
The Case for Public Work

Wu-chang Feng Ed Kaiser
Portland State University

{wuchang,edkaiser}@cs.pdx.edu

Abstract—Whether it is port scans, spam, or distributed
denial-of-service attacks from botnets, unwanted traffic is
a fundamental problem in all networked systems. Although
proof-of-work has been proposed as a mechanism for
thwarting such attacks, few proof-of-work systems have
been successfully deployed. One of the problems in the
proof-of-work approach is that the systems that issue and
verify puzzles are typically located at or near the server
edge. Rather than eliminate the denial-of-service problem,
such approaches merely shift the problem from the service
itself to the proof-of-work systems protecting the service.
As a result, adversaries can disable services by flooding
the issuer, by flooding the verifier, or by flooding all of the
network links that lead to the issuer and verifier.

To address this problem, this paper proposes a new
approach for building proof-of-work systems based on
publicly verifiable client puzzles. The system works by
issuing a single “public work function” that clients must
solve for each of its subsequent requests. Because the
work function is publicly verifiable, any network device
at the client’s edge can verify that subsequent traffic will
be accepted by the service. The system mitigates floods
to the issuer since only a single work function needs to
be given per client, thus allowing duplicate requests and
replies to be supressed. The system mitigates floods to the
verifier and across links leading to the server edge by
allowing the verifier to be placed arbitrarily close to the
client adversary.

I. I NTRODUCTION

With the continued presence of spam, scans, and
botnets on the Internet, it is clear that unwanted traffic
still poses significant challenges. One of the problems
is the lack of mechanisms for controlling who or how
someone accesses public services. Once its location is
known, unsolicited traffic can immediately reach any
service. There have been a number of approaches for
combating unwanted traffic with solutions ranging from
indirection [1], [2], [3], [4], filtering [5], [6], [7], capa-
bilities [8], [9], and proof-of-work [10], [11], [12], [13],
[14], [15], [16].

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-0627752.

The above systems have many salient features that
must be incorporated to adequately address the problem
of unwanted traffic. Indirection provides the ability to
hide or dynamically relocate a public service in order
to prevent malicious clients from reaching the service
indefinitely. Filtering is necessary to stop unwanted
traffic as close to the source as possible. Capabilities
are necessary to give services dynamic, fine-grained
control at the request level over access. Finally, proof-of-
work is necessary to ensure adversaries commit as many
resources as they are requesting from a service.

This paper proposes an approach that integrates as-
pects of each of the techniques into a mechanism based
on “public work”. The crux of the scheme is simple.
The service, as part of advertising its location, provides
a publicly verifiable work function that the client must
solve in order to correctly reach the service. A client
must attach a valid answer to this function along with its
service request. If the client does not, then any network
device that has recorded the previous advertisement can
verify that subsequent requests are not wanted by the
service and can then drop them long before they reach
their destination. Since the service itself controls the
difficulty of the work function passed back to the clients,
it can control its reachability at a fine granularity.

II. PUBLIC WORK APPROACH

A. Basic approach

Figure 1 shows the basic approach. In the scheme, as
part of advertising its location, a service also supplies
a source-specific work function whose solution must
be calculated by the client and attached on subsequent
service requests before being given service. The work
function can be delivered either on-demand (e.g. piggy-
backed on DNS replies) or a-priori (e.g. via key inser-
tions into a DHT [3], periodic publishing [17], or pre-
fetching [18]). The novel property of the work function
is that it is publicly verifiable, that is, any network device
that receives the advertisement can determine the validity
of subsequent service requests. In addition, while the



Public work verifier
Service request with invalid or no public work
Service request with valid public work
Service advertisement with public work function

Fig. 1. The public work approach.

work function is easy to generate and verify, it requires
resources to calculate a correct answer. This property
enables devices at the client’s edge to detect and filter out
traffic that is unwanted by Internet services. As shown
in the figure, requests that do not have valid public work
attached are filtered as soon as they reach a network
device that verifies public work.

