent

[5][6]. Generally, the availability of an SFC is:

P =

m−1∏
i=0

pi (1)

where m is the total number of VNFs in the SFC, and pi
indicates the availability of VNF i in the SFC respectively.

The backup VNFs are used to take place of the failed pri-

mary VNFs temporarily, and the services need to be redirected

to the restored primary VNFs [4]. So it is assumed that the

backup VNFs will not be outage when they are in service.

C. Problem Statement

Given a set of SFCrs, we need to design a solution to map

these SFCrs into the datacenter network, and then deploy the

related VNFs and chain them together to provide service to

these SFCrs, while guaranteeing the availability requirement

of each SFCr utilizing backup VNFs. In the problem, the

following three questions need to be solved:

Q1: How to coordinate the relationship between VNF

deployment and backup ?

Q2: Where to place these backup VNFs ?

Q3: How many resources should be allocated to each

backup VNF ?

For a given set of SFCrs, the single-tenancy principle is

applied to the implementation of primary VNFs for the sake

of performance isolation. So each VNFr is corresponding to

a VNF instance in the substrate network, and each SFCr is

corresponding to an SFC.

D. Problem Formulation

In this part, we will make a formulation about the avail-

ability aware VNF deployment problem. The main notations

used are listed in Table I.

TABLE I: Notations

Pramaters Descriptions

SFC related
Γ set of total SFCs, γ ∈ Γ is an SFC.
Ψγ set of total VNFs in SFC γ.
Eν

γ set of logical links between the nodes of SFC γ.
nν
i one node in an SFC.

(nν
i , n

ν
j) logical link between nν

i and nν
j .

p0(nν
i) inherent availability of VNF nν

i .

pε(nν
i ← ns

u)
modified availability of VNF nν

i whose backup
is on PM ns

u.
Aγ availability requirement of SFC γ.

Topology related
Ns set of total nodes in substrate network.
P set of total PMs.
Es link set of the substrate network.
ns
u one node in the substrate network.

(ns
u, n

s
v) substrate link between ns

u and ns
v .

Resource related
cpuγ,nν

i
CPU consumption by VNF nν

i in SFC γ.

bγ,nν
i ,nν

j

bandwidth consumption by logical link (nν
i nν

j)
in SFC γ.

cpubrcγ,nν
i

CPU BRC when instantiating an instance of
VNF nν

i in SFC γ.
Ccpu

ns
u

CPU capacity of PM ns
u.

Clink
(ns

u,ns
v)

link capacity of substrate link (ns
u, n

s
v).

Rbk
comp(n

s
u)

shared computing resource redundancy in PM
ns
u for SFCs on other PMs.

Binary variables

xγ,nν
i ,ns

u

whether nν
i in SFC γ is hosted on substrate node

ns
u, if yes, xγ,nν

i ,ns
u

= 1, ns
u ∈ P ∪R.

zγ,nν
i ,ns

u

whether the backup of VNF nν
i in SFC γ is on

PM ns
u, if yes, zγ,nν

i ,ns
u

= 1.

yγ,nν
i ,nν

j ,ns
u,ns

v

whether the logical link (nν
i , n

ν
j) in SFC γ

is mapped on substrate link (ns
u, n

s
v), if yes,

yγ,nν
i ,nν

j ,ns
u,ns

v
= 1.

hns
u

whether PM ns
u is used.

Considering the tradeoff between bandwidth optimization

and node resource optimization, the optimization target is set

as minimizing the number of used PMs:

min

|P |−1∑
u=0

hns
u

(2a)

hns
u
=

{
1,

∑|Γ|−1
γ=0

∑|Ψγ |−1
i=0 xγ,nν

i ,n
s
u
≥ 1;

0, otherwise.
(2b)

Eq. 2b indicates that if more than one VNF is hosted on PM

ns
u, then the PM has to be activated.

