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Demand Response by Quantity 

 = distribution network operator may 

interrupt / modulate power 

 

 elastic loads support graceful 

degradation 

 

 Thermal load (Voltalis),  

water heaters (Romande Energie 

«commande centralisée»), 

e-cars 

Voltalis Bluepod switches off 

thermal load for 60 mn 
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Network Calculus? Service curve? 

Voltalis: 

 At most 30 mn of interruption total per day 

 

“Service curve” contract 
𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑖𝑛 (𝑠, 𝑡) ≥ 𝛽 𝑡 − 𝑠 , ∀0 ≤ 𝑠 ≤ 𝑡 

𝛽 𝑡  = superadditive function. 
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Real Situation: Unexpected Consumption Peaks 
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Today  

 Aggregate demand is predictable 

 

 

 

 Operators foresee “reserve” (primary, secondary, tertiary) 

 E.g., gas turbines 

 Reserve is expensive (capacity) / rare event  demand response 

 Delay (“buffer”) demand until the peak has passed ~ virtual energy storage 

Tomorrow? 

 High penetration of renewables   

Large (unaffordable) reserve requirements 

 E.g., fleet of e-cars  DR exploits load flexibility 

Is Demand Response a good solution? 
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Formally: 

 Consumption: 

𝑈 𝑡 =  𝑢 𝑠 𝑑𝑠
𝑡

0

 

 Allowed consumption (control): 

𝐺 𝑡 =  𝑔 𝑠 𝑑𝑠
𝑡

0

 

 Demand Response imposes: 

 

0 ≤ 𝑈 𝑡 − 𝑈 𝑠 ≤ 𝐺 𝑡 − 𝐺 𝑠 ,  
∀0 ≤ 𝑠 ≤ 𝑡 

 

Demand Response by Quantity 

[Le Boudec, Tomozei – ISGT-EU’11] 

#6 

“power” 
(Watts) “energy” 

(Watt-hours) 



 Inelastic (non-dispatchable) loads 

 Lamps, TVs, Microwaves, … 

 Elastic (dispatchable) loads 

 Heating, A/C (TCLs) 

 

 Make it dispatchable! 

 Inelastic load 𝐿 𝑡 =  ℓ 𝑠 𝑑𝑠
𝑡

0
 

 Use a large enough battery! 

 

Inelastic load = lights out? 

Load sees 

no 

constraints 

Grid 

Actual 

consumption 

(constrained!) 

“Energy buffer” 
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The Perfect Battery 

Battery may be charged (𝑢 𝑡 > ℓ(𝑡)) or discharged (𝑢 𝑡 < ℓ(𝑡)) 

Load ℓ 𝑡  is given 

Problem is to determine a power schedule 𝑢(𝑡), subject to 

0 ≤ 𝑢 𝑡 ≤ 𝑔(𝑡) and within battery constraints  
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System Equations for the Perfect Battery 

1. 𝐿 𝑡 ≤ 𝐵0 + 𝑈(𝑡) no underflow 

2. 𝑈 𝑡 − 𝐿 𝑡 + 𝐵0 ≤  𝐵 no overflow 

3. 𝑈 𝑡 − 𝑈 𝑠 ≤ 𝐺 𝑡 − 𝐺 𝑠 , ∀𝑠 ≤ 𝑡 power constraint 

 

where 𝑈 𝑡 , 𝐿 𝑡 , 𝐺 𝑡  are cumulative functions such as 𝑈 𝑡 =

 𝑢 𝑠 𝑑𝑠
𝑡

0
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Constraints:  

 Demand Response: 0 ≤ 𝑈 𝑡 − 𝑈 𝑠 ≤ 𝐺 𝑡 − 𝐺 𝑠 , ∀𝑠 ≤ 𝑡 

 Perfect battery constraints: 𝐿 𝑡 ≤ 𝐵0 + 𝑈 𝑡  
𝑈 𝑡 − 𝐿 𝑡 + 𝐵0 ≤  𝐵 

 

 

Given (known) signals:  

 The load 

𝐿 𝑡 =  ℓ 𝑠 𝑑𝑠
𝑡

0

 

 Allowed consumption 

𝐺 𝑡 =  𝑔 𝑠 𝑑𝑠
𝑡

0

 

 

To be determined: 

 Battery initial charge 𝐵0 

 Max battery capacity 𝐵 

 Schedule (consumption from grid) 