The public work scheme draws from indirection in
enabling the service to avoid targeted attack by allowing
it to dynamically change its “reachable” locations via
continuous updates to its public work function. In order
to construct a valid request that will reach a service, a
client must have a correct answer to a recent public work
function along with the service location. Furthermore, if
the function is source-specific, the service can control
these “reachable” locations on a per-client basis.

The scheme draws on aspects of filtering by sup-
porting destination-controlled filtering at the edges of
the network. Specifically, filters or verification points
can be placed at any point in the network that receives
both the public work advertisement and the subsequent
request. For example, the first-hop router at the client
could store the public work advertisements and then
check that subsequent requests satisfy it. A service that is
receiving unwanted traffic from particular sources could
advertise to those sources a public work function with
a high degree of difficulty or one without a solution. If
the source chooses to solve the function, it is slowed
considerably. If it ignores the function, then due the
public nature of the advertisement, intermediate network
nodes can drop subsequent requests.

The scheme draws on capabilities by giving the service
complete control over the clients that access it since the
work function can be made specific to the requesting
client. The difficulty of the function directly controls
how clients are given access. The public nature of the
verification allows nodes at the edges of the network to
validate subsequent capabilities.

The scheme also embodies ideas of proof-of-work.
The work function given to the client is a puzzle of
a certain difficulty. The client must solve the puzzle
correctly and attach the answer to a subsequent request
in order to reach the service. The key difference of the
scheme is that the solution to the public work function
or puzzle is publicly verifiable.

B. Sudoku: A Toy Example

As a toy example of a public work function, consider
a system where a service issues ann-digit “Sudoku”
puzzle to each client along with its location. Based on
the amount of resources the service wishes the client to
consume,n is either increased or decreased. Given the
puzzle, clients must then attach a valid solution before
its requests are forwarded. As Sudoku is an NP-complete
problem [19], it is difficult for clients to calculate solu-
tions while it is easy to check valid solutions assuming
the verifier has previously recorded the puzzle. While
Sudoku puzzles are an interesting example, they have
several drawbacks that make them unsuitable for use in
the network. One drawback is that it is unclear how to
efficiently generate appropriate puzzles with configurable
difficulty. Another is that puzzle answers could be reused



amongst clients leading to the potential for off-line
storage and pre-computation attacks.

C. Goals for a Public Work Function

To develop an appropriate public network puzzle, we
first examine ideal goals for one. Formally, a public work
function is any computational puzzle whose answer can
be publicly verified. While many public work functions
might exist, the following four properties are necessary
for a public work function to be practical in this context.

• Fast issuing: Generating the function must add min-
imal overhead to the service advertisement process.

• Fast verification: While finding a solution to the
function must be non-trivial, verifying a solution
must add minimal overhead to request forwarding.

• Flexible binding: The function must be flexible
enough to bind to various scales of communication,
such as packets, flows, or flow aggregates.

• Limited precomputation and replay: The function
must resist precomputation and replay attacks.

D. A Novel Public Work Function

To meet the above requirements, we propose a new
class of public work functions calledtargeted crypto-
graphic hash function reversal. In its simplest form,
the service attaches a per-client random numberNC and
difficulty DC with its service advertisement. The client
must then calculate an answerA such that:

SHA1(A,F,NC)≡ 0 mod DC

whereF represents flow properties of the subsequent
request such as the addresses and ports of the source
and destination. In its use here, SHA1 is assumed to
be a one-way function that has uniformly distributed
random output. It must be one-way so that finding the
unknown parameterA involves a non-trivial search. It
must also have uniformly random output so that the
solver is expected to tryDC distinct values forA before
finding a value that satisfies the equation. Note that the
function itself changes on a per-request basis withF ,
forcing distinct client requests to calculate new answers.
While a client might simply reuseF on subsequent
requests, such duplicates are easy to identify and drop at
the client edge using techniques such as Bloom filters.

