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Background

® Energy demand is intrinsically “elastic” but:
e Customers today are shielded from price-aware market decisions

e Balance requirement: The market is biased towards controllable generation

® Vision: Control the load more so that it can use less predictable and

controllable (green) generation

® Demand Side Management and Demand Response

* Two prominent ideas — two opposite sides of the control

spectrum: P
¥,
® [ oad Control Through Curtailment =

Advancing but not new

® Priced Based Load Control / Real Time Pricing ,%\;‘
SN
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Direct Load Control

® Goal: keep the generation/ demand balance in emergencies

® Interruptible Load Programs (since the 70s)

° Only good for appliances that can be interrupted
(HVAC)

° Signal to turn off for a pre—determined interval in

emergency situations and peak load hours

¢ Events cannot happen frequently as decisions are not

accounting for the inconvenience of the customers
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Various pricing schemes

® Time of Use: predetermined (variable during the day)

° Designed years beforehand — no actual real-time control over
demand

® (Critical Peak Pricing: TOU except for the duration of critical
peak events (only emergency!)

® Real-time Pricing:
éRequires communication of a price Signal

(see e.g.,[Choi et al,98],[Samadi et al,10]...)

éRequires Home Energy Management Systems (HEMS)
(see e.g., [Han and Lim,2010],[Paradiso et. Al, 2011])
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Drawback: Real-time price feedback

Constraints

Demand Market price

2

Price Setting

Entity

® Requires extensive knowledge about customer behavior: On flat

rates, customers are much more predictable

® Energy is not delivered instantly in packets, current price will

affect usage for the next few hours (complexity!)
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Research Objective

In the context of popular DSM efforts
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Objective of the work

® Pricing is complex and requires extensive research
® Direct control is good for emergencies only
® The gap:
® A control architecture that accounts for the quality of the

service delivered, while guaranteeing to balance load and

generation under transmission constraints

® Instead of interrupting the job of appliances, we choose to

schedule when they start their jobs while accounting for the

QoS.
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Classification of loads for scheduling

® Type 1: Delay insensitive — known duration
Electrical Vehicles (EVs), washers, dryers
Inconvenience is proportional to delay

® Type 2: Delay sensitive — duration unknown
Lighting, entertainment systems

® Type 3: Dynamical systems — duration varies

depending on state evolution

HVAC

® In this presentation we will only talk about type 1
® Type 3, requires a different control scheme

® Type 2, requires local energy storage
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Digital Direct Load Scheduling

Model for the network control interaction
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4 ™
Key Idea: Unbundle the load and schedule

® The load offered to the grid (complex phasor) is the sum of random

contributions from each appliance

L(t) unscheduled
Capacity spuasssgssnd ; TILLLLL
P == - = R Ls(t) scheduled
v A4 rasss i \ t‘l' )

® Basic assumptions

® Smart loads last a finite time, with random shape that has finite degrees of

freedom =2 lossy compression in a finite number of codes per load type
® Basic idea:

° Delay and reassemble appliance contributions optimally to shape the load
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Main characteristics of our solution

e How? Customers agree to release the control of the time at

which their delay insensitive smart appliances turn on
o Voluntary program where customers join to:
® Receive cheap green energy, cheaper than TOU or RTP

. They are also rewarded directly for their inconvenience

(proportionally to their delay)
® Energy is cheap because the DSM allows to opportunistically

use local renewables

® Cellular Architecture for scalability
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Modeling appliance energy use

® The evolution of energy use by any type-1 smart appliance is

specified in a parameter vector C

® For a given C the load phasor corresponding to an appliance

that starts its job at time O is represented by the function

g(t; C)

® For EVs (J (t? C) is approximately real and with a nearly
rectangular shape that depends on the Charge amount to fill

® Qur ideas are valid for arbitrary g (t? C)
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Model for the aggregate load

® The load can be decomposed in two parts

L(t) = Ls(t) + LT(t)

Smart Load / Tradltlonal [oad

® SMART LOAD ARRIVAL PROCESS (non-stationary) +code

a(t) Zu(f —t) 0, iid ~ f(O)

® The scheduled load has the optimal td > tﬂ’

Zg(t—t C)
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Digital Direct Load Scheduling:
Step 1 - Analog to Digital Load Mapping

® (Goal: Find a tractable model to communicate control

information and reassemble the optimal load process
® Uplink: Communicate (t? ; C@,)
* Quantize in time: step /\
® C/’s are quantized through a mapping \P(C@) onto Q codes
Cqy g=1,...,0Q
* Appliances divided into queues based on Oq
® The control unit decides the departures from the queues: FIFO
® Discrete arrival and departure processes (g ( / A)

@ an(i(d q (Hé@gm Cg@ggx)esponding to queue “q”




Synthesis of the load from departures

The load corresponding to activating the scheduled

appliances 1S approximately

Q oo
iS(t) = S: S:[dq(fA) — dg((0 = 1)A)]g(t — LA Cy).

