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Abstract—In this paper, we quantitatively evaluate how sam-
pling decreases the detectability of anomalous traffic. We build
equations to calculate the false positive ratio (FPR) and false neg-
ative ratio (FNR) for given values of the sampling rate, statistics
of normal traffic, and volume of anomalies to be detected. We
show that by changing the measurement granularity, we can
detect anomalies even with a low sampling rate and give the
equation to derive optimal granularity by using the relationship
between the mean and variance of aggregated flows. With those
equations, we can answer for the practical questions that arise
in actual network operations; what sampling rate to set in order
to find the given volume of anomaly, or, if the sampling is too
high for actual operation, then what granularity is optimal to
find the anomaly for a given lower limit of sampling rate.

I. INTRODUCTION

With threats against Internet security increasing, monitoring

Internet traffic and detecting anomalous traffic, such as DDoS

(distributed denial of service) attacks has become a critical

task in network operations.

Monitoring techniques range from counting the volume of

traffic on a link by using an SNMP MIB [1] to capturing

packets transferred through networks by applying mirroring

at switches and/or routers or tapping the link. The former

method has a drawback in that it provides only the traffic

volume and no information about the source and victim of

the detected anomaly. On the other hand, the latter method

gives rich information but lacks scalability because capturing

a large volume of packets is still difficult and installing cap-

turing devices throughout the whole network is prohibitively

expensive.

Recently, because of its easy implementation and rich infor-

mation for identifying and diagnosing anomalous traffic, flow

monitoring at routers has been used for these purposes [2],

[3]. This method mainly provides 5-tuple of flow information

through the routers. There have been many studies on detect-

ing and diagnosing anomalous traffic using flow monitoring

results [4], [5]. However, in a high-traffic-rate environment,

flow monitoring increases the load on the router. To decrease

this load, sampling has been introduced for flow monitoring. It

is naturally expected that sampling will introduce uncertainty

into the measurement results, so it is necessary to determine

how the detectability of anomalous traffic will be affected by

sampling.

Two recent studies reported the effect of sampling on

anomaly detection [6], [7]. While they comprehensively stud-

ied various sampling methods and anomaly detection methods

using actual anomalies in their data, they don’t give explicit

equations for the relationship between detectability and sam-

pling rate. Thus, there was still no answer for the simple

question, “to detect a 10-Kpps anomaly in normal traffic whose

baseline is 200-Kpps, what is the maximum sampling rate?”

This is important for network operators. In [8], Kawahara

quantitatively evaluate how sampling decrease the detectability

of anomaly in the number of flows. However, to the best of our

knowledge, there have been no studies that provide an answer

to the above question for the anomalies with large number of

packets, which is required for actual network operation.

In this paper, we simply focus on packet-volume based

anomaly, and evaluate the effect of sampling on anomaly

detection. We then derive the relationship among the size of

anomalies to be detected, the statistics of normal traffic, and

the sampling rate. By using the relationship, we provide the

optimal sampling rate or maximum detectable anomaly with

given parameters such as normal traffic statistics. In addition,

we show that by changing the measurement granularity, we

can detect anomalies even with sampled traffic.

The rest of the paper is organized as follows. In section II,

the effect of sampling on anomaly detection is derived the-

oretically and an evaluation of actual traffic data is given.

Then, in section III, under the sampling, which granularity

of traffic monitoring is optimal with given evaluated to detect

give volume of anomalies.

II. EFFECT OF SAMPLING

A. False Negative/Positive Ratio with Packet Sampling

By definition, anomalous traffic is detected by its deviation

from normal traffic behavior or statistics. If sampling changes

the statistics of normal and anomalous traffic flows equally,

then detectability does not depend on the sampling rate.

However, as shown below, while the mean rates of normal

and anomalous traffic decrease linearly as the sampling rate

decreases, the variance of the normal traffic does not decrease

as fast for a very small sampling rate. This is because, sam-

pling itself introduces deviations into sampled traffic. Thus,

sampling increases the relative variance of normal traffic, and

it is possible that the detectability of anomalous traffic is

decreased. Thus, we derive the relationship for this effect.

