
Distributed Artificial Intelligence enabled by

oneM2M and Fog Networking

Kun Lun Cai and Fuchun Joseph Lin

Department of Computer Science

College of Computer Science

National Chiao Tung University

Hsinchu, Taiwan

{moon50102.cs05g, fjlin}@nctu.edu.tw

Abstract— Deep learning enabled by neural networks has been

proven to be an effective Artificial Intelligence (AI) algorithm in

sophisticated applications. The algorithm is normally divided into

two phases: learning phase and inference phase. In this research,

we assume the learning phase is already accomplished offline and

focus on expediting the inference phase by replacing the

centralized processing of Cloud with the distributed processing of

Fog. In our approach, inference algorithms in AI are distributed

to multiple layers of Fog networking, constructed from oneM2M

Middle Nodes. We verify the performance improvement of our

proposed distributed AI/Fog system by comparing it against a

Cloud-centric system based on a use case of smart shopping mall.

Keywords—Artificial Intelligence, Fog computing, IoT platform,

oneM2M.

I. Introduction

Deep learning enabled by neural networks has been proven
to be an effective Artificial Intelligence (AI) algorithm in
sophisticated applications. Such an algorithm is normally
divided into two phases: learning phase and inference phase.
The wide deployment of IoT devices has enriched the input data
required for the training phase. Once well-trained, during the
inference phase the algorithms with the populated knowledge
then can be applied for sophisticated applications such as
speech and image recognition.

 Such an AI system normally resides in the Cloud. This
implies a large amount of sensing data need be transferred to
the cloud for both learning and inference phases. This not only
introduces significant delay in the response time of the AI
system but also creates serious bandwidth shortage in the
networks. Taking smart surveillance in a shopping mall as an
example, there are many floors of large areas need to be
monitored. As a result, thousands of smart cameras will be
deployed in the shopping mall. Sending these data to a
centralized server in the cloud will become infeasible [1]. Even
if the problem of data transfer is solved, there will still be
difficulty in processing image recognition in a reasonable time
due to the large amount of data and the centralization of
processing units.

In this research, we assume the learning phase is already
accomplished offline and focus on expediting the inference
phase by replacing the centralized processing of Cloud with the
distributed processing of Fog. In our architecture, inference
algorithms in AI are distributed to multiple layers of Fog

networking, constructed from oneM2M Middle Nodes [2]. The
term, ‘Distributed Artificial Intelligence’ is widely used in
literature recently [3][4], but this term does not have an official
definition. In our definition, we emphasize on the following
key characteristics.

• Geographic distribution of computation resources

• Concurrent processing by independent nodes

The rest of the paper is organized as follows. In Section II,
we will give a survey of related work and point out our unique
contribution. In Section III, we will explain the high-level
design of our proposed system and how it can be adopted to
real-world use cases. Section IV then shows the implementation
of our proposed system on a shopping mall use case. In Section
V, the results of system evaluation will be presented. Finally,
Section VI gives our conclusion and discusses future work.

II. Related Work

How to train a high accuracy model and how to use the
model for inference over distributed architecture are two
important research topics in AI. As a result, we categorize our
survey into these two areas.

A. Learning over Distributed Architecture

 In this research area, there are many papers [5][6] proposing
different ways to coordinate heterogeneous devices to perform
training and combine results. In particular, [7] and [8] present
the methods for training machine learning models in a
distributed system; they implement and test their solutions with
real data in order to compare its accuracy against that of a
centralized system. Although our system is focused on the
inference phase, these papers provide good inspiration for our
research.

B. Inference over Distributed Architecture

 With the emergence of IoT, many large-scale applications
such as smart city [9][10], smart farming [10], are introduced.
Inside many of these IoT systems, AI algorithms are widely
used. For example, [11] introduced hierarchical Fog Computing
architecture for big data analysis in which a large-scale smart
city use case is mapped into this architecture for performing big
data analysis to identify hazardous events. Also in [12], neural
networks are used for image processing to detect plant disease
and fruit grading in smart farming.

 As mentioned before, we focus on expediting the inference
phase. To achieve our objective, we explore the approach of
inference over distributed architecture. Our approach is
characterized by the following unique features: (1) we replace
the centralized processing of Cloud with the distributed
processing of Fog, (2) we use standardized IoT platform,
oneM2M, as the communications middleware between
different layers of Fog nodes, (3) we adopt DNN (Deep Neural
Network) as our inference engine and (4) we solve the problem
of transferring large data between different layers of Fog
architecture.