In this construction, the solver must back-out the
message that produces a given digest, commonly re-
ferred to as a preimage attack. The construction thus
exploits the hash function’spreimage-resistantproperty.
The message to be hashed is created from the concate-
nation of the puzzle parameters (the answer, the flow,

IV size Input size Hash effort
20 bytes 64 bytes 1144 cycles

TABLE I
SHA1 HASH COMPRESSION FUNCTION SPEEDS.

and the random number). Since the input size of most
hash functions is large enough to incorporate all of the
parameters, the construction can be completed in a single
execution of the hash’s internal compression function,
thus making answer verification extremely fast. Although
hash functions have not been proven to have uniformly
distributed output, experimental evidence indicates that
many of them do [20].

The function meets each of the requirements:

• Fast issuing: The issuer generates a single random
numberNC and a difficultyDC to issue a new work
function to a particular client. The random number
NC is periodically updated to maintain freshness.
The per-client difficultyDC can be obtained via a
simple table lookup or a counting Bloom filter [21].

• Fast verification: The verifier only needs to perform
a table lookup to retrieve the appropriate work
function (NC, DC) and a single SHA1 hash to check
the answerA in order to determine the validity of
the subsequent communication. Table I shows the
number of clock cycles on a 1.8GHz Pentium 4
system required to execute the SHA1 hash function
in the construction above. The overhead of the hash
is around 1100 cycles (< 1us).

• Flexible binding: The parameters that defineF are
configurable and can include the source and desti-
nation addresses, ports, and other protocol fields.

• Limited precomputation and replay: The validity of
a work function is directly controlled by the service.
Precomputation and replay are limited since the
work function is periodically updated by generating
and advertising a new random numberNC and
difficulty DC.

III. T OWARDS PRACTICAL PUBLIC WORK SYSTEMS

While the public work mechanism is promising, there
are a significant number of research problems that must
be overcome in order to build real systems that can
leverage the approach to effectively reduce unwanted
traffic.



A. The granularity problem

One of the key issues that must be considered iswhat
to protect with public work. Because the parameterF
in the work function can use any number of properties
in the subsequent request, the mechanism is flexible and
can accommodate numerous approaches. For example,
one could use public work functions to protect specific
content by attaching them to items such as URIs, to
content advertisements in peer-to-peer networks like
Freenet [22], or to keys in DHTs [2], [3], [23], [24].
Another way public work could be used is to protect
TCP connection setups by attaching work functions to
the TCP handshake [14], [25]. Finally, public work could
be used to protect the location of services themselves by
attaching them to beacons in SOS and Mayday [1], [4]
or to DNS [26].

B. The issuing problem

Another fundamental problem in building public work
systems is how to protect the issuer itself against denial-
of-service. The public work approach provides two
salient features that are useful against such attacks. The
first is that issuing a public work function consists of
advertising a per-client random numberNC and difficulty
DC. This makes the issuing mechanism rather trivial
and makes implementations of the public work issuer
efficient and difficult to overwhelm. The second is that
the client only needs to be given a single, up-to-date
public work function from the issuer. The function, while
only given once, must then be solved for each new
request for service by the client. Because a legitimate
client only needs to be issued a single public work
function, a large number of duplicate requests to the
issuer from a malicious client can be easily identified and
dropped at the network edge. An adversary attempting
to disable the issuer using a botnet can only do so
using a single request per compromised machine. Such
a restriction requires the adversary to compromise an
enormous number of machines in order to sustain an
attack against the issuer. Still, for any system using the
public work approach, it is important to understand the
number of machines an adversary must compromise in
order to completely shut down access to the issuer by
legitimate clients.