Nextly, the node resource constraints are introduced:

Rpri
comp(n

s
u) =

|Γ|−1∑
γ=0

|Ψγ |−1∑
i=0

xγ,nν
i ,n

s
u
· cpuγ,nν

i
(3a)

Rpri
brc(n

s
u) =

|Γ|−1∑
γ=0

|Ψγ |−1∑
i=0

xγ,nν
i ,n

s
u
· cpubrcγ,nν

i
(3b)

Rbk
brc(n

s
u) =

|Γ|−1∑
γ=0

|Ψγ |−1∑
i=0

zγ,nν
i ,n

s
u
· cpubrcγ,nν

i
(3c)

Rpri
comp(n

s
u) +Rpri

brc(n
s
u) +Rbk

brc(n
s
u) +Rbk

comp(n
s
u) ≤ Ccpu

ns
u

(3d)
|P |−1∑
u=0

xγ,nν
i ,n

s
u
= 1 (4)

|P |−1∑
u=0

zγ,nν
i ,n

s
u
= 1 (5)

Rpri
comp(n

s
u) and Rpri

brc(n
s
u) are the computing resource demand

and BRC consumed by the primary VNFs mapped on PM ns
u,

respectively. Rbk
brc(n

s
u) and Rbk

comp(n
s
u) are BRC and shared

redundancy by the backup VNFs on PM ns
u, respectively.

Figuring out the Rbk
comp(n

s
u) on each PM is the key of the

problem. Eq. 4 indicates that one VNF can only be mapped

on one PM, and Eq. 5 indicates that each VNF only has one

backup.

The link capacity constraint is as following:

|Γ|−1∑
γ=0

∑
(nν

i ,n
ν
j)∈Eν

γ

bγ,nν
i ,n

ν
j
· yγ,nν

i ,n
ν
j ,n

s
u,n

s
v
≤ C link

(ns
u,n

s
v)

(6)

Finally, we should assure that the availability requirement is

satisfied for each SFC γ:

|Ψγ |−1∏
i=0

pε(n
ν
i ← ns

u) ≥ Aγ (7a)

pε(n
ν
i ← ns

u) = F(Rbk
comp(n

s
u),

|Γ|−1∑
γ=0

|Ψγ |−1∑
j=0

zγ,nν
j ,n

s
u
,

∪|Γ|−1
γ=0 ∪|Ψγ |−1

j=0 p0(n
ν
j) · zγ,nν

j ,n
s
u
)

(7b)

Eq. 7b indicates that pε(n
ν
i ← ns

u) is the function of shared

redundancy, number of VNFs that share the same block of

redundancy, and the inherent availability of all VNFs involved

in the same share of redundancy.

The VNF deployment problem is NP-hard [1][2] and it is

a sub-question of our problem. So our problem is NP-hard

too. Besides, there are non-linear constraint (Eq. 7a) and non-

analytical function relationship (Eq. 7b) in our problem. So it

is almost incapable to solve the problem in theory but practical

to design an efficient heuristic solution.

III. PROPOSED SOLUTION

A. Framework of the solution

In our solution, we backup the VNFs based on PMs. Which

is to say, firstly one PM is filled in with SFCrs as many

as possible and the related VNFs are instantiated in it, then

the redundancy is reserved in its nearby PM to assure the

availability requirements of SFCrs in the PM. By placing the

redundancy in the nearby PM, we can improve the resistance

to the failure of PM empirically. So the above processes solve

Q1 and Q2.

Fig. 1: A deployment and backup case

Fig. 1 shows a simple deployment and backup case. In

PM 2, there are 2 deployed SFCs, which are SFC {VNF a1
→ VNF b1 → VNF c1} and SFC {VNF a2 → VNF b2
→ VNF c2} respectively. As the figure shows, each of the

primary VNFs in PM 2 has its own BRC. To resist the failures

of PM 2, the redundancy for the VNFs in PM 2 is reserved in

PM 3. Then it can be found that the resource consumptions are

divided into two parts for each PM, which are the redundancy

for the VNFs in the adjacent PM and the computing resource

consumptions for the regular functioning of deployed VNFs.