III. Proposed System Architecture

 In this section, we explain the high-level design of our
system including its functions and workflows. The functional
architecture of the system is shown in Figure 1 where all the
components required to construct an AI inference engine over
distributed architecture are illustrated. This is a Fog distributed
system of hierarchical architecture onto which a large-scale
application can be decomposed and deployed. Starting from the
bottom is Sensor Layer that collects the sensing data. Then each
of lower layers in turn would produce data for the next higher
layer until it reaches Cloud Layer.

A. Layer-by-layer Explanation

 Our system consists of three layers: Sensor Layer, Fog
Layer, Cloud Layer and Actuator Layer.

1) Sensor Layer

 This is where the sensing data come from. Various types of
sensors can be deployed in this layer. The system supports not
only the sensors that generate simple raw data but also the ones
that generate large data like videos and images. The task in this
layer is just collecting and sending the data. Any further
processing will be performed in the higher layers.

2) Fog Layer

 This is where the ‘edge intelligence’ resides. Fog Layer
receives the input data from Sensor Layer and performs
‘intelligent’ inference to produce useful insights. The tasks of
the Fog nodes in this layer may include data preprocessing,
feature extraction, knowledge inference or other AI algorithms.
As a result, the Fog nodes deployed at this layer should be
general-purpose and capable of performing any tasks
mentioned above.

 All these Fog nodes are architected in a hierarchical fashion
as illustrated in Figure 1. The standardized IoT platform,
oneM2M [2], is used as the communications middleware
between the successive levels of Fog nodes. They may consist
of several levels depending on the requirements of use cases.
For example, if the data in the use case require three different
steps of processing, we can use three-level architecture. With
Fog Layer, we can filter out lots of useless data and save
significant network bandwidth by sending only a small amount
of useful data to Cloud Layer.

3) Cloud Layer

 Depending on the use case, Cloud Layer would execute
different AI algorithms for action decision. For instance, if the
disease detection in smart farming is positive, the application in
the cloud should decide how to react to this situation. It can
either dispatch the cure or just send an alert to the farmer.

4) Actuator Layer

 The actuators in this layer receive the commands or data
from Cloud Layer and carry out the actions. Note that the nodes
at this layer normally do not perform any analysis. Some
examples are shown in Figure 1 including a monitor to display
the advertisement, a vehicle or robot to execute the command,
or an alarm that simply plays the siren.

 In Section IV, we will introduce a use case implementation
of smart shopping mall to demonstrate the flexibility and
generality of our design. It illustrates how a real-world use case
can be mapped to our proposed system architecture.

B. Inter-Layer Communications

 To add a hierarchical system of Fog nodes between IoT
devices and the Cloud, a middleware is required to support
connectivity and communications among these nodes. We
propose to use the standardized IoT platform, oneM2M [2], as
the middleware. There are several open source implementations
of oneM2M and we have chosen OM2M [13], developed by
LAAS-CNRS, in our initial trial. Though OM2M is not
designed for efficiently handling big data such as images or
videos, we alleviate this problem by designing an enhanced
communication mechanism over OM2M.

 In our design, each Fog node is constructed as an oneM2M
Middle Node – Common Service Entity (MN-CSE) as shown
in Figure 3. Then the AI inference engine is deployed as an
Application Entity (named AI-AE) on top of MN-CSE for
distributed task allocation. For example, the first level of Fog
nodes can be used for data preprocessing and feature extraction
from the raw data collected at the sensor layer (marked as “A”).
The second level of Fog nodes then takes the input from the
first level of Fog nodes (marked as “B”) and performs further
inference based on DNN models already trained. Then, the
inference result of distributed Fog computing will be sent to the
Cloud (marked as “C”). Finally, the last of inference
algorithms will be carried out by the Cloud in order to generate
the decision commands to the actuator layer (marked as “D”).

