
Nettle: Declarative Event-Driven Network Control

Andreas Voellmy

Yale University
Joint work with Paul Hudak

Computer Communications Workshop 2011

Andreas Voellmy (Yale) Nettle CCW’11 1 / 24

SDN & OpenFlow

Software-Defined Networking

Move functionality into software-defined programs which users can
change easily.

Separate basic packet processing from higher-level logic:

Simple, flexible forwarding plane;
Complex, user-defined control software.

Applications: building new systems (data center networking, etc),
re-engineering old systems to make them more manageable.

There are a variety of approaches to introducing programmable
network components:

OpenFlow
Software routers, e.g. Click, Quagga, Xorp
Declarative Networking (Loo et al)

Andreas Voellmy (Yale) Nettle CCW’11 2 / 24

SDN & OpenFlow

Language-based Solution to the Configuration Problem

Configurations are brittle; Millions of lines of configuration files in many
networks.

Provide a higher level language that allows admins to describe the network
behavior in a way that is comprehensible to them

Implement a network controller that guarantees to correctly implement the
user program.

Examples:

Ethane/FSL; Casado et al.; Simple declarative security policies.

Resonance; Feamster et al.; Dynamic security policies.

Andreas Voellmy (Yale) Nettle CCW’11 3 / 24

SDN & OpenFlow

OpenFlow

Standard API/Interface to L2/L3 packet processing functionality.

Logically centralized controller, implemented on standard server.

Programmable control with commercial-quality hardware; current
implementations include NEC, HP.

Andreas Voellmy (Yale) Nettle CCW’11 4 / 24

SDN & OpenFlow

OpenFlow - A Few Details

Switch has forwarding rules consisting of (condition, action) pairs.

Condition matches on packet headers

Actions include forward on one or more ports, broadcast, modify
headers, etc.

Switch looks for matching condition; if match, update counters,
perform action; otherwise send packet to controller.

Controller installs forwarding rules at any time, but typically in
reaction to packet...

+ API to get hardware config, traffic stats, link stats, etc.

Andreas Voellmy (Yale) Nettle CCW’11 5 / 24

Nettle

Nettle Vision

Allow users to describe network behavior in a single coherent program,
expressed in a declarative style.

Adopt methodology of domain specific languages (DSLs) to capture
network abstractions.

Use functional reactive programming (FRP) to provide a declarative
method of programming dynamic, reactive behavior.

Andreas Voellmy (Yale) Nettle CCW’11 6 / 24

Nettle

Nettle Software Architecture

OpenFlow

Haskell

Nettle/OpenFlow

Nettle/FRP
T
ra

ffi
c

E
n
g
in

ee
ri

n
g

R
o
u
ti
n
g

C
o
n
tr

a
ct

s

S
ec

u
ri

ty

..
..

..
..

.

Andreas Voellmy (Yale) Nettle CCW’11 7 / 24

Nettle

Functional Reactive Programming (FRP)

A functional approach to programming reactive systems.

An alternative to traditional callback-based imperative event-driven
systems.

An FRP program is a causal function that determines the output
signal in terms of the input signal.

Evaluate the function incrementally, interleaving input and output.

Andreas Voellmy (Yale) Nettle CCW’11 8 / 24

Nettle

Nettle Examples: Signals

time

proc ()→ do
t ← time −≺ ()
returnA−≺ sin t

proc ()→ do
t ← time −≺ ()
x ← integral −≺ 1 + sin (2 ∗ t)
returnA−≺ sin t + x

2 4 6 8 10

2

4

6

8

10

Andreas Voellmy (Yale) Nettle CCW’11 9 / 24

Nettle

Nettle Examples: Signals

time

proc ()→ do
t ← time −≺ ()
returnA−≺ sin t

proc ()→ do
t ← time −≺ ()
x ← integral −≺ 1 + sin (2 ∗ t)
returnA−≺ sin t + x

2 4 6 8 10

2

4

6

8

10

Andreas Voellmy (Yale) Nettle CCW’11 9 / 24

Nettle

Nettle Examples: Signals

time

proc ()→ do
t ← time −≺ ()
returnA−≺ sin t

proc ()→ do
t ← time −≺ ()
x ← integral −≺ 1 + sin (2 ∗ t)
returnA−≺ sin t + x

2 4 6 8 10

2

4

6

8

10

Andreas Voellmy (Yale) Nettle CCW’11 9 / 24

Nettle

Nettle: Events
repeatedly 1 1

proc ()→ do
e ← repeatedly 1 1−≺ ()
returnA−≺ [n + 1 | n← e]

proc ()→ do
e1 ← repeatedly 1 1−≺ ()
e2 ← repeatedly 1.5 1−≺ ()
returnA−≺ e1 ‘merge‘ e2

repeatedly 1 (λm→ m + 2)

