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Background 
 Energy demand is intrinsically “elastic” but: 

 Customers today are shielded from price-aware market decisions 

 Balance requirement: The market is biased towards controllable generation 

 Vision: Control the load more so that it can use less predictable and 

controllable (green) generation 

 Demand Side Management and Demand Response  

 Two prominent ideas – two opposite sides of the control 

spectrum: 

 Load Control Through Curtailment  

 Advancing but not new 

 Priced Based Load Control / Real Time Pricing 
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Direct Load Control 

 Goal: keep the generation/demand balance in emergencies 

 Interruptible Load Programs (since the 70s) 

Only good for appliances that can be interrupted 

(HVAC) 

 Signal to turn off for a pre-determined interval in 

emergency situations and peak load hours 

 Events cannot happen frequently as decisions are not 

accounting for the inconvenience of the customers 
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Various pricing schemes 

 Time of Use: predetermined (variable during the day) 

 Designed years beforehand – no actual real-time control over 
demand 

 Critical Peak Pricing: TOU except for the duration of critical 
peak events (only emergency!) 

 Real-time Pricing:  

Requires communication of a price signal  

(see e.g.,[Choi et al,98],[Samadi et al,10]…)  

Requires Home Energy Management Systems (HEMS)  

(see e.g., [Han and Lim,2010],[Paradiso et. Al, 2011]) 
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Drawback: Real-time price feedback 
 

 

 

 

 

 

 

 

 Requires extensive knowledge about customer behavior: On flat 

rates, customers are much more predictable 

 Energy is not delivered instantly in packets, current price will 

affect usage for the next few hours (complexity!) 
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Research Objective 

In the context of popular DSM efforts 
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Objective of the work 
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 Pricing is complex and requires extensive research  

 Direct control is good for emergencies only 

 The gap: 

 A control architecture that accounts for the quality of the 

service delivered, while guaranteeing to balance load and 

generation under transmission constraints 

 Instead of interrupting the job of appliances, we choose to 

schedule when they start their jobs while accounting for the 

QoS. 
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Classification of loads for scheduling 

Type 1: Delay insensitive – known duration 
 Electrical Vehicles (EVs), washers, dryers  

 Inconvenience is proportional to delay 

Type 2: Delay sensitive – duration unknown 
  Lighting, entertainment systems 

Type 3: Dynamical systems – duration varies 
depending on state evolution 
 HVAC  

 In this presentation we will only talk about type 1  

Type 3, requires a different control scheme  

  Type 2, requires local energy storage  
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Digital Direct Load Scheduling 

Model for the network control interaction 

10 CCW '11 (Hyannis, Cape Cod, MA) 



Key Idea: Unbundle the load and schedule  

 The load offered to the grid (complex phasor) is the sum of random 

contributions from each appliance 

 

 

 

 

 Basic assumptions  

 Smart loads last a finite time, with random shape that has finite degrees of 

freedom  lossy compression in a finite number of codes per load type 

 Basic idea:  

 Delay and reassemble appliance contributions optimally  to shape the load 

 Unlike curtailing there is no interruption here 
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L(t) unscheduled 
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Main characteristics of our solution 

 How? Customers agree to release the control of the time at 

which their delay insensitive smart appliances turn on 

 Voluntary program where customers join to: 

  Receive cheap green energy, cheaper than TOU or RTP  

 They are also rewarded directly for their inconvenience 

(proportionally to their delay) 

 Energy is cheap because the DSM allows to opportunistically 

use local renewables 

 Cellular Architecture for scalability 
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Modeling appliance energy use 

 The evolution of energy use by any type-1 smart appliance is 

specified in a parameter vector 

 For a given       the load phasor corresponding to an appliance 

that starts  its job at time 0 is represented by the function 

 

 

 For EVs                     is approximately real and with a nearly 

rectangular shape that depends on the charge amount to fill 

 Our ideas are valid for arbitrary  
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Model for the aggregate load 

 The load can be decomposed in two parts 

 

 

 

 SMART LOAD ARRIVAL PROCESS (non-stationary) +code 

 

 

 The scheduled load has the optimal  

Traditional Load Smart Load 
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Digital Direct Load Scheduling: 