𝑈 𝑡 =  𝑢 𝑠 𝑑𝑠
𝑡

0

 

Omniscient Problem 
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Main Result 

Theorem 

 There exists a feasible schedule if and only if 
 

 
𝐵0 ≥ sup

𝑡
 𝐿 𝑡 − 𝐺 𝑡

𝐵 ≥ sup 
0≤𝑠≤𝑡  

(𝐿 𝑡 − 𝐿 𝑠 − 𝐺 𝑡 + 𝐺(𝑠))
 

 

 Moreover, if this is the case, then there exist a “minimal” and a “maximal” 
schedule: 

𝑈∗ 𝑡 = 0 ∨ sup
𝜏 ≥  𝑡

𝐺 𝑡 − 𝐺 𝜏 + 𝐿 𝜏 − 𝐵0  

 
𝑈∗ 𝑡 = 𝐺 𝑡 ∧ inf

𝑠 ≤ 𝑡
𝐺 𝑡 − 𝐺 𝑠 + 𝐿 𝑠 + 𝐵 − 𝐵0  

 
𝑈∗ 𝑡 ≤ 𝑈 𝑡 ≤ 𝑈∗ 𝑡 , ∀𝑡 ≥ 0 

 

 The maximal schedule is causal & corresponds to the greedy policy 
(maximizes battery charge) 
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Service Curve Approach to Demand Response 

Assume we do not know the control signal 𝐺 𝑡  

Instead: service curve contract [Le Boudec, Tomozei, ISGT-EU’11] 
𝐺 𝑡 − 𝐺 𝑠 ≥ 𝛽 𝑡 − 𝑠 , ∀0 ≤ 𝑠 ≤ 𝑡 

𝛽 𝑡  = superadditive function. 

Example: 

 At most 30 mn of interruption total per day 

 Or reduction to 
𝑧 𝑚𝑎𝑥 

2
  for 60mn total per day 

 

 

 

 

 Similar theorem  closed form condition on 𝐵, 𝐵0 + min/max schedule 
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Service Curve + Arrival Curve 

Assume we don’t know the load 𝐿(𝑡) either! 

Instead, 𝐿(𝑡) is constrained by a subadditive arrival curve: 

𝐿 𝑡 − 𝐿 𝑠 ≤ 𝛼 𝑡 − 𝑠 , ∀0 ≤ 𝑠 ≤ 𝑡 

Smallest arrival curve – obtained via min-plus deconvolution: 

𝛼 𝑡 ≔ sup
𝑠≥0

 𝐿 𝑠 + 𝑡 − 𝐿 𝑠  

𝐺(𝑡) is well behaved (according to superadditive service curve): 

𝐺 𝑡 − 𝐺 𝑠 ≥ 𝛽 𝑡 − 𝑠 , ∀0 ≤ 𝑠 ≤ 𝑡 

 

Theorem 

For all (B ≥)𝐵0 ≥ 𝐵∗ ≔ sup
𝑠
{𝛼 𝑠 − 𝛽 𝑠 }, there exists a feasible 

online (causal) schedule, valid for all loads and control signal 

compatible with 𝛼 ⋅  and 𝛽 ⋅  respectively. 
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Application: Transparent DR for data centers 

Akamai data set [Qureshi et al, SIGCOMM 2009] 

- Traffic at Akamai (millions of hits over 24 days) 

- Measured power consumption of a desktop (SPEC) 

 

 

 

 

 

- Uniform repartition of tasks => consumption of one server 

#14 



Empirical arrival curve 

𝛼𝑚 𝑡 ≔ sup
0≤𝑠≤𝑇𝑚𝑎𝑥−𝑡

 𝐿 𝑠 + 𝑡 − 𝐿 𝑠  

 

 

 

 

 

 

 

 Intuitively = worst observed day 
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Choosing a SC contract and a battery 

 Interruption time = 𝑡0 

 Maximum power =  𝑧𝑚𝑎𝑥 

 Required battery charge = 𝐵∗ 
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1h/24h 

Service 

interruption 



A run of the system using the greedy policy 
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Conclusion 

Another application of Network Calculus: Smart Grids 

 Theoretical results for perfect battery 

 

Practical battery sizing problem 

 Easy to compute 

 

Ongoing work 

 Realistic battery model (losses, aging, …) 

 

#18 


