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A Measurement Service...

» Accepts measurement requests from applications
o Scalable Sensing Service (S?), ScriptRoute, iPlane
o Example: Azureus BitTorrent
 Measurement request graph
* A measurement request between two nodes is an edge

Number of measurements = |E| =28  Number of measurements = |E| = 34
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Inference Mechanisms...

 May be employed by measurement services
 For N nodes, an inference mechanism takes kN
measurements on average
o Result: All pair end-to-end measurement data
o Vivaldi k=32; GNP k=15
« Example: k=3

Number of measurements = |E| = 28 Nu_mbgr of measurements = |E| = 34
Using inference = k|V| = 3x8 = 24 Using inference = 3x12 = 36
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Partial Inference

1. We do not always need all pair end-to-end measurement data

2.  k may be large
3. Inference reduces accuracy

Number of measurements = |E| = 28
Using inference = k|V| = 3x8 = 24
Inference over all vertices is good

Number of measurements = |E| = 34
Using inference = 3x12 = 36

Using inference only among white
vertices = 6 + 3x8 = 30 < 34

6 direct measurements benefit from
higher accuracy
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This Work...

« Goals
o Make best use of inference mechanisms
o Reduce the number of measurements
o Improve accuracy when possible.

* We determine:
* \When to use partial inference?
* How to handle churn in measurement request graph?
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Problem

« Given a measurement request graph G(V,E), identify a
sub-graph G,(V, E;) such that the number of measurements
taken M is minimized: M = k|V| + (|E| - |E||)

o k|V|| = Measurements taken by nodes in inference
mechanism
o (|E| - |E]) = Direct measurements

* NP-hard problem [Blanton(09]

« E. Blanton, S. Fahmy, G. Frederickson, On the Utility of Inference Mechanisms,
In Proc. of IEEE ICDCS, June 2009.
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k-Core Algorithm

Intuition: A vertex with degree < k should take direct
measurements

Repeatedly remove all vertices with degree < k from the
measurement request graph

Only the remaining vertices participate in inference

Suppose k=3

Blue vertices have degree < 3 and
are removed

k-Core identifies white vertices for
inference
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When is k-Core Sub-optimal?

Every vertex has a degree > k and average degree of the

sub-graph < 2k
k=3 §; Z
Optimal:15
k-Core:18 %

Theorem: Let M, be the optimal total number of
measurements value for a given measurement request

graph G(V, E) and inference parameter k. Let M, be the

number of measurements value using the k—Core algorithm.
Then M, <M_ < 2M,
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Distributed k-Core Algorithm

 Without churn and with initial states as inference
for all nodes, it behaves like the k-Core

* Needs to react quickly to churn (change in
measurement request graph)

* Each node decides for itself if it should participate

In inference.
o Scalable solution

9 PURDUE



Distributed k-Core Algorithm
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Each node maintains:
o State: Inference or Direct
o State and degree of neighbor vertices

Main Idea: Participate in inference if either
o Number of neighbors participating in inference > k
o There are more than 2k neighbors with degree > 2k

The second condition provides stability under churn

State information (in the order of a few bits) is exchanged
among nodes
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Message Passing

Nodes exchange messages:

» Signaling based
o Send messages as soon as the topology changes
o Effectively deal with churn; more accurate
o EXxpensive

* Time step based

Periodically contact neighbors at regular intervals
_ess responsive to churn; hence less accurate
_ess expensive

-How to select time step?

O O O O
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Evaluation: Parameters

Inference parameter k (3-60)
Measurement request graphs

o Graphs representing peers connections in UUSee peer

to peer streaming service |V|=2500, |E|=53000

Synthetic churn
o Poisson arrivals

» Mean inter-arrival time per node 10-130 s
o Pareto staying times

= Min staying time 40-120 s

» Pareto shape parameter 0.5-2.5
Experimental churn
o Arrival and departure of Skype peers
Delays between nodes

o A subset of the MIT king latency dataset (mean RTT 133

ms)
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Number of Measurements

Partial inference is better than complete inference or direct

measurements. k=15
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Extent of Inference

* Higher k — Less inference
e Lower k— More inference
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Percentage of Inference Vertices.
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What Time Step to Use?

« Synthetic churn: Performance decreases with increasing
time step

« Experimental churn: Session length of Skype peers is a
good estimate
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Convergence Time

« Att=300 s, 1/4th nodes leave
« Signaling based messaging: 2-3 seconds to converge
 Time step based messaging: About the same as time step

Measurements
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Messages to Converge

Initially states are all inference or all direct
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Summary

* |dentifying the nodes suitable for inference is an NP-hard
graph problem

A simple approximate solution exists — k-Core algorithm
o Measurements taken are less than twice the optimal

Distributed k-Core
o Scalable solution that works well under churn

* We save measurements by using partial inference

o Depends on k, measurement request graph, and churn
o Time step based on session/staying time
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Thank You

Questions?
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