
A Black-box Router Profiler
Roman Chertov, Sonia Fahmy, Ness B. Shroff

Purdue University

Abstract—Simulation, emulation, and wide-area testbeds exhibit differ-

ent strengths and weaknesses with respect to fidelity, scalability, and man-

ageability. Fidelity is a key concern since simulation or emulation inaccura-

cies can lead to a dramatic and qualitative impact on the results. For exam-

ple, high-bandwidth denial of service attack floods of the same rates have

very different impact on the different platforms, even if the experimental

scenario is supposedly identical. This is because many popular simulation

and emulation environments fail to account for realistic commercial router

behaviors, and incorrect results have been reported based on experiments

conducted in these environments.

In this paper, we describe the architecture of a black-box router profil-

ing tool which integrates the popular ns-2 simulator with the Click mod-

ular router and a modified network driver. We use this profiler to collect

measurements on a Cisco router. Our preliminary results demonstrate that

routers and other forwarding devices cannot be modeled as simple output

port queues, even if correct rate limits are observed. We discuss our fu-

ture work plans for using our data to create high-fidelity network simula-

tion/emulation models that are not computationally prohibitive.

Keywords— simulation, emulation, testbeds, router modeling, router

benchmarking

I. INTRODUCTION

Popular network simulators such as ns-2 [5] model any router

with no Quality of Service (QoS) support using a single queue

for every output port. The input port and switching fabric are

assumed to incur no losses and introduce no processing delays.

This simple model can significantly impact the fidelity of re-

sults when this router is a bottleneck in the simulated network.

Discrepancies between the simulated and deployment behaviors

can be especially large for security experiments (e.g., denial of

service), high bandwidth traffic (e.g., IPTV) scenarios, and net-

work planning/dimensioning experiments (e.g., ISP upgrades).

Our previous results with low-rate TCP targeted denial of ser-

vice attacks (reported in [6]) demonstrate that seemingly identi-

cal tests on various testbeds and on the ns-2 simulator produce

very different results. The discrepancies in the results arise be-

cause routers and other forwarding devices have complex ar-

chitectures with multiple queues and multiple bottlenecks (e.g.,

buses, CPUs) [2] that change in complex ways according to the

characteristics of the workload they are subjected to.

In commercial simulators such as OPNET [17] and OM-

NeT++ [1], detailed and complex models of routers, switches,

servers, protocols, links, and mainframes are provided. How-

ever, the model base needs to be constantly built and validated,

and using complicated models significantly increases computa-

tional cost, hindering scalability.

With network emulation, setups range from emulating large

segments of the network [20], [26] or just artificially shaping a

single link [14]. However, current work in emulation is focused

– Roman Chertov and Sonia Fahmy are with the Department of Computer
Science, 305 N. University St., West Lafayette, IN 47907–2107, USA. Tel: +1-
765-494-6183. Fax: +1-765-494-0739, E-mail: {rchertov,fahmy}@purdue.edu.
Ness B. Shroff is with the School of Electrical and Computer Engineer-
ing, 465 Northwestern Ave., West Lafayette, IN 47907–2035, USA. E-mail:
shroff@ecn.purdue.edu

on connectivity, delays, and link capacities. Critical proper-

ties of Internet forwarding devices such as latencies, maximum

packet forwarding rates, policies, and queue sizes are not accu-

rately incorporated, thus reducing the fidelity of the experiments

that can be carried out on emulation testbeds. These properties

are crucial when dealing with low-to-mid level routers. Com-

pared to core routers, low-to-mid level routers are more per-

formance limited, yet, due to cost, they constitute the majority

of the forwarding devices in Internet edges and enterprise net-

works, and this is where most losses in today’s Internet occur.

Accurately modeling these devices is especially important in the

case of experiments with resource-based attacks, since resource

consumption models used in simulators and emulators are not

representative of today’s commercial routers [6].