C. The delivery problem

Related to the issuing problem is how public work
functions are delivered to clients. There are a range
of options that could be considered based on what is
being protected. The public work function could be

embedded in URIs or HTTP headers, attached to TCP
SYN/ACKs [25] or TCP puzzles [14], or included in
DNS advertisements. It could also be delivered via a
completely separate protocol or via new ICMP protocol
messages. The choice of delivery impacts the ability
to handle floods and spoofing. For example, consider
a service that embeds a public work function within
TCP SYN/ACKs. An adversary might flood the ser-
vice with spoofed TCP SYN packets from a target
victim. Assuming the issuer ignores duplicate requests
for public work functions, when the target victim later
attempts to get its associated work function, its request
will be dropped. Such a problem does not exist when
considering delivery mechanisms that are preceded by
a three-way handshake. Any public work system must
include a delivery mechanism that ensures that legitimate
clients are always able to obtain their corresponding
work function.

D. The verification problem

Much like floods against the issuer, public work
systems must be able to thwart denial-of-service attacks
against the verifier. The core contribution of the public
work approach is the ability to have any network device,
and in particular, those devices close to the adversary,
perform the verification of work. In addition, because
verification consists of executing the work function
SHA1 with the attached values ofF , NC, and the an-
swer A, the verification process can be made extremely
efficient. In this case, the verifier only needs to look up
the previously recorded public work function (NC, DC)
and ensure that:

SHA1(A,F,NC)≡ 0 mod DC

Assuming F is the flow identifier of the subsequent
request, this requires only a single pass through the
SHA1 compression function. Such an operation can be
performed in under 1µs on a commodity PC platform.

E. The asymmetry problem

While verification is always performed at the server
edge, one of the key challenges in the public work ap-
proach iswhereto place verifiers at the client edge. The
placement of client-side verifiers is driven by the fact that
the verifier must seeboth the public work function and
the subsequent request. Due to the inherent asymmetry
in routing in today’s Internet and the desire to drop
unwanted traffic as close to the source as possible, such
verification would ideally be performed by the client
operating system itself. However, since an adversary can



disable and modify software running on the client, this
approach can be subverted. Another approach would be
to embed the verifier in first-hop routers or at client-side
ingress filters [27]. While such an approach would be
difficult for adversaries to subvert, it requires state to
be kept in the network in the form of per-client public
work functions. An approach that combines the best of
both worlds is to use tamper-resistant code embedded in
hardware at the client. Such a facility is supported by
Intel’s Active Management Technology (AMT) platform
which is included in most modern Intel processors [28].
The AMT platform consists of a separate, secure co-
processor that only runs code signed by Intel. The co-
processor is hidden from both the user and the operating
system and is currently being used to filter outgoing
traffic that has been determined to be malicious and to
securely perform integrity checks on critical software.

F. The difficulty problem

As described earlier, the impact that proof-of-work
systems have on innocent clients often causes them to
fail. From an economic standpoint, in order for a proof-
of-work scheme to be effective, the amount of work
required of the “good guys” and the amount of work
required of the “bad guys” must differ significantly [29].
In particular, due to the sheer number of compromised
systems that exist today, a global difficulty setting is eas-
ily overcome by brute force. Stated slightly differently,
no proof-of-work system can function properly unless
difficulties are properly tailored based on the history
of client usage. With that in mind, one of the design
requirements for public work systems is that there is
a mechanism for the server or issuer to continuously
keep track of per-client resource consumption and to
deliver public work based on this resource consumption.
The accounting mechanism must itself be efficient and
handle large numbers of potential sources [30]. Rough
estimates of the current sizes of “Botnets” indicate that
large networks have up to 100,000 hosts, although this
figure now appears to be decreasing [31]. In addition,
the accounting mechanism must keep track of usage over
long time scales in order to thwart both persistent attacks
as well as shrews [32]. It is an open question whether or
not one can effectively manage the difficulty of public
work functions to thwart all forms of denial-of-service
attacks. Effective algorithms for properly managing per-
client difficulties are essential in order to successfully
deploy systems based on public work and to create long-
term incentives for proper behavior in networks.