countBy2 = proc ()→ do
e ← repeatedly 1 (λm→ m + 2)−≺ ()
accum 0−≺ e

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

Andreas Voellmy (Yale) Nettle CCW’11 10 / 24

Nettle

Nettle: Events
repeatedly 1 1

proc ()→ do
e ← repeatedly 1 1−≺ ()
returnA−≺ [n + 1 | n← e]

proc ()→ do
e1 ← repeatedly 1 1−≺ ()
e2 ← repeatedly 1.5 1−≺ ()
returnA−≺ e1 ‘merge‘ e2

repeatedly 1 (λm→ m + 2)

countBy2 = proc ()→ do
e ← repeatedly 1 (λm→ m + 2)−≺ ()
accum 0−≺ e

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

Andreas Voellmy (Yale) Nettle CCW’11 10 / 24

Nettle

Nettle: Events
repeatedly 1 1

proc ()→ do
e ← repeatedly 1 1−≺ ()
returnA−≺ [n + 1 | n← e]

proc ()→ do
e1 ← repeatedly 1 1−≺ ()
e2 ← repeatedly 1.5 1−≺ ()
returnA−≺ e1 ‘merge‘ e2

repeatedly 1 (λm→ m + 2)

countBy2 = proc ()→ do
e ← repeatedly 1 (λm→ m + 2)−≺ ()
accum 0−≺ e

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

Andreas Voellmy (Yale) Nettle CCW’11 10 / 24

Nettle

Nettle: Events
repeatedly 1 1

proc ()→ do
e ← repeatedly 1 1−≺ ()
returnA−≺ [n + 1 | n← e]

proc ()→ do
e1 ← repeatedly 1 1−≺ ()
e2 ← repeatedly 1.5 1−≺ ()
returnA−≺ e1 ‘merge‘ e2

repeatedly 1 (λm→ m + 2)

countBy2 = proc ()→ do
e ← repeatedly 1 (λm→ m + 2)−≺ ()
accum 0−≺ e

Andreas Voellmy (Yale) Nettle CCW’11 10 / 24

Nettle

Nettle: Events
repeatedly 1 1

proc ()→ do
e ← repeatedly 1 1−≺ ()
returnA−≺ [n + 1 | n← e]

proc ()→ do
e1 ← repeatedly 1 1−≺ ()
e2 ← repeatedly 1.5 1−≺ ()
returnA−≺ e1 ‘merge‘ e2

repeatedly 1 (λm→ m + 2)

countBy2 = proc ()→ do
e ← repeatedly 1 (λm→ m + 2)−≺ ()
accum 0−≺ e

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Andreas Voellmy (Yale) Nettle CCW’11 10 / 24

Nettle

Nettle: Signals to Events, Events to Signals

proc ()→ do
c ← countBy2 −≺ ()
hold 0−≺ c

proc ()→ do
t ← time −≺ ()
edge −≺ (sin t > 0.5)

switch (proc ()→ do
t ← time −≺ ()
e ← edge −≺ t > 2
returnA−≺ (sin t, [constant 2 | ← e])

1 2 3 4 5 6

2

4

6

8

10

Andreas Voellmy (Yale) Nettle CCW’11 11 / 24

Nettle

Nettle: Signals to Events, Events to Signals

proc ()→ do
c ← countBy2 −≺ ()
hold 0−≺ c

proc ()→ do
t ← time −≺ ()
edge −≺ (sin t > 0.5)

switch (proc ()→ do
t ← time −≺ ()
e ← edge −≺ t > 2
returnA−≺ (sin t, [constant 2 | ← e])

2 4 6 8 10

-1.0

-0.5

0.5

1.0

Andreas Voellmy (Yale) Nettle CCW’11 11 / 24

Nettle

Nettle: Signals to Events, Events to Signals

proc ()→ do
c ← countBy2 −≺ ()
hold 0−≺ c

proc ()→ do
t ← time −≺ ()
edge −≺ (sin t > 0.5)

switch (proc ()→ do
t ← time −≺ ()
e ← edge −≺ t > 2
returnA−≺ (sin t, [constant 2 | ← e])

1 2 3 4 5 6

0.5

1.0

1.5

2.0

Andreas Voellmy (Yale) Nettle CCW’11 11 / 24

Nettle

Nettle: Network Control

A Nettle controller has signals and events as inputs and command events
as output.

initSF = proc network → do
returnA−≺ [clearTables switchID | SwitchJoin switchID ← network]

floodSF = proc network → do
returnA−≺ [send p flood | Packet p ← network]

controller = proc network → do
clear ← initSF −≺ network
flood ← floodSF −≺ network
returnA−≺merge clear flood

Andreas Voellmy (Yale) Nettle CCW’11 12 / 24

Nettle

Nettle Network Control - Install Rules

rulesSF = proc network → do
returnA−≺ [insertRule s (anyPacket =⇒ flood)

| SwitchJoin s ← network]