To address these fidelity issues in both simulation and emula-

tion, we propose to empirically develop models of real routers

and packet forwarding devices (e.g., a variety of Cisco and Ju-

niper routers). The construction and the validation of our mod-

els will be concurrently performed in controlled lab experiments

to reduce modeling inaccuracies. These models can then be in-

corporated into simulators such as ns-3 (currently under devel-

opment), and testbeds such as Emulab [25], DETER [9], and

VINI [3].

Previous efforts to understand and profile routers and other

devices using black box benchmarking, e.g., [18], [4], [16], [12],

have been conducted in limited settings. Our router models will

achieve higher fidelity by reflecting the specifics of the devices

under diverse conditions. However, a model that is complex and

difficult to validate is not useful. Hence, our model must meet

the following requirements: (i) the model derivation process is

the same regardless of the device; (ii) the model is dynamic, re-

flecting load changes; (iii) model parameters are derived from

actual devices under black box testing; (iv) the model is accu-

rate, but is allowed to miss special cases for the sake of scala-

bility; and (v) the model is not computationally too expensive.

However, before we can develop these models, we need a data

acquisition system. This paper focuses on the architecture of

such a system which we refer to as the Black-Box Profiler or

BBP. BBP was designed with the following considerations in

mind: simplicity, flexibility, and capability of high performance.

Our preliminary experiments with BBP underscore the need for

accurate router models, and demonstrate the feasibility of devel-

oping such models.

The remainder of this paper is structured as follows. Sec-

tion II summarizes related work. Section III gives an overview

of our BBP system. Sections IV and V present the details of

our system. Section VI provides the details of our test setup.

Section VII discusses our results. We conclude in Section VIII.

II. RELATED WORK

Traffic generation, emulation, and black box testing are re-

quired for black box profiling, and hence we summarize related

work on these topics in this section.

A. Traffic Generation

The Harpoon [19] traffic generator uses flow data collected

by Cisco routers to create replay flows. The generated flows do

not use live TCP stacks. Creating highly configurable live (i.e.,

closed-loop) traffic is important for our purposes. One of the

earliest network simulation-emulation tools was VINT [11] – a

part of ns-2. We could not directly use the ns-2 emulation code

as it does not support sending/receiving spoofed IPs (required

for subnet emulation on a single node), and it is data-rate lim-

ited. A recent effort to extend emulation in ns-2 was reported

in [15]. However, the system was not built to handle very high

data rates and extensive packet logging with micro-second pre-

cision, which are important for our measurements. A commer-

cial alternative to generating live TCP traffic is the IXIA-400T

traffic generator [13]. IXIA devices use a proprietary OS and do

not allow changing the types of the TCP stacks, however.

B. Network Emulation

Testbeds such as Emulab [25] and DETER [9] have the advan-

tage of configuring variable sized network topologies via VLAN

capable switches. Such testbeds can be used to create multi-

ple subnets connected to a router. Then, either a PC or a DAG

card [10] can be used to log and time-stamp the traffic. We did

not use these testbeds because the profiling results when using

them would include the delays from these switches connecting

testbed nodes. The delays on these switches can also vary due to

the load from other testbed users, which would make our results

incorrect.

NCTUns [22] is a powerful simulator with sophisticated emu-

lation capabilities, using hooks into the Linux kernel in order to

use as much of the OS code as possible to transmit and capture

packets. NCTUns relies heavily on ipfilter and tun/tap devices

that are provided with the Linux kernel [23]. Since the NCTUns

hooks are tailored to the FedoraCore4 2.6.11 kernel, it is diffi-

cult to use another Linux distribution. The use of the default

Linux IP stack also adds significant overhead and complexity

to the configuration, and is less flexible than the Click modular

router [14], which we thus decided to use in our BBP.

C. Black-box Testing

Black-box router testing is described in [18], [4], [16].

In [18], a router was profiled with a focus on measuring its re-

action times to OSPF routing messages. RFCs 2544 [4] and

2889 [16] describe the steps to determine the capabilities of a

router (e.g., forwarding rate). The RFCs only discuss using

homogeneous traffic for profiling, and do not discuss creating

models based on measurements.