 In oneM2M, each MN-CSE can maintain its own resource‐
based information model called Resource Tree. Figure 4 shows
an example of such resource trees maintained in MN-CSE.
Each resource has its own Resource Type which represents the

Figure 1. Proposed System Architecture

semantics of the resource. Whenever information is to be saved
in oneM2M, it will be treated as “resource” and maintained in
the resource tree. To manipulate resources, oneM2M provides
Restful API to perform Create, Read, Update, Delete, Subscribe
and Notify.

 Here we explain some of the most important Resource Type
shown in Figure 4.

1) <CSE-ID>

 This is the ID of the MN-CSE or IN-CSE which the current
MN-CSE registers to. In oneM2M, it is necessary to perform
registration during the initialization phase of an MN-CSE.

2) <AE>

 Basically, AE is the resource for the application that is
managed by the current MN-CSE. For example, in Smart
Home, there are many different services running in a house
such as air conditioner control, smart light control. These
services will register to MN-CSE as an AE.

3) <Container>

 It is the resource maintaining multiple instances of real data.
However, it can have more information than the raw data from
sensors. For example, to provide automatic air conditioner
control at Smart Home we not only keep track of temperature
and humidity from sensors but also people count and other
useful information. These data will be maintained in different
Containers.

4) <contentInstance>

 This is the resource that stores a single instance of real data
like “30 degree Celsius”. It is created as a sub-resource of
Container.

5) <Subscription>

 The <Subscription> resource is the key mechanism in
oneM2M that enables inter-node communications in our
system. Creating this resource as a child under a parent resource
means to subscribe to any update in the parent source. Once a
resource is subscribed, oneM2M will monitor the status of the
resource and notify the subscribed AE whenever there is any
new update to the resource. We make heavy use of this
oneM2M subscription and notification mechanism for inter-

Fog nodes communications [14]. With this mechanism, data
transmission among different levels of Fog nodes and between
Fog nodes and the Cloud can be easily achieved.

 Although our adopted oneM2M open source
implementation, OM2M, can manage the resources in small
scale without problems, it lacks the capability of dealing with
large data files such as videos. We thus design an enhanced
communication mechanism based on Secure Copy Protocol
(SCP) for data transfer. In this design, the information stored in
oneM2M container/contentInstance has become the path of the
large data file. A subscriber will receive the notification that
contains only path information, but with this path information
a subscriber will be able to set up an SCP connection and
retrieve the actual transfer data.

IV. Use Case Implementation

We have implemented our system architecture described in
Section III by applying it for a smart shopping mall use case. In
this use case, the system objective is to increase the
effectiveness of advertisement broadcasting in a shopping mall
by estimating the distribution of age/gender for the incoming
customers in each area and each floor of the mall. Here we
assume a shopping mall with multiple floors and each floor with
many stores; cameras are deployed in front of every store to
capture customers’ videos. Also, electronic billboards are
placed on each floor of the mall to display advertisements.
These advertisements will change dynamically according to the
age/gender distribution of the customers. We assume the
association between advertisement and age/gender has been
established before system operations.

For this use case, two levels of Fog nodes in a hierarchical
structure are constructed between Sensor Layer and Cloud
Layer. The first level of Fog nodes is used to detect and retrieve
the faces of customers from the video files collected by the
cameras. The second level of Fog nodes then take the face
inputs from the first level of Fog nodes and perform analysis
based on Deep Neural Network (DNN) models to decide ages
and genders of customers. The deployment of the Fog nodes
can be quite flexible. For example, we can deploy the Fog nodes
based on the layout of shopping mall. If the shopping mall has
multiple floors and each floor has multiple areas, one first-level
Fog node can be deployed in each area and one second-level
Fog node can be deployed on each floor. Also, depending on
the business nature of the area, more Fog nodes can be deployed

Figure 4. Example of oneM2M Resource Tree

Figure 3. Detailed System Design

there to deal with unusual situations such as in the area of food
court where it often attracts more crowd.

After finding out the ages/genders of the customers,
this information will be sent to Cloud Layer for further analysis
in order to decide the best advertisement for Actuator Layer.
The high-level system architecture is shown in Figure 2. To
explain the data flow within the system more clearly, we will
go through the lifecycle of data (video) in the following
subsections.