G. The replay problem

One problem unique to puzzle systems is the ability
for an adversary to replay previously calculated answers
indefinitely. In the public work system, there are several
ways to address this problem. One would be to imme-
diately replace the client’s current work function with
a much more difficult one whenever a server detects a
client reusing an answer. Another would be to rely on
the verifier at the client edge to detect when individual
answers are being reused and to transparently drop such
requests. While both ways effectively shut down the
attack, they do so at the expense of the issuer and verifier.
Any public work system must address replay attacks and
develop mechanisms for ensuring that long-term replay
of answers is not beneficial to the adversary.

H. The spoofing problem

Although the proliferation of ingress filtering [27],
[33], [34] has made spoofing attacks rare, any public
work system must be able to handle spoofing without
causing service disruption to legitimate clients. There
are several potential ways an adversary can use spoofing
to attack public work systems. As described earlier, the
adversary could spoof requests for work functions from
a large number of clients to a single issuer to either
keep those clients from obtaining a work function or
to disable the issuer altogether. The adversary could
employ a reflector attack [35] and spoof requests for
work functions from a target victim to a large number
of servers to flood the target victim and prevent it
from obtaining any work functions. The adversary could
employ a poisoning attack [36] and spoof the work
function itself to keep a targeted victim from accessing
a particular service by giving it an extremely difficult
function to solve. The adversary could capture the public
work function of a target victim, solve the function,
and spoof large numbers of requests from the victim
in order to drive up the victim’s difficulty. Finally, the
adversary could spoof large amounts of traffic with
bogus answers in an attempt to disable the verifier.
There are several approaches for tackling the spoofing
problem based on what is being spoofed. For example,
connection spoofing on the Internet is typically handled
using sufficiently random sequence numbers and a 3-
way handshake [37], while DNS and web-site spoofing is
handled using public-key cryptography via DNSsec and
TLS [38]. Appropriate mechanisms must be developed in
order to make public work systems resilient to spoofing
attacks.



IV. CONCLUSION

The public work function approach adds two signifi-
cant new features to current proof-of-work systems. To
mitigate denial-of-service attacks against the issuer, its
work functions are given on a per-client basis instead
of a per-request basis. To mitigate floods against the
verifier and the network links leading to the server, it
supports public verification of work that enables network
devices close to the client to drop unwanted traffic.
While there are many fundamental problems that still
need to be addressed before it can be used, public work
is a promising approach for combating the problem of
unwanted traffic in today’s Internet as well as in a “clean-
slate” network design.

REFERENCES

[1] A. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure
Overlay Services,” inACM SIGCOMM, August 2002.

[2] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “In-
ternet Indirection Infrastructure,” inACM SIGCOMM, August
2002.

[3] K. Lakshminarayanan, D. Adkins, A. Perrig, and I. Stoica,
“Taming IP Packet Flooding Attacks,” inHotNets, November
2003.

[4] D. Andersen, “Mayday: Distributed Filtering for Internet
Services,” inUSENIX Symposium on Internet Technologies and
Systems, March 2003.

[5] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker, “Controlling High Bandwidth Aggregates in the
Network,” ACM SIGCOMM CCR, vol. 32, no. 3, July 2002.

[6] M. Handley and A. Greenhalgh, “Steps Toward a DoS-resistant
Internet Architecture,” inACM SIGCOMM Workshop on Future
Directions in Network Architecture (FDNA), August 2004.

[7] D. Yau, J. Lui, and F. Liang, “Defending Against Distributed
Denial-of-service Attacks with Max-min Fair Server-centric
Router Throttles,” inProceedings of IWQoS, May 2002.

[8] T. Anderson, T. Roscoe, and D. Wetherall, “Preventing Internet
Denial-of-Service with Capabilities,” inHotNets, November
2003.

[9] X. Yang, D. Wetherall, and T. Anderson, “A DoS-limiting
Network Architecture,” inACM SIGCOMM, August 2005.

[10] C. Dwork and M. Naor, “Pricing via Processing or Combatting
Junk Mail,” in CRYPTO, August 1992.

[11] A. Juels and J. Brainard, “Client Puzzles: A Cryptographic
Defense Against Connection Depletion,” inNDSS, February
1999.