Derivation of a router model from empirical observations is

discussed in [12]. The work derived simple queuing models, but

was not designed to handle loss events, and ignored interactions

at the input ports. In that work, a production Tier-1 router was

used. While this ensures that the router configuration and traffic

are highly realistic, repeatability is not possible in a production

setup. Times-tamping was performed with GPS synchronized

DAG cards [10]. Such devices are very accurate but they in-

crease the setup cost and complexity.

III. SYSTEM OVERVIEW

Figure 1 demonstrates the layout of our BBP infrastructure

connected to a 2-port commercial router. A Symmetric Multi-

processing (SMP) multi-NIC PC is used to emulate subnets that

multiple flows can traverse. The router that is being profiled,

e.g., a commercial Cisco or Juniper router or a programmable

router, is configured to provide routing between the subnets, and

hence switches every packet that traverses the subnets. To min-

imize the measurement error, the BBP system is directly con-

nected to the router. As discussed in Section II, it would be

possible to use a switch or integrate BBP into an Emulab-type

network, but at the cost of an increase in measurement errors.

To create responsive (i.e., closed-loop) traffic, we currently

leverage the ns-2 simulator which provides various TCP stacks

and traffic workload models. We plan to extend our traffic gen-

eration capabilities by reproducing application workloads based

on real-life traces as in [21], [24]. Our custom additions to ns-

2 allow packets from ns-2 to be injected into the test network

and vice versa. Since all the packets originate and terminate

on the SMP PC, we can embed arrival/departure time-stamps

into packet payloads with micro-second precision, without wor-

rying about clock skew/synchronization. The time-stamping of

packets occurs in the network device driver to get an accurate

estimate of the delay. Additionally, we can provide very accu-

rate accounting per packet and per flow to determine delay, loss,

reordering, and corruption. The router configuration and perfor-

mance are implicitly captured in the collected data. To derive

accurate device models for next generation simulators/testbeds

(e.g., ns-3, DETER, VINI), we plan to collect measurements for

various Cisco and Juniper routers, and create prediction equa-

tions via regression analysis.

TCP

TCPSink

UserToClick

ClickToUser

Dev0

Dev1

Router

IP to

NS!2

to IP

NS!2

ACK

DATA

KernelNS!2

Node0

Node1

TAP1

TAP2

NetNode1

NetNode0

Fig. 1. Example of a single TCP flow from the simulator into the network and

vice versa.

IV. NS-2 INTEGRATION

We use the ns-2 simulator [5] for traffic generation since it

provides several TCP implementations that have been validated

by the community. Further, ns-2 provides excellent capabilities

for logging and debugging. In order to use ns-2, we had to make

a number of changes to the simulator as follows.

A. Emulation

The latest version of ns-2.30 [5] has an emulation package

which allows outputting packets from the simulator into the net-

work and vice versa. The default emulation objects make ex-

tensive use of system calls as well as provide packet translation

capabilities from ns-2 to IP and vice versa. The packets from

the network are injected into the simulator via reading sockets

or by capturing packets with libpcap. However, the existing ob-

jects introduce two challenges. First, the performance of libpcap

is limited at high packet rates [8]. Second, it is not possible to

spoof IP addresses in order to create an entire subnet with dis-

tinct flows on a single PC.

To tackle the performance limitations of libpcap, we have by-

passed the Linux IP stack completely and created two devices

that we call ClickToUser and UserToClick. These devices serve

as large circular buffers which allow user space applications to

write packets to the kernel-level Click module and to receive

packets from Click. Such direct access provides several benefits

including low overhead and reception of arbitrary IP packets.

In a simple test, we have been able to read packets from Click-

ToUser at over 800 KPackets/s (Kpps). Similarly, UserToClick

can sustain high rates.