And it should be figured out how much shared redundancy

(Rbk
comp(n

s
3)) is needed to assure the availability requirements

of SFCrs in PM 2. It is worthy noting that the BRC of all

VNFs are reserved in the backup PM, to maintain the status

of primary VNFs in a standby mode. In this way, the backup

VNF can take place the functioning of failed primary VNF

rapidly.

With the increasing of redundancy, the availability of each

VNF in the corresponding PM increases too. Nextly, we

introduce the availability modification model of VNFs based

on the shared redundancy.

Algorithm 1: Modify availability

1:1:Input: Number of VNFs: N ,

Shared Redundancy: ϕ;

2:2:Output: Modified availability of N VNFs.

3:for i in N do
4: piε = pi0.

5: ϕδ = ϕ−Ri
c.

6: �lr = (R1
c , R

2
c , ..., R

i−1
c , Ri+1

c , ..., RN
c).

7: Calculate the Cartesian power of N − 1 {0,1},

indicated as Ω.

8: for �ω in Ω do
9: Rω = �lr · �ωT .

10: if ϕδ ≥ Rω then
11: Calculate the availability improvement, pωδ .

12: piε + = (1− pi0) · pωδ .

13: else
14: Continue.

15: end
16: end
17:end

B. Availability Modification of VNFs based on Shared Redun-
dancy

Algorithm 1 shows the procedures of the availability modi-

fication. piε is the modified availability of VNF i, while pi0
is the availability of VNF i without any redundancy, also

can be called the inherent availability; Ri
c is the computing

resource demand by VNF i; ϕδ is the residual redundancy

after reserving resource for VNF i; Rω is the resource needed

to handle the failures of other VNFs except VNF i. We will

demonstrate the process through a simple case in following.

Assume that there are 3 VNFs in total, namely VNF e,

VNF f , and VNF g. And their computing resource demand

are Re
c = 3, Rf

c = 4, and Rg
c = 5 with inherent availability

of pe0 = 0.94, pf0 = 0.95 and pg0 = 0.96 respectively. Then

the availability modification process of VNF e with shared

computing redundancy of ϕ = 8 is described.

TABLE II: Availability Modification Case of VNF e

Bit(f) Bit(g) ϕδ ≥ Rfg
ω peδ

0 0 1 0.05472

0 1 1 0.000228

1 0 1 0.000288

1 1 0 0

Firstly, two {0,1} sets for VNF f and VNF g are set

up, where 0 indicates that the corresponding VNF is func-

tioning regularly, and 1 indicates the VNF is outage. For

the 2 VNFs, the Cartesian power [17] of two {0,1} sets is

{(0,0),(0,1),(1,0),(1,1)}. Then the availability improvements

of VNF e based on the shared redundancy need to be

calculated in different occasions, which are shown in Table

II. Bit(f) indicates the functioning status of VNF f , while

Bit(g) is for the functioning status of VNF g. In Table II,

ϕδ = ϕ− Re
c = 5. Rfg

ω is the resource needed to handle the

failures of VNF f and VNF g, and it is calculated as Eq. 8.

If ϕδ ≥ Rfg
ω , then the failure can be handled by the residual

redundancy.

Rfg
ω = Bit(f) ·Rf

c + Bit(g) ·Rg
c (8)

For each failure occasion, Eq. 9 is used to calculate the

availability improvement of VNF e.

peδ =(1− pe0) · [(1− Bit(e)) · pf0 + Bit(f) · (1− pf0)]

· [(1− Bit(g)) · pg0 + Bit(g) · (1− pg0)]
(9)

After calculating the availability improvement of all occasion-

s, the availability of VNF e given shared redundancy ϕ = 8
is peε = pe0 + 0.05472 + 0.000228 + 0.000288 = 0.995236.

Similarly, the modified availability of the other 2 VNFs can

be derived.

Based on the above availability modification model, we can

get the modified availability of each VNF given a block of

shared redundancy. Further, the modified availability of each

SFC can be get based on Eq. 1, and the needed redundancy

to assure the availability requirements of SFCs can be figured

out subsequently, which solves Q3.

