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Performance Analysis of Multihop Wireless Network
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Fading Channel Capacity

e Channel capacity [Shannon 1948]
C(y) = Wlog(1 +1)

e v = 4|h|? for fading channels

@ Channel gain h is a complex r.v.

Q: How do fading channel properties affect multihop
network performance?



Network Model
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Fluid-flow traffic, discrete time

Arrival and service are independent
o I.i.d. cross traffic at each node

@ Time-varying random service that is equal to the
Instantaneous channel capacity

Cly) =Wlog (g()), v =lhe|?

Computing this service distribution is hard!



Related Work: Multihop network performance analysis

o Simplified channel models
o FSMC model [Wang and Moayeri 1995][Sadeghi et al 2008]

e more than two states models may not be tractable
e not easily extended to multihop networks

o ON-OFF model
o tractable but very simplified model
o used in queuing theory [Ishizaki 2007], network calculus
[Ciucu 2011], effective bandwidth [Hasan,Krunz,Matta 2004]

o Effective capacity [Wu and Negi 2003]

e log-MGF of the channel capacity

o tractable only for low SNR where log(1 4 ) ~ ~
e Physical layer models [Hasna and Alouini 2003]

e outage probability for AF wireless relay network
e expression for MGF of end-to-end SNR
e not suitable for network analysis



Network Calculus

A D
e (min, +) dioid algebra —
e Backlog: B(s) = A(0,s) — D(0,s)

@ Delay: W(s) =inf {u >0: A(0,s) < D(0,s + u)}

e Dynamic server [Chang 2000]

A(0,1)

D(0,t) > ggt{A(O’ u) + S(u,t)}

delay =1(s) /D(0,1)
C dd ;

=A% 5(0,t)

backlog = B(s)

e Network service: 5 t

Snet(T,t) = Sl * SQ K ooee ok SN(T, t)



Network Analysis in Bit Domain

Bit domain
o Arrivals and departures are measured in bits
e For fading channels, service is given in terms of log(g(7:))

e Distribution of S is not easy to work with



SNR Domain
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@ Service in terms of g(7:) rather than log(g(y:)) — more
tractable

@ SNR service S(7,t) = Hﬁ;ig(%) resides in the
SNR domain



SNR Domain

Transfer domain
(‘SNR domain’)
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@ Service in terms of g(7:) rather than log(g(y)) — more
tractable

e SNR service S(7,t) = Hf;i g(7i) resides in the
SNR domain




Our Approach

Transfer domain
(‘SNR domain’)

log(X)

Bit domain @f) —P@—* 4’@—> D(tD

@ SNR domain is governed by (min, x) dioid algebra
o Network SNR server

Snet(T,1) =S1 @ Se ® -+ - ® Sy(7, 1)



(min, x) Network Calculus

Service: S(7,t) = Hf;i 9(vi) A _>@—> D

Arrival: A(r,t) = []ZL e

=T

Departure: D(0,t) > A®S(7,t) =infr<u<i {A(T,u)S(u,t)}

Backlog: B(t) = log (éggg)

Delay: W (t) = inf{u > 0:.A(0,t) < D(0,t +u)}



Computation of & ® Sy

Mellin transform: My (s) = E[X*7!]

For two independent servers

t
M31®82(5a7-7 t) < ZM$1 (SaTa U) : MSz(Svuat)

u=T

For N i.i.d. fading channels

N—-1+t—r7
t—T1

Msnet (5’7_7 t) < ( ) ) (MQ(V) (S))t_T) Vs <1

e Moment bound: Pr(X >a) <a *Mx(1+s), Ya,s >0



Main Result: Statistical Performance Bounds

Define

min(7,t)
M(s,7,t) = Z Ma(l+s,u,t) - Ms(1—s,u,T)

u=0

e Backroc: Pr(B(t) > b°) < e, where

b = mf{ (log M(s, t,t) — loga)}

s>0

e DELAY: Pr(W(t) > w®) < e, where

inf {I\/I(s,t+w5,t)} <e

s>0



Cascade of N i.i.d. Rayleigh Channels

o Service for Rayleigh channels

o g(y) =1+7vy=1+7h?
o |h| ~ Rayleigh r.v.
e For ii.d. Rayleigh fading channel

t—1
Ms(s,7,t) = (61/7"7571F(3,ﬁ*1))
e Arrivals: (o(s), p(s)) bounded arrivals [Chang 2000]
Mu(s, 7, t) < el D@ Emntals=) g 5

o This traffic class includes Markov-modulated processes,
effective bandwidth, etc.



Performance Bounds of NV Rayleigh Channels

Define: )
V(s) éesﬂ(s)el/%—y_sl“(l — s, %)

e BackLoG: Pr(B(t) > b

net) < g, where

byt = gg {a(s) — é(Nlog(l —Vi(s))+ logs)}

e DELAY: Pr(W(t) > w®) < e, where

(ol huto(s) o~
| T V0 <



Numerical Results for N Rayleigh Channels

Model parameters

o At=1ms

W =20 kHz

(0, p) bounded traffic
o =50kb

p =0 to 60 kbps

5 =0 to 40 dB

N =1 to 100

We used deterministically bounded traffic, hence, the only
source of randomness is the fading channel!



Backlog Bounds for N Rayleigh Channels

@ bl VS. ¥
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e c=10"1
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Backlog and Delays
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Conclusions

New approach to analyze cascade of fading channels

Analysis in SNR domain using (min, x) dioid algebra

Use Mellin transform and moment bound to compute
end-to-end bounds

Application to cascade of i.i.d. Rayleigh channels

o Explicit bounds in terms of the physical channel parameters
e Bounds scale linearly in N

(min, x) dioid algebra has potential applications in models
with time varying channel models



Thank you
Q& A



Delay bounds

(iii) e(w) vs. EtoE delay
— p =20 kbps
— Effect of N on the

violation prob. at low
SNR is huge!
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Fading Channels With Cross Traffic

o Leftover SNR service: Adt) D, (t)

5(r.1) L
So(T,t) =
Ac(T,1) Ao(t) _» Dy (1)

e Dynamic SNR server:

MSO(S’T7 t) = MS/AC(‘S?Tv t) = MS(S,T, t) : MAC(2 - 5,7, t)

@ N-node:

Ms

o,net

(s,7,1) <el=9)Noel1=9) (N Sl T)

t—T1

' (Mg(w)(3)6(1_5)'ﬂc(1—s))t*T, s<1



Bounds of Rayleigh Channels With Cross Traffic

@ End-to-end Backlog of the through flow

}

bg,net(t) < iI>1f(; {ao(s) + Nog(s) — é [N log (1 — VO(S)) + loge

@ Delay bound, we estimate for w® > 0

(1= Vo(s)™

{ ¢5(—po(8)wtao(s)+Noc(s))
inf
s>0

- min {1, (Vo))" (we)Nl}} <e

where,

Vo(s) = e 0Pl /335T (1 = 5,571)



Numerical results
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