To remedy the difficulty with spoofing, we have created our

own set of emulated objects. Figure 1 shows the flow of TCP

packets through our objects. As before, the ns-2 agents are con-

nected to tap agents; however, the tap agents do not perform any

ns-2 to IP or IP to ns-2 translation. Rather, these agents provide

the necessary information such as IP addresses and port num-

bers. The actual translation is performed by the two network

objects (raw-net and raw-pcap) to which all taps point. The out-

going network object converts ns-2 packets to IP and then writes

them to the UserToClick device. The incoming network object

reads from the ClickToUser device, converts the IP packets into

ns-2 format and then, based on the destination IP to tap object

hash, routes the ns-2 packet to the appropriate tap object. This

new arrangement makes it possible to have many flows with dis-

tinct IPs enter and depart from the simulator.

B. Asynchronous I/O

Currently in ns-2, packet transmission and reception is per-

formed in a synchronous fashion with the help of the TCL sub-

system, resulting in less than optimal performance. Further, any

logging that results in disk writes is problematic, as it can slow

down the main simulation thread, thus reducing real time per-

formance [15].

ASync

Writer
Disk

thread

main ns!2

Net

Reader
ClickToUserRealTime

Scheduler

UserToClick

Logging

Pkts In

Pkts Out

Fig. 2. Relationship between I/O operations and threads in the simulator.

Figure 2 demonstrates the architecture of asynchronous I/O

that we have added to the simulator to boost real time perfor-

mance. There are now three threads of execution in ns-2: (1) the

main simulation thread, (2) the packet reception thread, and (3)

the log writer thread. The main simulation thread is very similar

to ns-2.30 with one exception: it does not check if packets have

arrived. Instead, there is a separate thread that checks if any

packets have arrived and if so, injects them into the main thread.

Since the default ns-2 is single threaded, we took careful steps to

avoid race conditions, while minimizing the number of changes

we had to make. First, we modified the “Packet” class to be

multi-thread (MT)-safe, as it maintains a global packet free list.

Second, we made the scheduler MT-safe. These two changes

allow the packet reception thread to simply schedule the newly

arrived packets in the near future. When the main simulation

thread dispatches the newly arrived packets, these packets are

injected into the simulator.

Since we collect information about all packets, every tap ob-

ject collects information about incoming and outgoing packets.

Storing this information in memory can be cost prohibitive for

long simulation runs. Hence, logging to disk is required. To

avoid blocking the main simulation thread during disk writes,

each tap object maintains two lists of packet data (in and out).

Once a list becomes sufficiently large, the tap agent migrates

the list to the disk writer thread and creates a new fresh list. The

disk writer thread processes the list writes in the order in which

it has received them.

C. Real-Time Scheduler

The default real-time scheduler was inadequate for our pur-

poses since it is based on a calendar structure and is not MT-safe.

Our tests have demonstrated that the Splay scheduler provided

with ns-2.30 yields a much higher insertion/deletion rate com-

pared to the calendar or heap schedulers. High insert/delete rate

is critical for maintaining high packet rates as each packet has

to eventually go through the scheduler.

In addition, we have modified the real time aspect of the

scheduler to remove any sleep calls from the main processing

loop. This results in a trade-off between CPU utilization and

scheduling accuracy. To further increase the performance of the

scheduler, we have added a “catch-up” mode. In the catch-up

mode, the scheduler will try to fulfill all the tasks that must occur

“now” without invoking the gettimeofday system call per event.

In the case when the event rate is higher than the scheduler can

process, the simulation will become non-realtime as the sched-

uler tries to catch up. Unlike [15], we did not use the RDTSC

assembly instruction to reduce the overhead of calling gettime-

ofday. Since our machine running BBP has 4 CPUs, calling

RDTSC could have resulted in non-monotonically increasing

time-stamps.

Our modified version of ns-2 can now process a 70 Kpps UDP

flow that originates and terminates in the simulator. This means

that the system manages 140 Kevents per second in real time.

Additionally, every packet that leaves and enters the simulator

is logged to disk. We believe that this number would be much

higher if ns-2 were decoupled from TCL. However, this is a sig-

nificant undertaking and hence we decided not to proceed with it

at this time. The memory footprint of our modified ns-2 is sim-

ilar to that of a non-modified ns-2, according to the top utility.