Algorithm 2: JDBSR

1 Sort the SFCs in Γ based on their resource demands in

descending order.

2 i = 0.

3 while 1 do
4 Start a new PM, i + = 1.

5 for γ in Γ do
6 if PM i can hold γ then
7 Map SFC γ in PM i.
8 Remove SFC γ from Γ.

9 else
10 Continue.

11 end
12 end
13 Check the rest SFCs and find those can be mapped

in PM i.
14 Backup SFCs in PM i, Algorithm 3.

15 if Γ is not empty then
16 Pick up the SFC that demands the least resource,

and try to map it in PM i, Algorithm 4.

17 Backup SFCs in PM i, Algorithm 3.

18 else
19 Break.

20 end
21 end

C. Availability Aware SFC Deployment

Algorithm 2 along with Algorithm 3, Algorithm 4 and

Algorithm 1 describes the details of our solution.

Algorithm 3: Backup PM

1:1:Input: PM i, PM i+ 1
2:2:Output: PM i, PM i+ 1
3:Redundancy, ϕ = 0.

4:Modify the availability of VNFs in PM i.
5:if All SFCs’ availability requirements are satisfied. then
6: return PM i, PM i+ 1.

7:else
8: while 1 do
9: Find the VNF ω that consumes the most resource

in PM i, and its resource consumption is

indicated as ωr.

10: ϕ = ϕ+ ωr, modify the availability of all VNFs

in PM i, Algorithm 1.

11: Remove VNF ω from the procedure.

12: if All SFCs’ availability requirements are
satisfied. then

13: Break.

14: else
15: Continue.

16: end
17: end
18:end

In Algorithm 2, all the SFCs are traversed firstly in de-

scending order based on their resource demand, and then they

are mapped in PM i until the PM cannot hold any SFC as a

whole. Then redundancy is reserved in PM i+1 for the SFCs

in PM i (Algorithm 3). After that, we pick out the SFC that

consumes the least resource, and try to map part of the SFC

into the current PM, aiming to utilize the resources in the PM

as much as possible (Algorithm 4).

When reserving redundancy for SFCs, the shared redundan-

cy (ϕ) increases based on the computing demands of VNFs in

descending order (lines 9-10 in Algorithm 3), until all SFCs’

availability requirements are satisfied. In this way, we can

determine the redundancy volume efficiently and quickly with

a lower algorithm complexity.

Algorithm 4: Map the last sfc

1:1:Input: Last SFC γl,PM i,P
2:2:Output: PM i, P
3:for VNF in SFC γl do
4: if PM i can hold the VNF then
5: Map the VNF in PM i.
6: else
7: Break.

8: end
9:end

10:Map the rest VNFs in PM i+ 1 or other PMs in P as a

whole.

In Algorithm 4, the VNFs in the last SFC are traversed one

by one in sequence, and they are mapped into the PM until

there is one VNF cannot be hosted on the PM. Even if there

are other VNFs that can be mapped in the rest part of the SFC,

the mapping process is still stopped, trying to keep the VNFs

of each separated part in order. Because deploying one SFC

across multiple PMs will incur the bandwidth consumptions

between the PMs, and breaking the order of VNFs tends to

result in more bandwidth consumptions.

D. Complexity

The complexity of SFC mapping process is at the level of

O(|Γ|2). However, when reserving redundancy (Algorithm 3),

the computing of Cartesian power is involved (Algorithm 1),

which is in exponential complexity. Assuming that there are

N VNFs in one PM, then the complexity of Algorithm 1 is

at the level of O(N · 2N). So the complexity of JDBSR also

relies on the ratio between PM capacity and VNF’s resource

demand.

IV. NUMERICAL SIMULATION

In this section, we evaluate the performance of JDBSR,

compared with the benchmarks. One is the CERA in [6], in

which they selected the VNF that has the largest Cost-aware

Importance Measure (CIM) to backup, until the availability

requirement of the SFC is satisfied. The other is CERA oto,

which is a variation of CERA, and it is a 1:1 backup scheme

that reserves a backup for every VNF in one SFC.