[12] T. Aura, P. Nikander, and J. Leiwo, “DoS-Resistant Authenti-
cation with Client Puzzles,” inWorkshop on Security Protocols,
April 2000.

[13] A. Back, “Hashcash: A Denial of Service Counter-Measure,”
Tech. Rep., Cypherspace, August 2002, http://www.hashcash.
org/papers/hashcash.pdf.

[14] X. Wang and M. Reiter, “Defending Against Denial-of-Service
Attacks with Puzzle Auctions,” inIEEE Symposium on Security
and Privacy (S&P), May 2003.

[15] W. Feng, “The Case for TCP/IP Puzzles,” inACM SIG-
COMM Workshop on Future Directions in Network Architecture
(FDNA), August 2003.

[16] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, “Host
identity protocol,” February 2007, Internet Draft draft-ietf-hip-
base-07.txt.

[17] M. Handley and A. Greenhalgh, “The Case for Pushing DNS,”
in HotNets, November 2005.

[18] V. Ramasubramanian and E. Sirer, “The Design and Implemen-
tation of a Next Generation Name Service for the Internet,” in
ACM SIGCOMM, August 2004.

[19] T. Yato, “Complexity and Completeness of Finding Another
Solution and Its Application to Puzzles,” Tech. Rep., University
of Tokyo Master Thesis, January 2003.

[20] M. Bellare and T. Kohno, “Hash Function Balance and its
Impact on Birthday Attacks,” inEUROCRYPT, May 2004.

[21] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache:
A Scalable Wide-Area Web Cache Sharing Protocol,” inACM
SIGCOMM, September 1998.

[22] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet:
A Distributed Anonymous Information Storage and Retrieval
System,”Lecture Notes in Computer Science, vol. 2009, 2001.

[23] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakr-
ishnan, “Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications,” inACM SIGCOMM, August 2001.

[24] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network,” inACM SIGCOMM,
August 2001.

[25] D. Bernstein, “SYN Cookies,” http://cr.yp.to/syncookies.html.
[26] P. Mockapetris, “Domain Names: Concepts and Facilities,”

November 1983, RFC 882.
[27] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating

Denial of Service Attacks Which Employ IP Source Address
Spoofing,” RFC 2827, May 2000.

[28] “Intel Active Management Technology,” http://www.intel.com/
technology/manage/iamt/.

[29] B. Laurie and R. Clayton, “‘Proof-of-Work’ Proves Not to
Work’,” in Workshop on Economics and Information Security,
May 2004.

[30] C. Estan and G. Varghese, “New Directions in Traffic Measure-
ment and Accounting,” inACM SIGCOMM, August 2002.

[31] D. Kawamoto, “Bots Slim Down to Get Tough,” November
2005, http://news.com.com/2102-73553-5956143.html.

[32] A. Kuzmanovic and E. Knightly, “Low-rate TCP-targeted De-
nial of Service Attacks (the Shrew vs. the Mice and Elephants),”
in ACM SIGCOMM, August 2003.

[33] F. Baker and P. Savola, “Ingress Filtering for Multihomed
Networks,” March 2004.

[34] R. Beverly and S. Bauer, “The Spoofer Project: Inferring the
Extent of Internet Source Address Filtering on the Internet,” in
SRUTI, July 2005.

[35] V. Paxson, “An Analysis of Using Reflectors for Distributed
Denial-of-Service Attacks,”ACM SIGCOMM CCR, vol. 31, no.
3, July 2001.

[36] K. Huagsness, “DNS Cache Poisoning Detailed Analysis
Report, Version 2,” March 2005, http://isc.sans.org/.

[37] M. Zalewski, “Strange Attractors and TCP/IP Sequence Num-
ber Analysis,” Tech. Rep., Bindview, April 2001, http://razor.
bindview.com/publish/papers/tcpseq.html.

[38] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose,
“DNS Security Introduction and Requirements,” March 2005.


