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Wind power over land
(outside Antartica): 

70 – 170 TW

Solar power over land:
340 TW

World power demand:
16 TW

Electricity demand:
2.2TW

Installed wind capacity
128 GW
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Uncertainty of renewables

High Levels of Wind and Solar PV Will 
Present an Operating Challenge!

Source: Rosa Yang



Challenges of uncertainty 

Matching supply and demand
Market as well as engineering challenges

Demand response
Matching adaptable loads to uncertain 
supply
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Features to capture
Wholesale markets

Day ahead, real-time balancing 
Renewable generation

Random
Demand response

Real-time control (through pricing)

day ahead balancing renewable

LSE

users

Load Serving 
Entity



Related works

Demand side
Charging of Electric vehicles [Clement-Nyns et al. 
2010], [Pang et al. 2011]
Coordinated scheduling of different appliances 
[Pedrasa et al. 2010], [Mohsenian-Rad et al. 2010]
No explicit consideration of supply, renewables

Supply side
Unit-commitment problem with random generator and 
line outages [Bouffard-Galiana-Conejo, 2005]
Wholesale market with uncertainties [Pritchard-
Philpott-Zakeri, 2010]



Model: user

User i (or appliance i) consumes xi(t) in 
period t
Utility function: Ui(xi) where
Consumption constraints:

Models of appliances (AC, electric vehicle, 
entertainment system, battery, etc.) [Li-
Chen-Low’11]
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Model: user

User i (or appliance i) consumes xi(t) in 
period t
Utility function: ui(xi(t)) in period t
Consumption constraints:
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Model: LSE (load serving entity)

Power procurement
Day-ahead power:

decided a day ahead 

Renewable power:
Random variable, realized in real-time t-

Real-time balancing power:
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Model: LSE (load serving entity)

The minimal cost in period t, given Pd(t), 
Pr(t), and x(t):=(xi(t), �i), is 

( ), ( ) 0
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Model

Goal
Choose supply Pd(t) (day-ahead) and demand 

xi(t) (real-time) to maximize expected welfare

where

Features of the problem
Multi-timescale decisions; uncertainty; 
requiring distributed algorithms.
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Dynamic-program formulation

(T+1)-stage DP
Day-ahead: Choose
Real-time: At t-, choose xi(t)

: ( ( ), 1,2,..., )d dP P Tτ τ= =

Day-ahead t-
t = 1,2,…, T



Dynamic-program formulation

(T+1)-stage DP
Day-ahead: Choose
Real-time: At t-, choose xi(t)

: ( ( ), 1,2,..., )d dP P Tτ τ= =

Day-ahead

dP

t-
t = 1,2,…, T

State:
Input:

0

Reward: 0



Dynamic-program formulation

(T+1)-stage DP
Day-ahead: Choose
Real-time: At t-, choose xi(t)

: ( ( ), 1,2,..., )d dP P Tτ τ= =

Day-ahead
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t-
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State evolution:

Remaining 
demand( ),ix t i∀



Dynamic-program formulation

(T+1)-stage DP
Day-ahead: Choose
Real-time: At t-, choose xi(t)

: ( ( ), 1,2,..., )d dP P Tτ τ= =

Day-ahead

dP

t-
t = 1,2,…, T
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Input:

0

Reward: ( ( ), ( ); ( ))t d rW x t P t P t0

(1)
( 1) ( ) ( )

i i

i i i

R R
R t R t x t

=
+ = −

State evolution:

'

Terminal reward:
if ( 1) 0
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Distributed algorithm

Algorithm 1
Main idea: solve a deterministic problem in each step, 
using the conditional expectation of Pr. Apply the 
decision at the current step.
One day ahead, decide Pd

* by solving

Distributed implementation (primal-dual algorithm)

At time t- where t=1,2,…,T, decide x*(t) by solving

where 
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Performance

Thm: Algorithm 1 is optimal if
Cost functions and utility functions are quadratic
Constraint is changed to

Optimizations never hit non-negativity constraints 
(Proof: An extension of Linear Quadratic Stochastic 

Control)

Thm: Assume that utility functions are 0, Pr(t) 
are independent. And 

Then the optimality gap is 
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Numerical results

T=24 slots, N=4 users
Cost functions

Renewable energy uniformly 
distributed, with mean:

Utility function

Consumption constraints
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Numerical results

With Algorithm 1:

Demand shaping Welfare
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Effect of renewable on welfare

( ; , ) : ( ) ( )r r rP t a b a t b V tμ= ⋅ + ⋅

mean

Renewable power:

zero-mean RV

( )* ,J a b

Maximum welfare

Theorem
increases in a, decreases in b
increases in s

( )* ,J a b
( )* ,J s s



Conclusion

Energy procurement and real-time 
demand response with renewables

Multi-timescale optimization
Uncertainties of supply and demand
Decentralized computation

Future work
Network constraints



Thank you!

Questions and comments?
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