A. Simulation Settings

In the simulation, we have 1024 PMs in total. Each PM

are associated with 1000 units CPU resource and 1000 units

bandwidth resource. For the SFCs, each SFC consists of

3 to 6 VNFs, and the CPU and bandwidth demand obeys

uniform distribution of (10,50). The inherent availability of

the VNFs obeys uniform distribution of (0.90,0.999), and the

availability requirements of the SFCs are selected randomly

from [0.90,0.99,0.999,0.9999,0.99999].

B. Results

In the simulations, our solutions are compared with the

benchmarks from four aspects, which are number of used

PMs, total bandwidth consumptions, total backup CPU, and

total backup BRC. Error bars represent the 95% confidence

intervals in each figure.

Fig. 2 shows the results versus varying SFC number. From

the results, we can see that JDBSR achieves better perfor-

mance than CERA and CERA oto in number of used PMs,

total bandwidth consumptions, and total backup CPU, owing

to resource sharing mechanism. However, for the backup

BRC, CERA performs the best, and JDBSR consumes the

same volume of BRC with CERA oto. The reason is that both

JDBSR and CERA oto backup the BRC of all VNFs. JDBSR

instantiates the corresponding instance for every primary VNF,

however, the backup computing resources are shared among

multiple primary VNFs.

Fig. 3 shows the results versus varying availability require-

ments of SFCs. From the results, we can see that JDBSR still

800 900 1000 1100 1200
300

350

400

450

500

550

600

N
um

be
r o

f u
se

d
P

M
s

Number of SFCs

 JDBSR
 CERA
 CERA_oto

(a) Number of used PMs

800 900 1000 1100 1200
150000

175000

200000

225000

250000

275000

300000

B
an

dw
id

th
 C

on
su

m
pt

io
ns

Number of SFCs

 JDBSR
 CERA
 CERA_oto

(b) Total bandwidth consumptions

800 900 1000 1100 1200
50000
60000
70000
80000
90000

100000
110000
120000
130000
140000
150000
160000
170000

B
ac

ku
p

C
P

U

Number of SFCs

 JDBSR
 CERA
 CERA_oto

(c) Total backup CPU

800 900 1000 1100 1200
60000

70000

80000

90000

100000

110000

120000

B
ac

ku
p

B
R

C

Number of SFCs

 JDBSR
 CERA
 CERA_oto

(d) Total backup BRC

Fig. 2: Performance comparisons versus varying SFC number

0.9 0.99 0.999 0.9999 0.99999
340

360

380

400

420

440

460

N
um

be
r o

f u
se

d
P

M
s

Availability requirement of SFCs

 JDBSR
 CERA
 CERA_oto

(a) Number of used PMs

0.9 0.99 0.999 0.9999 0.99999
205000

210000

215000

220000

225000

B
an

dw
id

th
 C

on
su

m
pt

io
ns

Availability requirement of SFCs

 JDBSR
 CERA
 CERA_oto

(b) Total bandwidth consumptions

0.9 0.99 0.999 0.9999 0.99999
20000

40000

60000

80000

100000

120000

140000

B
ac

ku
p

C
P

U

Availability requirement of SFCs

 JDBSR
 CERA
 CERA_oto

(c) Total backup CPU

0.9 0.99 0.999 0.9999 0.99999
40000

50000

60000

70000

80000

90000

100000

B
ac

ku
p

B
R

C

Availability requirement of SFCs

 JDBSR
 CERA
 CERA_oto

(d) Total backup BRC

Fig. 3: Performance comparisons versus varying SFC avail-

ability requirements

has advantage over the benchmarks, especially when the avail-

ability requirement becomes stricter. For CERA, it has a good

performance when the availability requirement of SFCs is

lower than the inherent availability of VNFs, sometimes even

a slight better than JDBSR. However, when the availability

requirement of SFCs is higher than the inherent availability of

VNFs, the selection process based on CIM will not work, and

it will backup every VNF in one SFC to meet the availability

requirement, then it degenerates into CERA oto.

