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wind power over land
(outside Antartica):
70-170 TW

Solar power over land:
340 TW

World power demand:
16 TW
Electricity demand.:
2.2TW
Installed wind capacity
128 GW

Source: M. Jacobson, 2011



Uncertainty of renewables
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E\Q Challenges of uncertainty

[1 Matching supply and demand

B Market as well as engineering challenges

[J Demand response

B Matching adaptable loads to uncertain
supply
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@ Features to capture

Wholesale markets

B Day ahead, real-time balancing

Renewable generation
B Random

Demand response

B Real-time control (through pricing)

day ahead renewable

LSE

< Load Serving




@ Related works

[1 Demand side

Charging of Electric vehicles [Clement-Nyns et al.
2010], [Pang et al. 2011]

Coordinated scheduling of different appliances
[Pedrasa et al. 2010], [Mohsenian-Rad et al. 2010]

No explicit consideration of supply, renewables

1 Supply side

Unit-commitment problem with random generator and
line outages [Bouffard-Galiana-Conejo, 2005]

Wholesale market with uncertainties [Pritchard-
Philpott-Zakeri, 2010]



E\Q Model: user
t: 1 2 3 ... T

One day

User 1 (or appliance 1) consumes Xx;(t) In
period t

Utility function: U.(X;) where X; = (X;(t))
Consumption constraints:

AXx. <b
Models of appliances (AC, electric vehicle,

entertainment system, battery, etc.) [LI-
Chen-Low’11]




@ Model: user
t: 1 2 3 ... T

One day

User 1 (or appliance 1) consumes Xx;(t) In
period t

Utility function: u(x;(t)) in period t
Consumption constraints:
X, () < X, (t) < X, (t)
T

X;(t) 2 R,

t=1




@ Model: LSE (load serving entity)

capacity

used
Power procurement

B Day-ahead power: P,(t); €4 (P4(t)), ¢, (P,(1))
O P, (t) decided a day ahead

B Renewable power: P (t); costs

[0 Random variable, realized in real-time t-

B Real-time balancing power: Pb(t);

P, +P,®)+P (1)), x(t)

Day-ahead L 1.2, 1

.............. broversssssnananenns R R R

P, (7)Y 7 P, (t)
decide P, (t), P, (t)



@ Model: LSE (load serving entity)

The minimal cost in period t, given P (1),
P.(t), and x(t):=(x;(t), ;1), IS

C, (x(t), Py (t); R (1)),
after optimizing over P, (t) and P, (t)

Specifically,

C, (x(t), Py (1); P (1)) =

MING 45 0=01C ¢ (Py (1)) + €, (P, (1)) + ¢, (P, (1)) + ¢, (B, (1)}
st. P(t) <P (t),P,(t)+P (1) + PR (1) =D x(t)



@ Model

Goal

B Choose supply P4(t) (day-ahead) and demand
x;(t) (real-time) to maximize expected welfare

ELY W, (x(1), P, (t); P, (1)]
where =

W, (x(t), Py (1); B (1)) = Z u; (%; (1)) = ¢, (x(t), Py (1); P (1))

Features of the problem

B Multi-timescale decisions; uncertainty;
requiring distributed algorithms.



E\Q Dynamic-program formulation

(T+1)-stage DP
B Day-ahead: Choose P, =(P,(7),7=12,...,T)
B Real-time: At t-, choose x;(t)



& Dynamic-program formulation

t=1,2,..., T
Day-ahead t-
......... bovrerrnnrrnrrnnnn | | | |
State: 0
Input: P,
Reward: 0

(T+1)-stage DP
B Day-ahead: Choose P, =(P,(7),7=12,...,T)
B Real-time: At t-, choose x;(t)



S Dynamic-program formulation

t=1,2,..., T
Day-ahead t
......... beeeeeerrnnneerenssnnens] l l : l
State: 0 (R ,Ri(t) A (7)7<t)  Remaining
Input: P, X (1), Vi — demand

Reward: 0 W, (x(t), P, (t); P. (1))

State evolution: R. (1) = R.
R (t+1) = R, (t) - x,(t)
(T+1)-stage DP
B Day-ahead: Choose P, =(P,(7),7=12,...,T)
B Real-time: At t-, choose x;(t)



E\Q Dynamic-program formulation

t=1,2,..., T
Day-ahead t-
......... | I | 5 5
State: 0 (R ,Ri(t) A (7).7<t)  Remaining
Input: P, X (1), Vi — demand
Reward: W, (x(t), P, (t); P. (1)) Terminal reward:
—oo If R.(T +1)>0
0 otherwise

State evolution: R. (1) = R.
R, (t+1) = R, (t) - x,(t)
(T+1)-stage DP
B Day-ahead: Choose P, =(P,(7),7=12,...,T)
B Real-time: At t-, choose x;(t)
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T Distributed algorithm

1 Algorithm 1

B Main idea: solve a deterministic problem in each step,
using the conditional expectation of P, Apply the
decision at the current step.

B One day ahead, decide Pd* by solving

T T
max » W, (X(2),Py (2)i P (7)) st x(r) =R,
(R — =1
[0 Distributed implementation (primal-dual algorithm)

B At time t- where t=1,2,...,T, decide x™(t) by solving

max ZT:WT (X(T), P, (z);P. (¢ |t)) S.t. ZT: X. () > R, (1)

where R, (t) = R;(t-1) - x; (t - 1)



@ Performance

[0 Thm: Algorithm 1 is optimal if
B Cost functions and utility fl,_lrnctions are guadratic
B Constraint is changed to X (t) = R, Vi
t=1
B Optimizations never hit non-negativity constraints

(Proof: An extension of Linear Quadratic Stochastic
Control)

[0 Thm: Assume that utility functions are O, P (t)
are independent. And
c,(P)=c, (P)=P?/2,¢c (P)=0.

Then the optimality gap iIs
T
1

Z o 2 (1)
t=1T _t+1

Variance of P (t)
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@ Numerical results

Target demand

[0 T=24 slots, N=4 users [0 Utility function
[0 Cost functions U ) 2
(X (1)) =—-Ix(1)—z(t
C,(P)=P/2 [0 Consumption constraints
T T
c,(P)=(P*+10P)/2 :
| D ox(t) =D z7,(t), Vi
[0 Renewable energy uniformly 1 —y
distributed, with mean: ] — T = i
7 - : : | g [+ — RS S AV '
‘ —+—— Mean of renewable energy B KOS VOSSR SU SO0 S
] S N A A A T
o T2
sl ] L
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(\Q Numerical results

With Algorithm 1.:

Demand shaping Welfare
T —— T . -1000
—— Total target demand ; . .
40 Actual total consumption | 4 1200 Welfare with Algorithm 1
Available renewable energy Welfare with idealized algorithm
] s S L e 11400
L e L s N gy 11600
8
gy 25 A 2 -1800
2 ¥A i i i Lo
I E— /A A S o R B — . & -2000
. E E E O
E = E E 2
L] B e Y < 2200
R R . N 2400
AN VAR VAR N T 22600
0 i i . i B |
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Time slot t 1 2 3

p: levels of renewable energy
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E\Q Effect of renewable on welfare

Renewable power:
P (t;a,b) :=a- u (t) +b-VrT(t)

mean zero-mean RV

Maximum welfare
J"(a,b)

Theorem
L J*(a,b) INncreases Iin a, decreases in b
N J*(S,S) increases in s




@ Conclusion

Energy procurement and real-time
demand response with renewables

B Multi-timescale optimization
B Uncertainties of supply and demand
B Decentralized computation

Future work
B Network constraints




Thank you!

Questions and comments?
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