A. Video to Face

In our experiment, the cameras are simulated by webcams
on the laptops. As such, the captured video is saved in a file on
the laptop directly. The paths of those files will be stored by the
camera application in the resource tree of the MN-CSE on the
laptop that captured the video. The first level of Fog nodes will
subscribe to the containers designed to keep the paths of these
video files. Thus they will be notified about the availability of
video files (in terms of path names) on the resource tree.
Whenever this happens, the first level of Fog nodes will follow
these paths to retrieve the video files via SCP, perform face
detection and extract face information. In our implementation,
we utilize “OpenCV”[15] to detect the faces from videos and
‘pickle’[16] to convert the face data for storage and
transmission. By extracting only the relevant data from these
large video files, the first level of Fog nodes would filter out
useless data in the initial video files and reduce the amount of
data to be transferred to the next level of Fog nodes. After the
faces in each video frame are found, they will be cut out and
saved into a separate file. The paths of these face files will
again be saved in the local containers that have been subscribed
by the Fog nodes in the second level.

B. Face to Age/Gender

The second level of Fog nodes will be notified about the
availability of face data stored in the resource tree of the first
level of Fog Node. They will retrieve the paths of these face
files, follow these paths to retrieve the files and perform
age/gender detection by analyzing the data in these files. Here
the Fog nodes will use a pre-trained DNN model to estimate the
ages and genders of the given faces. The neural network we use
is WideResNet trained by [17]. The DNN libraries we use is
‘Keras’[18] based on ‘TensorFlow’[19] and ‘Theano’[20]. The
environment is installed, configured and tested on Ubuntu
16.04 and macOS 10.13. After the processing, all the ages and

genders of the faces will be saved on the local resource tree
that is subscribed by Cloud Layer.

C. Age/Gender to Advertisement

The age and gender data will be used by the Cloud. When
this data is ready, the Cloud will receive the notification with
age and gender data; then the Advertisement AE will perform
analysis to find out the majority of the customers in terms of
age and gender. In our experiment, we divide the ages from 10
to 70 into 12 groups for each gender and map these to 24
advertisements with one for each group. With this mechanism,
the most effective advertisement that target at the specific age
and gender can be chosen for display to maximize the
efficiency and accuracy of the advertisement.

D. Advertisement Display

In our implementation, we design an electronic billboard

application to complete our use case. This electronic billboard

will receive the analysis result from the Cloud via a TCP

connection and display the best suited advertisement to

encourage the customer to buy. In a shopping mall, the

electronic billboards can be placed in strategic locations such

as at the entrance or in the customer help desk area to display

special promotion advertisement. In addition, to achieve

effective promotion, we have to constantly track the change of

customer composition and update the advertisement

dynamically as needed.

V. System Evaluation

To verify the efficiency of our proposed system vs. that of

the traditional cloud-centric system, we define three evaluation

metrics: amount of data transferred, length of execution time

for face/age/gender determination, and length of end-to-end

response time. These three metrics are chosen due to the

following considerations: First, the amount of data transferred

is the major problem we want to solve to prevent network

congestion as mentioned from the very beginning. Second, one

of the biggest differences between the centralized and the

distributed systems is how a task is separated into several

subtasks. As a result, the execution time of these tasks plays an

important factor as we compare two systems. Third, in our

proposed system, we add Fog Layer between end-devices and

Cloud Layer. With this design, the generated data can be

processed immediately without traveling far to the cloud.

Consequently, the length of end-to-end response time is also

used as one of the metrics for comparison.

The computer environment used for centralized and

distributed system testing is shown in Table 1. To ease our

testing procedure, we have sampled six short videos of various

people walking flows with each lasting 5-10 seconds as our

testing data. Each video has different characteristics that can

simulate diverse environments in a shopping mall. We separate

these videos into three categories which are corridor, shopping

area, and food court. The sampled videos contain various

mixtures of people with different ages and genders. As a result,

we can simulate various distributions of age and gender in

different areas of a shopping mall and test the capability of

Figure 6. High-level Architecture of System Implementation

displaying the advertisements dynamically depending on the

age/gender distribution.