In the following of the paper, we assume that packets

are sampled using a random packet sampling method, where



packets passing through a certain router are sampled with a

fixed probability independently of other packets being sam-

pled. There is also a representative sampling method such as

systematic sampling, in which packets are sampled from a

packet stream at a fixed interval [9]. However, the results for

random sampling is easily applicable for systematic sampling

and the effect of systematic sampling is smaller than that of

random sampling.

Here, we define the notation.

• Pt: Number of packets in the t-th measurement interval
• Pnt: Number of normal packets in the t-th measurement
interval

• Pat: Number of anomalous packets in the t-th measure-
ment interval. (Pt = Pnt + Pat.)

• m: Mean of Pnt.

• σ2: Variance of Pnt.

• a: Mean of Pat. (We focus on to detect an anomaly that

occurs in a measurement interval. Thus the variance of

anomalous traffic in multiple measurement intervals is not

considered.)

• p: Sampling rate.
• Pt(p): Number of packets sampled in the t-th measure-
ment interval with sampling probability p.

• Pnt(p): Number of packets of normal traffic in the

measurement interval.

• Pat(p): Number of packets of anomalous traffic sampled
in the measurement interval with sampling probability p.

• σ(p)2: Variance of Pnt(p).
• m(p): Mean of Pnt(p).
In this paper, we focus on the volume-based anomaly and

anomalous traffic is judged to occur if the traffic volume

exceeds a threshold based on normal traffic statistics; that is:

Pt > m + cthσ, (1)

where cth determines the degree of deviation from which we

judge that traffic is anomalous.

With this definition, the false negative ratio (FNR) and false

positive ratio (FPR) are expressed as follows (Fig. 1).

FNR = Pr[Pnt + Pat < m + cthσ] (2)

FPR = Pr[Pnt > m + cthσ] (3)

If the distribution function of normal traffic and the size of

the anomalous traffic are given, then both FNR and FPR
can be calculated using the parameter cth. For example, if we

can assume that the normal traffic has a Gaussian distribution1

and that cth = 2.33, then FPR will be 1.0% independently of

the anomalous traffic. As for FNR, if we fix the anomalous
traffic volume to be detected, such as a = 6σ, then FNR is

also determined, such as 0.012%.
Next, we evaluate how FNR and FPR change when

sampling is introduced. First, we define FNR(p) and FPR(p)
for the sampled traffic as follows.

FNR(p) := Pr[Pnt(p) + Pat(p) < m(p) + cthσ(p)](4)
FPR(p) := Pr[Pnt(p) > m(p) + cthσ(p)] (5)

1We give the evaluation on this assumption later.

Fig. 1. Probability distribution functions of traffic for normal and
anomalous periods. Sampled traffic has lower means, but its variances
are not so much lower. Thus, FNR and/or FPR can increase.

By the same explanation as for Eq. (3), FPR(p) is deter-
mined by only the choice of cth. Thus, we focus on FNR(p)
hereafter and evaluate each term of Eq. (4). As for the right-

hand side of Eq. (4), m(p) is simply the scaled-down value of
the packet rate for original traffic,mp. On the other hand, σ(p)
is not only the scaled-down variance of the original traffic,

σ2p2, but also includes the variance introduced by sampling.

The latter term is obtained as mp(1− p) as the variance of m
Bernoulli trials with probability p. Thus, σ(p) is obtained as2

σ(p) =
√

σ2p2 + mp(1 − p). (6)

Next, we evaluate the left side of Eq. (4). If we assume

that Pnt is distributed in a Gaussian manner, then Pnt ∼
N(mp, σ2p2 + mp(1 − p)). Pat is also the result of a
Bernoulli trials and follows a binomial distribution, which can

be approximated by a Gaussian distribution. Thus, with the

same calculation as for Eq. (6), Pat ∼ N(ap, ap(1 − p)).
Therefore, Pnt + Pat is the convolution of two Gaussian

distributions, and

Pnt + Pat ∼ N((a + m)p, σ2p2 + (a + m)p(1 − p). (7)