V. OS MODIFICATIONS

Generating traffic for collecting measurements is only half of

our task. In order to collect measurements with micro-second

precision, we had to make a few changes to the operating sys-

tem.

Linux Configuration. We used Linux 2.6.16.22 kernel and

configured the timer to run at 1000 Hz to increase clock resolu-

tion. We also selected the option to enable high precision clock

reporting. Finally, to avoid measurement problems, we disabled

APM/ACPI and CPU scaling.

Device Driver. Since we aim to measure packet delays in

the router under test and not in our system, we had to modify

the device driver. This is as close as we can get to the point

where the packets get transmitted or received without requiring

a specialty card. Figure 3 demonstrates the steps we take to

time-stamp packets in the device driver.

Network Device

PCI_DMA_Transfer

TS_out

Chksum

TS_in

Headers

Data

(sec, nsec) = TimeOfDay

ChkSum Fix(...)

1

2

3

4

5

6 TX Pkt

Fig. 3. Time-stamping of packets during a transmit. Time-stamping during a

receive is similar, except the flow is reversed with checksum correction being

the last step.

When a packet arrives, we time-stamp it just before it is sent

to the device via a bus transfer. Since changing the packet pay-

load will result in a corrupted TCP or UDP checksum, we re-

compute a new checksum. To avoid the overhead of computing

an entire checksum from scratch, we embed partial checksums

into the payload. This allows us to only compute the checksum

of the modified region and then add it to the partial checksum to

obtain a correct checksum. Packet reception is done in a similar

fashion.

Click Modular Router. The default Linux IP stack was un-

suitable for our purposes for two reasons. First, the default stack

was not designed to efficiently handle sending/receiving non-

existent IPs to/from a user-level application. Second, the default

stack has several features that we do not need which add over-

head. Hence, we use the Click modular router kernel module.

In Click, it is easy to create a mapper of IPs to real devices as

shown in Figure 1. In order to attach virtual subnets to a par-

ticular device, we have created a source-based routing element.

When packets arrive, we simply direct them into a ClickToUser

element. In case we need to run multiple ClickToUser elements,

we can route incoming packets by destination.

VI. TEST NETWORK SETUP

Figure 4 demonstrates the test setup which we have used for

both simulations and profiling experiments. In the profiling ex-

periments, Node0, Node1, NetNode0, and NetNode1 are logical

nodes on the same PC, while the “Router” is either a cross-over

cable that connects two cards on the PC, or an actual Cisco 3660

router. The Cisco router under test in our profiling experiments

has only two Fast Ethernet ports. The Cisco router was config-

ured with minimal settings to ensure that forwarding between

the ports would happen on a “fast path” without special pro-

cessing. The cross-over cable configuration is used solely for

calibration, in order to determine the latencies due to the net-

work cards. The queue size for all the links has been set to 50

slots; however, in the profiling experiments the queue sizes of

links going to and from the router are dictated by the particulars

of the hardware. We use a PC with quad 1.8 GHz Xenon CPUs

and PCI-E Intel Pro cards to run BBP on.

10ms

100Mbps

100Mbps

0ms

Router

Traffic Agents

 Sinks

 Sinks

Traffic Agents

100Mbps

0ms 10ms

100Mbps

Node1

Node0

NetNode1

NetNode0

Fig. 4. Test topology with two different subnets.

Calibration. Before we can proceed with data collection,

we must determine which network device configuration would

give the best performance and induce the least amount of noise

into the measurements. This measurement noise results from

the network card/bus specifics of our measurement machine.

We had an option to configure polling or interrupt based packet

send/receive. We can also modify the buffer sizes. During ex-

periments with UDP traffic, we encountered no losses when us-

ing polling. When conducting TCP experiments, we noticed

higher drops at the cards when using 80-slot buffers compared

to using 256-slot buffers. Hence, for the rest of experiments we

use 256-slot buffers and polling.