A. Amount of Data Transfer

In our distributed system there are two additional levels of
Fog nodes between end devices and the cloud. The first level of
Fog nodes will perform face extraction while the second level
of Fog nodes will analyze the faces using a pre-trained DNN
model to estimate their ages and genders. After being processed
by these two levels of Fog nodes, the original large video file
would eventually be reduced to a short string (e.g. <32, Male>,
<45, Female>). Figure 5 illustrates how much data transfer is
reduced after being processed by each level of Fog Nodes. The
size of video file, 5500 KBs, is the amount of data to be
transferred from Sensor Layer to Cloud Layer in a cloud-centric
system. However, in our proposed system, the results show that
the first level of Fog nodes is able to reduce about 50% of total
data amount while the second level of Fog nodes can reduce up
to 99.9997% of total data amount. This truly demonstrates a
great saving on network resources by a Fog system.

B. Execution Time for Face/Age/Gender Determination

In a Fog distributed system the program execution flow is
separated into two phases (face detection and age/gender
estimation). Hence, the execution time has to be calculated for
each phase individually; then two results would be summed up
to derive the total execution time.

Figure 7 shows a comparison of the execution time between
the centralized system and the distributed system for one video
file processing. As we can see from the result, the performance

of the centralized system is slightly better than that of the
distributed system due to the better computational resources of
the centralized system. Nevertheless, the difference is only
three percent, indicating that the distributed Fog system is a
viable choice even for the extreme case of processing one video
file.

In the case of processing multiple video streams, the Fog
architecture will exhibit much better execution time by utilizing
parallel computation enabled by multiple Fog nodes at the same
level.

C. End-to-End Response Time

 One of the major differences between Cloud and Fog
Computing is where the sensor data will be processed. In the
Cloud architecture, the data need to be sent a long way to Cloud
for processing. In Fog Computing, Fog nodes are deployed
much closer to Sensor Layer, so the network condition is much
more stable compared to the centralized architecture. During
the preprocessing executed on Fog nodes, the input data will
become smaller when they are sent to the higher layer of Fog
nodes. As a result, the large data on lower layer will be sent
through the stable network while only a small amount of data
will be transferred from Fog Layer to Cloud Layer as we
showed in Section V-(A).

 In our testbed, we use Wi-Fi to connect the devices. To
simulate the difference between the centralized system and the
distributed system, we weaken Wi-Fi signals to slow down the
transmission speed to simulate the long haul communication
between Fog and Cloud but use normal signal strength to
simulate the short distance communication among Fog nodes
and between devices and Fog nodes. In our experiment, we are
able to simulate the normal speed at 5.3MBps and the lower
speed at 0.67MBps. With the results shown in Section V-(A),
we can estimate the end-to-end response time of centralized and
distributed system. In the centralized system, video files are
directly sent from Sensor Layer to Cloud Layer, so the
estimated transmission time will be the size of video file
divided by transmission speed. The result is 8.209 seconds. In
the distributed system, the video files need to go through Sensor

Figure 7. Execution Time of Centralized vs. Distributed System

Figure 8. Data Size Transferred between each Layer

Table 2. Tested Environment

Operating

system
CPU RAM GPU

Centralized

System
macOS 10.31

Intel(R)

Core(TM) i5-

6360U CPU @

2.00GHz

8192 MB

Intel Iris

Graphics

540 1536

MB

Distributed

System
Ubuntu 16.04

Intel(R)

Core(TM) i5-

6360U CPU @

2.00GHz

4096 MB Disabled

Layer, two levels of Fog nodes, and Cloud Layer. However, the
size of age/gender data is less than 0.01 KB, so we can ignore
the data transmission time between second level of Fog nodes
and Cloud Layer. Consequently, total data transmission time in
our implementation will become the sum of the time to transmit
video and face files. The final result will be 1.585 seconds
which is 80.67% less than centralized system. This experiment
demonstrates the benefits of data preprocessing and close
proximity of fog networking.

 Combining the results of execution time and end-to-end
data transmission time, we can estimate the total response time
which is the time required to make the input (video file) become
the output (age/gender). The result is shown in Figure 9. In our
testbed, the total response time of the centralized system is
9.219 seconds while that of the distributed system is 2.615
seconds which is 71.63% reduced. We thus believe the
distributed system is a viable solution in implementing large
scale use cases.

