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What is the Problem?

- _SOCI&U media is rapldly gaining Fake IDs: Can we trust the social media
Importance battlefield?
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Regular people organizing themselves through social media are credited
with propelling the wave of anti-government protests across North Africa
and the Mideast in recent weeks.

= Forums: We start new threads and embed our videos. Sometimes, this means kickstarting
the conversations by setting up multiple accounts on each forum and posting back and forth
between a few different users. Yes, it's tedious and time-consuming, but if we get enough
people working on it, it can have a tremendous effect.




User Identities & Social Networks
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User Identities

m User identity
= Amount of information released by the identity

Other
party’s
reaction

m Level of cooperation garnered by the identity

m Information released
= Attributes such as photos, address, and other markers

m Linkages with other identities
= Prior cooperation with other identities

m Cooperation garnered
= Context dependent signaling



User ldentity Types

m Fixed ldentities
= Owner: costly to change

m Others: easy to discover &
cooperate

m Social Pseudonyms

m Owner: costlier than
pseudonyms

m Others: easier than
pseudonyms

m Pseudonyms
m Owner: easy to change

m Others: costly to discover &
cooperate

Social Pseudonyms

Is a collection of pseudonyms that
are connected to each other by
social links
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Advantages of Social Pseudonyms?

m Compare fixed, pseudonyms, and social pseudonyms using
evolutionary games

m Strategies available for the players:
® Image score (reputation score)
m Pay your dues (PYD)
m Pavlov (cooperate when both players using the same strategy)
m Tit-for-2-Tat (defect after two consecutive defections from others)

m Two classes of players:
m Whitewashers (always defect and change ID afterwards)
m Discriminators (play using the strategy)

m Cost used in evaluation:
m Effort to evict whitewashers



Reputation (Image) Score

m Pseudonym:

m Discriminators have to cooperate proactively without knowing lot of
iInformation about other players

m Discriminators take more “risk” to evict whitewashers
m StackExchange sites might be an example of this behavior?

m Social Pseudonym:

m Discriminators need to cooperate only when they have lot of
information about other players

m Discriminators take less “risk”
m Characteristic of a tightly coupled society!



Reputation (Image) Score

Aweragge Total Payoff of Discriminators

Social Pseudonyms: discriminators are

able to evict whitewashers sooner
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PYD (Pay Your Dues)

m Pseudonym and Social Pseudonym both have the same

preference

= Need more information about other player to cooperate
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Average Total Payoff of Discriminators

PYD (Pay Your Dues)

Social Pseudonym still evicts whitewashers
faster than the normal pseudonym
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Awerage Total Payoff of Discriminators

Tit-for-2-Tat

Very forgiving strategy. Both schemes suffer
because whitewashers are not punished promptly
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Social Pseudonym still evicts whitewashers
faster than the normal pseudonym



How to use Social Pseudonyms?

m Privacy issues:
= Node privacy: Social pseudonym does not create an issue here
m Link privacy: major problem

m Data ownership problem: who owns the friendship links?



Centralized Social Pseudonym
Construction

Social Pseudonym Generation




Centralized Social Pseudonym

Construction

Table 5.1 Datasets characteristics for size 1000

Max. Degree | Avg. Degree | Avg. clustering | 7y (Pow
Shortest coefficient | Law Expo-
Path Len. nent)
Facebook 107 15.24 3.54 0.44 2.10
Flickr 427 45.21 2.33 0.48 1.81
LiveJournal | 183 15.3 3.68 0.58 1.83
Orkut 345 27.37 3.36 0.64 1.34
Table 5.4 Datasets characteristics for size 10,000
Max. Degree | Avg. Degree | Avg. clustering | v (Pow
Shortest coefficient | Law Expo-
Path Len. nent)
Facebook 521 29.2 3.39 0.26 2.44
Flickr 3789 144.05 2.42 0.3 2.23
LiveJournal | 501 16.21 4.21 0.42 2.26
Orkut 439 25.27 3.91 0.47 2.81




success Ratio

Centralized Social Pseudonym

Construction

Social Mavigation Success Ratio in Facebook Datasets
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TriballD

m Goals:

m Make identity independent of the service provider (e.g., Facebook
like services)

m Provide full control to the users
m Belong or not belong
m Disclose or not disclose

m Use “crowds” to blend in

m Basic Idea:
m Users create “tribes”
m Others join one or more tribes
m Tribes gain reputation or trust depending on member activity



How to create TriballDs?

m Familiar stranger:
m Not friend nor friend-of-friends

m Concept introduced by Stanley Milgram in a 1972 paper
= Denotes “weak links”
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Issue keys so participants can identify
other strangers at a later time



How to create TriballDs?

m Users either create a tribe themselves or join an existing tribe

= Information regarding familiar strangers can be shared with others in
the tribe

m Atribe has structure: founder, elders, juniors, and newcomers
= Information dissemination policies can be different in different tribes

m Tribes “self select”

Listen to
elders

Equitable
exchange




How to use TriballDs?

m Primary purpose:
m Recognize other users
m Filter information created by other users

Same tribe
Trusted tribe
Untrusted tribe
Distrusted tribe

m Other applications:
m Poll trusted neighborhood?




How to deploy TriballDs?

m TriballD providers
= Run by individuals via a cloud appliance
m Use OpenlD to deliver the TriballD to relying parties
m Should be highly available

m Relying parties
m Consuming service for TriballDs
m Get preferences or context from TriballD provider



Summary

m User identities in an important problem
m Many proposals already

m \WWhat is new here?