VII. EXPERIMENTAL RESULTS

This section describes the preliminary results we have ob-

tained with a single UDP flow, as well as with 100 TCP flows.

A. Single UDP Flow

Before utilizing complex traffic mixes in router measure-

ments, we conduct a set of baseline experiments with unidi-

rectional UDP constant-rate flows. The experiments were con-

ducted with a cross-over cable or with a Cisco 3660 router

(which has 2 ports). For each experiment, we collected statistics

for 200 Kpackets. We repeated each experiment 10 times and

derived statistics for packet delay in nanoseconds (nsec), includ-

ing the mean, 5th and 95th percentile delays. The packet delay

is computed as the time it takes a packet to go from NetNode0

to NetNode1 or vice versa in Figure 4.

Table I shows the results with a UDP flow of 92-byte sized

packets. The data indicates that for all rates except 70 Kpps, the

cross-over cable gives little variation in the delay. In contrast,

Cisco 3660 routers produce much more noticeable variations

for all packet rates.

Table II gives the delay results when using 1100 and

1400 byte packets at different packet rates. As in the experi-

Test Type 500 pps 10 Kpps 40 Kpps 70 Kpps

Cross-over mean 21162 21119 22079 46000

5th 20000 20000 20000 20000

95th 22000 22000 26000 168000

Cisco 3660 mean 82903 87165 70806 98711

5th 56000 57000 55000 63000

95th 109000 111000 99000 228000

TABLE I

PACKET DELAYS FOR 92 BYTE UDP

ments with smaller packets, the variance on the Cisco router is

higher. There was no loss observed in any of these experiments.

This is because the Cisco 3660 router has a 107 Kpps Max-

imum Loss Free Forwarding Rate (MLFFR), which is higher

than our highest rate of 70 Kpps. We are currently creating a

special limited-capability version of our system that can operate

at much higher packet rates, in order to induce packet losses.

The large variations in packet delays on the Cisco 3660 can

be partially explained by examining its architecture. The Cisco

3600 family has a central CPU with a single bus and interrupt

driven I/O [7]. The non-uniform scheduling of interrupts and

high CPU load can result in highly varying packet forwarding

times.

Test Type 1100 UDP 1400 UDP

500 pps 10 Kpps 500 pps 8000 pps

Cross-over mean 105577 108283 129797 132152

5th 104000 104000 128000 128000

95th 107000 114000 131000 134000

Cisco 3660 mean 270272 274343 323447 341869

5th 243000 249000 297000 328000

95th 297000 298000 350000 354000

TABLE II

PACKET DELAYS FOR 1100 AND 1400 BYTE UDP

Corresponding experiments with ns-2 produce non-varying

delays equal to twice the packet transmission delay (where

transmission delay equals the packet size divided by the link

bandwidth), regardless of the queue size. This is expected since

packets are transmitted twice between the NetNodes, and there

is no link propagation delay or queuing delay, and ns-2 does not

model processing delays.

B. Multiple TCP Flows

We now conduct experiments with 100 long-lived TCP flows.

Node0 and Node1 in Figure 4 generate 50 TCP flows each, des-

tined to each other. We have chosen NewReno with delayed

ACKs and FullTCP agents in ns-2 to generate TCP traffic in

two separate set of experiments. NewReno was chosen because

it is a well-studied and widely deployed TCP stack. We config-

ured theNewReno agents to use close to MTU-sized segments of

1400 bytes. Since FullTCP is similar to Reno TCP in BSD4.4,

we have chosen it for comparison and kept its configuration at

default. Its default segment size is 536 bytes. In both cases, the

ACKs were 96 bytes to fit in our measurement payloads. We

are currently modifying our system to eliminate this additional

payload.

For this set of experiments, we had to slightly modify the

topology in Figure 4 by changing the links between Nodes and

NetNodes to 97 Mbps. We needed to do this because the gener-

ated traffic was over-running the network cards and leading to a

large number of transmission drops. Each TCP experiment was

run four times with a cross-over cable, and then with a Cisco

3660 router. For ns-2, we ran the experiment only once per TCP

flavor, as there is no non-determinism in the simulation. Each

experiment lasted for 240 seconds.