VI. Conclusion and Future work

In this paper, we introduced a distributed AI system enabled
by oneM2M and Fog Networking. We discussed the
construction of a hierarchical structure of Fog nodes between
the Cloud and end devices by utilizing oneM2M as the
communication middleware. Then we showed how AI
inference algorithms can be distributed among Fog nodes to
enable efficient IoT applications. We designed and tested our
system using a use case of “smart shopping mall” where the
ages and genders of visiting customers will be collected and
analyzed in order to deliver the most effective advertisements.
Our evaluation showed that this Fog-based AI system can solve
several common problems such as lack of network and compute
resources. In addition, the use of IoT platform, oneM2M,
greatly enhanced the capability of connecting multiple level of
Fogs and Cloud into a coherent system in a large-scale use case
[21].

 We believe our system design is general and flexible
enough that it can be applied to many other use case scenarios.
In the future, we plan to extend our proposed system to support
the capability of distributed learning [22] and combine it with
the capability of distributed inference discussed in this paper.
Another potential improvement is to run our experiments with
real-time video streaming than pre-stored video clips. Also, we
believe it is worthwhile to explore the separation of neural

networks inside our proposed system such that different parts
of the neural networks can be executed on multiple Fog nodes
in parallel in order to further increase execution speed.

Acknowledgement

The project reported in this paper is sponsored by Institute for

Information Industry in Taiwan under the 2017 Initiative on

Docker-based OpenFog IoT Technologies and the 2018

Initiative on Gateway Site Fog Computing.

References

[1] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–
864, Dec. 2016.

[2] oneM2M official website : http://www.onem2m.org

[3] Definition of Distributed Artificial Intelligence:
https://www.techopedia.com/definition/6720/distributed-artificial-
intelligence-dai

[4] Definition of Distributed Artificial Intelligence:
https://en.wikipedia.org/wiki/Distributed_artificial_intelligence

[5] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C.
Zhang, and Z. Zhang. MXNet: A flexible and efficient machine learning
library for heterogeneous distributed systems. In Proceedings of
LearningSys, 2015.

[6] Provost, F.J., & Hennessey, D. (1996). Scaling up: Distributed machine
learning with cooperation. Proceedings AAAI-96.

[7] Surat Teerapittayanon, Bradley McDanel, HT Kung, “Distributed Deep
Neural Networks over the Cloud, the Edge and End Devices”, Distributed
Computing Systems (ICDCS), 2017 IEEE 37th International Conference
on pages 328-339.

[8] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung,
Christian Makaya, Ting He, Kevin Chan, “When Edge Meets Learning:
Adaptive Control for Resource-Constrained Distributed Machine
Learning”, INFOCOM 2018.

[9] K. Su, J. Li, and H. Fu, “Smart city and the applications”, International
Conference on Electronics, Communications and Control (ICECC), pages
1028–1031, 2011.

[10] P. Tripicchio, M. Satler, G. Dabisias, E. Ruffaldi, C. Avizzano, "Towards
smart farming and sustainable agriculture with drones", 2015
International Conference on, pp. 140-143, July 2015.

[11] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, Q. Yang, "A hierarchical
distributed fog computing architecture for big data analysis in smart
cities", ASE BD&SI '15: Proceedings of the ASE BigData & Social
Informatics, pp. 28:1-28:6, 2015.

[12] Monica Jhuria, Ashwani Kumar, Rushikesh Borse, "Image Processing
For Smart Farming: Detection Of Disease And Fruit Grading",
Proceedings of the 2013 IEEE Second International Conference on Image
Information Processing.

[13] OM2M official website : http://www.eclipse.org/om2m/

[14] oneM2M Technical Specification TS-0001 : Subscription and
Notification, http://www.onem2m.org/images/files/deliverables/TS-
0001-oneM2M-Functional-Architecture-V-2014-08.pdf

[15] OpenCV: https://opencv.org/opencv-3-0.html

[16] Pickle : https://docs.python.org/3/library/pickle.html

[17] Age gender estimator : https://github.com/yu4u/age-gender-estimation

[18] Keras : https://keras.io

[19] TensorFlow : https://www.tensorflow.org

[20] Theano : http://deeplearning.net/software/theano

[21] K. Datta, C. Bonnet, "A lightweight framework for efficient m2m device
management in onem2m architecture", Recent Advances in Internet of
Things (RIoT) 2015 International Conference on, pp. 1-6, April 2015.

[22] https://en.wikipedia.org/wiki/Online_machine_learning : Online machine
learning

Figure 10. End-to-end response time