V. CONCLUSION

In this paper, we study the availability aware VNF de-

ployment problem considering SFCs. The resource sharing

mechanism is taken advantage of to improve the redundancy

efficiency when providing backups to the primary VNFs. Then

we propose a joint VNF deployment and backup scheme

through shared redundancy (JDBSR). The simulation results

show that JDBSR can make a better utilization of the network

resources, and acquire a better performance than the bench-

marks.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China under Grant No. 61671420 and No.

61672106.

REFERENCES

[1] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in Computer Communications
(INFOCOM), 2015 IEEE Conference on. IEEE, 2015, pp. 1346–1354.

[2] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, “Network
function placement for nfv chaining in packet/optical datacenters,”
Journal of Lightwave Technology, vol. 33, no. 8, pp. 1565–1570, 2015.

[3] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource
optimization with network function virtualization,” IEEE Transactions
on Communications, vol. 64, no. 9, pp. 3746–3758, 2016.

[4] N. ISG, “Network functions virtualisation (nfv); reliability; report on
models and features for end-to-end reliability,” ETSI GS NFV-REL,
vol. 1, p. v1, 2016.

[5] J. Fan, Z. Ye, C. Guan, X. Gao, K. Ren, and C. Qiao, “Grep: Guar-
anteeing reliability with enhanced protection in nfv,” in Proceedings of
the 2015 ACM SIGCOMM Workshop on Hot Topics in Middleboxes and
Network Function Virtualization. ACM, 2015, pp. 13–18.

[6] W. Ding, H. Yu, and S. Luo, “Enhancing the reliability of services in nfv
with the cost-efficient redundancy scheme,” in Communications (ICC),
2017 IEEE International Conference on. IEEE, 2017, pp. 1–6.

[7] M. T. Beck, J. F. Botero, and K. Samelin, “Resilient allocation of service
function chains,” in Network Function Virtualization and Software
Defined Networks (NFV-SDN), IEEE Conference on. IEEE, 2016, pp.
128–133.

[8] S. Bijwe, F. Machida, S. Ishida, and S. Koizumi, “End-to-end reliability
assurance of service chain embedding for network function virtualiza-
tion,” in 2017 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), Nov 2017, pp. 1–4.

[9] T. Taleb, A. Ksentini, and B. Sericola, “On service resilience in
cloud-native 5g mobile systems,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 3, pp. 483–496, 2016.

[10] D. Li, P. Hong, K. Xue, and J. Pei, “Virtual network function placement
considering resource optimization and sfc requests in cloud datacenter,”
IEEE Transactions on Parallel and Distributed Systems, 2018.

[11] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in Cloud
Networking (CloudNet), 2015 IEEE 4th International Conference on.
IEEE, 2015, pp. 255–260.

[12] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: state of the
art, challenges, and implementation in next generation mobile networks
(vepc),” IEEE Network, vol. 28, no. 6, pp. 18–26, 2014.

[13] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.

[14] A. Zhou, S. Wang, B. Cheng, Z. Zheng, F. Yang, R. Chang, M. Lyu, and
R. Buyya, “Cloud service reliability enhancement via virtual machine
placement optimization,” IEEE Transactions on Services Computing,
2016.

[15] R. Yu, G. Xue, X. Zhang, and D. Li, “Survivable and bandwidth-
guaranteed embedding of virtual clusters in cloud data centers,” in IEEE
INFOCOM, 2017.

[16] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and
P. Sharma, “Application-driven bandwidth guarantees in datacenters,”
in ACM SIGCOMM Computer Communication Review, vol. 44, no. 4.
ACM, 2014, pp. 467–478.

[17] Cartesian product, Wikipedia, [Online]. Available: http-
s://en.wikipedia.org/wiki/Cartesian product.