Test Type New Reno TCP Full TCP

Cross-over 0.00003553 0.00003004

Cisco 3660 0.0022 0.0000996

TABLE III

AVERAGE TCP LOSS RATIOS

Table III reports the average loss ratios for this set of profiling

experiments. The reported values represent the average losses

between NetNode0 and NetNode1. In the ns-2 simulations, the

drops only occurred at Node0 and Node1 for both TCP flavors,

as long as the queue sizes for the other links were above 30. No

losses were observed at NetNode0 and NetNode1 in the simula-

tions. It is also interesting to note that for the Cisco 3660, there

was a noticeable change in loss ratios between NewReno and

FullTCP.

To report packet delays, we merge the individual runs and

select data from the 150 second to 230 second mark, in order

to examine the data after all the flows are past the initial slow

start phase. Figure 5 presents the results1. Delay results in the

case of an ns-2 router are simply the sum of queuing delays and

transmission delays. Clearly, the distributions derived from the

physical experiments are quite different in nature. This can be

attributed to the complex nature of today’s routers and physical

devices [2]. Not surprisingly, the choice of TCP flavor and seg-

ment size had a noticeable effect on the simulation and testbed

experiments.

The differences in the delay distributions between the cross-

over and Cisco 3660 scenarios indicate that it is possible to filter

out the noise due to the profiler and represent the router delay

distribution more accurately. We therefore plan to use our mea-

surements to develop higher fidelity router models.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have described the architecture of a router

profiling system which we refer to as BBP. Our system is sim-

ple, flexible, and capable of high performance. The data gener-

ated by our profiler has validated our conjecture that routers are

complex devices which cannot be easily modeled as a collection

of output queues, without accounting for processing delays and

other device-specific bottlenecks.

In the short term, we are conducting profiling experiments

with more realistic traffic mixes, more subnets, TCP SACK sup-

port, smaller measurement information added to each packet,

and incremental instead of partial checksums. In the long term,

we plan to use a variety of Cisco router types for experimenta-

tion. Based on our results, we plan to derive statistical models

of the routers which can be used in simulators/emulators to in-

crease the fidelity of their results. Finally, we plan to integrate

our results with the ns-3 and emulation testbed development ef-

forts.

REFERENCES

[1] OMNeT++. http://www.omnetpp.org/.

1Please note that scales on the graphs are different.

0 2 4 6 8 10 12

x 10
6

0

0.5

1

1.5

2
x 10

6

Delay (nsec)

N
u
m

b
e
r
 o

f
P

a
c
k
e
ts

(a) ns-2 New Reno TCP

0.1195 0.3568 0.594 0.8314 1.0687 1.3059 1.5433 1.7806 2.0179 2.2551

x 10
7

0

2

4

6

8

10

12
x 10

6

Delay (nsec)

N
u
m

b
e
r
 o

f
P

a
c
k
e
ts

(b) Cross-over New Reno TCP

0.1731 0.51 0.8469 1.1837 1.5206 1.8575 2.1944 2.5312 2.8681 3.205

x 10
7

0

2

4

6

8

10
x 10

6

Delay (nsec)

N
u
m

b
e
r
 o

f
P

a
c
k
e
ts

(c) Cisco 3660 New Reno TCP

0 2 4 6 8 10 12

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Delay (nsec)

N
u
m

b
e
r
 o

f
P

a
c
k
e
ts

(d) ns-2 Full TCP

0.5372 1.5796 2.622 3.6644 4.7068 5.7492 6.7916 7.834 8.8764 9.9188

x 10
6

0

2

4

6

8

10

12

14
x 10

6

Delay (nsec)

N
u
m

b
e
r
 o

f
P

a
c
k
e
ts

(e) Cross-over Full TCP

0.5273 1.4901 2.4527 3.4154 4.3781 5.3408 6.3036 7.2663 8.2289 9.1916

x 10
6

0

1

2

3

4

5
x 10

6

Delay (nsec)

N
u
m

b
e
r
 o

f
P

a
c
k
e
ts

(f) Cisco 3660 Full TCP

Fig. 5. Packet delays between the NetNodes for 100 TCP flows.