Step 1 - Analog to Digital Load Mapping  

 Goal: Find a tractable model to communicate control 

information and reassemble the optimal load process 

 Uplink: Communicate                  

 Quantize in time: step  

 Ci’s are quantized through a mapping                 onto Q codes 

 

 Appliances divided into queues based on 

 The control unit decides the departures from the queues: FIFO 

 Discrete arrival and departure processes 

    and                     corresponding to queue “q” 
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Synthesis of the load from departures  

 The load corresponding to activating the scheduled 

appliances is approximately  
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First upcoming epoch 

CCW '11 (Hyannis, Cape Cod, MA) 



Rates of Uplink and Downlink are Modest 

 Suppose that the network delay is D discrete epochs 

 Then the appliance arrival can be coded using as side 

information the message arrival index 

 The code: 
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EV activation: Downlink Feedback  

Messages are completely anonymous (uplink and downlink) 
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How do we choose Q?  

Finally a new rate distortion problem! 
 Per queue distortion in the load synthesis 

 

 

 

 The total average distortion is 

 

 

 

 A reasonable optimization 
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Decision model 

What does the optimization take into account? 
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Costs 
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 Inconvenience cost (experienced by the community, not 

individuals) 

                                    

                                              weighs queues differently 

(different QoS) 

 When time is discretized: 

 

 

 Cost of deviation from available power (power purchased on 

the day ahead + renewables) 
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The Scheduling Optimization 

 A sequential decision maker that determines the schedules for the 

appliances over a sliding finite horizon (N∆) 

 Objective: minimize the expected increment in the accumulated cost of 

operation over the time horizon 

 Uncertainty: arrival of smart loads, traditional load, renewables, price 

 The DDLS has:  

 Predictions of  local marginal prices (LMP) for deviating from the day ahead 

bid at the particular load injection bus 

 The statistics of both smart and traditional loads 

 Predictions of  available local (green) generation 

 Output: a decision matrix  

 N-1 dummy decision vectors  to account for the future 
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Mathematical formulation of the DDLS: 

Renewable 

Day ahead bid 

Delay cost 

Example of typical deviation cost : 

Power cost 

? 
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Linear Programming Approximation 
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 Certainty Equivalent Controller  LP  
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Preliminary results  

A few simulations…. 
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Numerical Results – LP 

18k Electric Vehicles  

0 ≤ Charge time ≤ 8 
hours 

Optimization is run 
every 15 minutes  

Charge code 
quantization step = 15 
minutes 

Arrival process is 
Poisson with constant 
rate λ =3 arrivals/each 
15 minutes for each 
queue (32 queues) 

Solver: Certainty 
equivalent controller 
that uses LP to schedule 
the Electric Vehicles 
 
Look-ahead horizon = 8 
hours 
 
For fairness, the number 
of scheduled appliances 
is equal in the two 
profiles and no arriving 
appliances is delayed 
beyond t = 50 h 
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Wrap up! 
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Components of our architecture 

 Communication and modeling portion   

 Traffic model  

 A way of communicating requests and receiving feedback digitally 

 We capture inconvenience  

 Control portion: 

 Optimize the schedule by grouping a number of loads that are 
scheduled together in service queues. Based on: 

o Wholesale market price 

o Safety constraints  

o Available local green generation 

o Inconvenience of customers 

 Generation Market Interface:  

 Interacts with the central power grid 
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Conclusions 
 We described a method to realize efficiency for the 

customer by allowing the smart loads requests to be 

scheduled  

 Basic principle:  

 Unbundle and digitize the load – do not store energy, store 

requests! 
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Future Work 
 How does the cell participate in the wholesale energy market 

 Optimum Day-ahead Bid - Dispatch strategy by ISO 

 Real-time Bids 

 Game model to study the equilibrium 

 Currently, we only cover certain types of loads that have a 
pre-known job cycle like EVs and Washing Machines 

 HVAC – we think we can do better than interrupting 

 Televisions and Hair Dryers? 

 Questions we want to answer  

 What is the optimum size of these cells? 

 Do they cooperate with each other? 

 Who owns the cell? 
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Thank you!! 
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