Andreas Voellmy (Yale) Nettle CCW’11 13 / 24

Nettle

Nettle Network Control - Learn Host Locations

hostLocationsSF = proc network → do
let keyVals = [((switch p, source p), port p) | Packet p ← network]
accumMap −≺ keyVals

rulesSF = proc network → do
hostLocs ← hostLocationsSF −≺ network
returnA−≺ [rule p sp dp

| Packet p ← network,
sp ← maybeToEvent (lookup (source p) hostLocs)
dp ← maybeToEvent (lookup (dest p) hostLocs)]

where rule p sp dp
= insertRule

(switch p)
(inPortIs sp ∧ sourceIs (source p) ∧ destIs (dest p)

=⇒ sendOnPort dp)

Andreas Voellmy (Yale) Nettle CCW’11 14 / 24

Nettle

Nettle Network Control - Learn Host Locations

controller = proc network → do
inits ← initSF −≺ network
rules ← rulesSF −≺ network
floods ← floodSF −≺ network
returnA−≺merges [inits, rules, floods]

Andreas Voellmy (Yale) Nettle CCW’11 15 / 24

Nettle

Nettle: Mathematical Network Control

Switch
p3, f3

p1
p2, f2

Address split: 0 6 u(t) 6 1; low addresses on on port 2, high on port
3.

Change u proportional to error: u̇ = ke, whence

u(t) = k

∫ t

0
e(τ)dτ + u0

Andreas Voellmy (Yale) Nettle CCW’11 16 / 24

Nettle

Strategy Expressed in Nettle

u = proc (f2, f3)→ do
let error = 0.5− f2 / (f2 + f3)
i ← integral −≺ error
returnA−≺ k ∗ i + u0

Andreas Voellmy (Yale) Nettle CCW’11 17 / 24

Nettle

Nettle Implementation

Nettle has been implemented and tested with real OpenFlow switches.

Our single-threaded, sequential server serves 60,000 flows per second
on a 2.5 GHz Intel Core 2 Duo with 4GB memory.

According to estimates (Casado et al), this should be adequate for
networks of over 105 nodes.

Andreas Voellmy (Yale) Nettle CCW’11 18 / 24

Nettle: Ongoing & Future Work

Ongoing & Future Work: High Level Abstractions

Security

Previous systems (Ethane, FSL) have provided a high-level,
declarative language for static security policies, but don’t allow
dynamic security policies.

Consider:
”A user becomes banned when they exceed 5 day average bandwidth
of 100Gb, at which point they may no longer use the network, until
they are reinstated by an administrator, at which point the ban is
lifted and their normal policy is applied.”

Goal: Integrate static policy rules with dynamic, reactive state in a
single high-level declarative language.

Andreas Voellmy (Yale) Nettle CCW’11 19 / 24

Nettle: Ongoing & Future Work

Ongoing & Future Work: Scaling

To scale to large networks, replicate controllers and distribute work.

Fortunately, parallelism is plentiful: packets arriving from different
hosts can generally be processed independently.

But programming distributed systems is hard.

Can we exploit this parallelism and keep simple programming model?

Solution: use transactional memory; allows programmers to easily
convert a sequential controller into a correct, scaleable concurrent
controller by adding ’atomic’ annotations.

Andreas Voellmy (Yale) Nettle CCW’11 20 / 24

Nettle: Ongoing & Future Work

Ongoing & Future Work: Scaling

Scaling results for some simple controllers:

2 3 4 5 6 7
Switches

0.05

0.10

0.15

0.20

0.25

0.30

Throughput per switch

Sequential

RSVP

Learn

Flood

Andreas Voellmy (Yale) Nettle CCW’11 21 / 24

Nettle: Ongoing & Future Work

Future Work: Interdomain Routing

Some problems with BGP:

Policy language too limited.

Bad interactions between IGP with BGP.

Solve this by designing a controller that:

Speaks BGP to external peers (drop-in replacement).

Allows a very flexible policy language (not restricted to BGP’s
decision process)

Can be composed with IGP routing algorithms securely, i.e.
impossible to misconfigure.

Build on the work on Routing Control Platform (RCP) (Caesar et al)

Andreas Voellmy (Yale) Nettle CCW’11 22 / 24

Nettle: Ongoing & Future Work

Conclusion

SDN will help us build new systems, and reengineer old systems to
make them more manageable.

Nettle is a high-level declarative language for programming OpenFlow
controllers.

Future work will develop DSLs addressing high-level network concerns,
and will provide tools for scaling controllers to large networks.

Thank you!

Andreas Voellmy (Yale) Nettle CCW’11 23 / 24

	SDN & OpenFlow
	Nettle
	Nettle: Ongoing & Future Work