[2] F. Baker. Re: [e2e] extracting no. of packets or bytes in a router buffer.
Message to ”end2end” mailing list, December 2006.

[3] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In VINI
veritas: realistic and controlled network experimentation. In Proc. of SIG-
COMM, pages 3–14, 2006.

[4] S. Bradner and J. McQuaid. Benchmarking methodology for network
interconnect devices. RFC 2544, http://www.faqs.org/rfcs/rfc2544.html,
March 1999.

[5] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang,
S. McCanne, K. Varadhan, Y. Xu, and H. Yu. Advances in network simu-
lation. IEEE Computer, 33(5):59–67, May 2000.

[6] R. Chertov, S. Fahmy, and N. B. Shroff. Emulation versus simulation: A
case study of TCP-targeted denial of service attacks. In Proc. of Trident-
Com, February 2006.

[7] Cisco Systems. Cisco 3600 series router architecture. http:
//www.cisco.com/en/US/products/hw/routers/ps274/
products tech note09186a00801e1155.shtml, 2006.

[8] L. Deri. Improving passive packet capture: Beyond device polling. In
Proc. of SANE, June 2004.

[9] DETER. A laboratory for security research. http://www.deterlab.net.

[10] Endace. http://www.endace.com/.

[11] K. Fall. Network emulation in the vint/ns simulator. In Proc. of ISCC,
pages 244–250, July 1999.

[12] N. Hohn, D. Veitch, K. Papagiannaki, and C. Diot. Bridging router per-
formance and queueing theory. In Proc. of SIGMETRICS, pages 355–366,
June 2004.

[13] IXIA. http://www.ixiacom.com.

[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
modular router. ACM Transactions on Computer Systems, 18(3):263–297,
August 2000.

[15] D. Mahrenholz and S. Ivanov. Real-time network emulation with ns-2. In
Proc. of DS-RT, pages 29–36, October 2004.

[16] R. Mandeville and J. Perser. Benchmarking methodology for LAN switch-
ing devices. RFC 2889, http://www.faqs.org/rfcs/rfc2889.html, August
2000.

[17] OPNET. Network modeling and simulation environment.
http://www.opnet.com/products/modeler/home.html.

[18] A. Shaikh and A. Greenberg. Experience in black-box OSPF measure-
ment. In Proc. of IMW, pages 113–125. ACM Press, 2001.

[19] J. Sommers and P. Barford. Self-configuring network traffic generation. In
Proc. of IMC, pages 68–81. ACM Press, 2004.

[20] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase, and
D. Becker. Scalability and accuracy in a large-scale network emulator. In
Proc. of OSDI, December 2002.

[21] K. V. Vishwanath and A. Vahdat. Realistic and responsive network traffic
generation. In Proc. of SIGCOMM, 2006.

[22] S. Y. Wang, C. L. Chou, C. H. Huang, C. C. Hwang, Z. M. Yang, C. C.
Chiou, and C. C. Lin. The design and implementation of the NCTUns 1.0
network simulator. Computer Networks, 42:175–197, June 2003.

[23] S. Y. Wang and K. C. Liao. Innovative Network Emulations using the
NCTUns Tool. Nova Science, 2006.

[24] M. C. Weigle, P. Adurthi, F. Hernandez-Campos, K. Jeffay, and F. D.
Smith. Tmix: A tool for generating realistic application workloads in
ns-2. ACM Computer Communication Review, 36:67–76, July 2006.

[25] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar. An integrated experimental envi-
ronment for distributed systems and networks. In Proc. of OSDI, pages
255–270, December 2002.

[26] P. Zheng and L.M. Ni. EMPOWER: A network emulator for wireline and
wireless networks. In Proc. of INFOCOM, volume 3, pages 1933–1942,
March–April 2003.