=1 =00 s i upcoming epoch
aq((A) dg(£L
J L
I

S
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Rates of Uplink and Downlink are Modest

® Suppose that the network delay is D discrete epochs

® Then the appliance arrival can be coded using as side

information the message arrival index / ;

® The code:
p; =4 — [ p =4 — 6D
pd €40,...,D — 1}

1
Ryurms(f) = Z)\(EA) log,(DQ).
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EV activation: Downlink Feedback

Arrival Process Clq(t)

 Scheduled

l—l_ . Departures

T,00) (A

T,(0) = max{T < 0 :a,(7) < d;*"(¢)}.

Messages are completely anonymous (uplink and downlink)
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How do we choose Q7
Finally a new rate distortion problem!

® Per queue distortion in the load synthesis

Yo = f f 9 (t:2) — g (1:C) 2 folw)dtda
t=0 JzeQ-1(C,)

® The total average distortion is

Q
Xtot < Z)\?a}{){q
g=1

® A reasonable optimization Q

min (), s.t. Z Ao Xg SOXH,
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Decision model

What does the optimization take into account?
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Costs

® Inconvenience cost (experienced by the community, not

individuals)

DCI(t) = [ h | Cr(a(r) —d(r))||, dr.

o Cp=diag|Cp;....Cpo] weighs queues differently
(ditferent QoS)

® When time is discretized:

DCI(fyA) = ||Cp i[a(m) —d(LA))

(=10

1

® Cost of deviation from available power (power purchased on
the day ahead + renewables)
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4 ™
The Scheduling Optimization

o A sequential decision maker that determines the schedules for the

appliances over a sliding finite horizon (NA)

® Objective: minimize the expected increment in the accumulated cost of

operation over the time horizon

® Uncertainty: arrival of smart loads, traditional load, renewables, price

® The DDLS has:
® Predictions of local marginal prices (LMP) for deviating from the day ahead

bid at the particular load injection bus
® The statistics of both smart and traditional loads

® Predictions of available local (green) generation

® Output: adecision matrix D = [d({y).d(lo +1),....d(ly + N)]

i

o N-1 dummy decision vectors to account for the future
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Mathematical formulation of the D

e
!

D* = argmin E4[Cost of retail entity in real time| =

D Day ahead bid
bo+N Renewable
argmin > Ea{Ce(Lr(f) + Ls(t. D), B*(0), R(é’){ DCI(fy, D)}
t=lo \ Power cost ' \
st dy(0—=1) <dy(0) < a,(0);  dy(N) = ay(N) Delay cost

DLS:

™

d(0)eN q=1,...,Q, L=1ly,.... Lo+ N

Example of typical deviation cost :

CQ(LT + LS, B, R) = $uP(B + R — LT — L5)+ + $down(LT + LS’ — B+ R)-{-
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Linear Programming Approximation

* Certainty Equivalent Controller = LP
11}1)11 |Cpv [P —Tvee(D)]|1 + ||(Cr & I)[vec(AL) — vee(D1)]|4

s.t. vec(DY) <vec(Al), (I @ J vee(DY) =0, vec(D!) > 0,

where

D = [d(to),....d(to+T)]. A=la(ly).....a(lo+T)]. P =[P(ty),....P(lo+T)]

-----

Cpy = Diag[Cyy(to). Cao(lo +1)..... Cap(lo+T)], Cp=Diag[Cpy.....Cpgql.
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Preliminary results

A few simulations. . ..
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Numerical Results - LP
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18k Electric Vehicles

0 < Charge time < 8
hours

Optimization is run
every 15 minutes

Charge code
quantization step = 15
minutes

Arrival process is
Poisson with constant
rate A =3 arrivals/each
15 minutes for each
queue (32 queues)

Solver: Certainty
equivalent controller
that uses LP to schedule
the Electric Vehicles

Look-ahead horizon = 8
hours

For fairness, the number
of scheduled appliances
is equal in the two
profiles and no arriving
appliances is delayed
beyondt=50h




Wrap up!
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Components of our architecture

Communication and modeling portion

e Traffic model

* A way of communicating requests and receiving feedback digitally
® We capture inconvenience

Control portion:

* Optimize the schedule by grouping a number of loads that are
scheduled together in service queues. Based on:

0  Wholesale market price

o Safety constraints

o Available local green generation
o Inconvenience of customers

Generation Market Interface: '_'_'_

@ ® Interacts with the central power grid
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Conclusions

® We described a method to realize efficiency for the

customer by allowing the smart loads requests to be

scheduled
® Basic principle:
® Unbundle and digitize the load — do not store energy, store

requests!
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Future Work

® How does the cell participate in the wholesale energy market
® Optimum Day-ahead Bid - Dispatch strategy by ISO
® Real-time Bids
® Game model to study the equilibrium
® Currently, we only cover certain types of loads that have a
pre-known job cycle like EVs and Washing Machines
® HVAC — we think we can do better than interrupting
® Televisions and Hair Dryers?
® (Questions we want to answer
® What is the optimum size of these cells?
® Do they cooperate with each other?
® Who owns the cell?
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Thank you!!
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