Therefore, FNR(p) can be written using the cumulative

distribution function for the Gaussian distribution of Eq. (7),

Fa,n(x) as

FNR(p)=Fa,n((a + m)p+cth(σ2p2+(a+m)p(1 − p)). (8)

Here, for the given target FNR∗, the minimum sampling

rate p∗ is obtained by solving the following equation:

Fa,n((a + m)p∗+cth(σ2p∗2+(a + m)p(1 − p))=FNR∗. (9)

2Equation (7) is also mentioned in [7] as the variance of the number of
sampled flows as an assumption. But it can be strictly derived and we show
the derivation in the appendix.



Fig. 2. Fitting the empirical distributions of normal traffic with Gaussian
distributions. X axis is normalized with maximum number of packets.

For example, if FNR∗ is the same as FPR, which is
determined by cth, then by solving Eq. (9), we get

p∗ =
c2
th

a + 2m − 2
√

am + m2 + σ2c2
th

+ 1. (10)

B. Evaluation

We evaluated the results given in previous section by

simulations using actual traffic data.

We used the following two sets of data:

• 1G: Data measured on a 1-Gbps link with an average uti-
lization ratio of 95%. The mean packet rate was 169 kpps
and the standard deviation was 137,313 measured at

1 min. intervals. We used 2 hours of data during working
hours, which can be regarded as being stationary.

• 100M: Data measured on a 100-Mbps link with an aver-
age utilization ratio of 85%. The mean packet rate was
16 kpps and the standard deviation was 62,210 measured
at 1 min. intervals. We used 4 hours of working-hour data,
which can be regarded as being stationary. (Actually, we

remove some apparent spikes to obtain stationary data,

as same as in [6].)

First, we evaluate the assumption of Gaussian distribution

for normal traffic. Fig. 2 shows the results of fitting the

empirical distributions ([Actual]) of two normal traffic with

Gaussian distributions ([Normal]). It can be seen that Gaussian

assumption can be applied for those high-volume traffic as

reported as [10]. It is worthful to mention that the discussion

given in this paper can be easily extended to heavy-tailed

distributions while some equations are not explicitly solved

but numerical calculation is required.

We then evaluated FNRs for various sampling rates. To
verify the detectability Eq. (4), we inserted the synthesized

anomalous traffic whose size was 6σ into the observed traffic
and checked whether the total traffic exceeded the threshold:

m(p)+cthσ(p), where cth = 2.33, so that FPR will be to 1%
(Hereafter, we fix cth = 2.33 unless specifically mentioned
otherwise). By changing the bin into which the anomalous

Fig. 3. Comparison of calculated and simulated false negative ratio

traffic was inserted, we counted the number of misdetections

and calculated the ratio, FNR.
The simulated ([sim] in the figure) and calculated ([calc] in

the figure) FNRs are compared in Fig. 3. Because the data
was 2- and 4-hour data and the total numbers of bins were
120 and 240, respectively, we could not accurately evaluate the
FNRs below about 1 %. However, for the range above 1%,
the FNRs calculated using Eq. (4) accurately predict those
obtained through simulation. We also observed that when the

sampling rates decreased to 1/100, FNR started to degrade

and when the rates were under 1/1000 for 1G data and 1/2000
for 100M data, FNR exceeded 1%. Thus even if anomaly
whose size is 6σ, it can be difficult to detect it with small
sampling rate, while it can be easily detected by eyeballing

the time series data when sampling is not applied,

The reason that the FNR of 1G data was more sensitive to

the sampling rate can be explained using Eq. (7) as follows.

Detectability mainly depends on the ratio of the standard devi-

ation of the normal traffic to the size of the anomalous traffic.

The standard deviation of sampled normal traffic consists of

two terms as shown in Eq. (7). As the sampling rate decreased,

the second term on the right side of Eq. (7), which is the mean

rate of normal traffic, increased relative to the first term. Thus,

the smaller the ratio of the traffic’s variance to its mean, which

is known as the index of dispersion for count (IDC) [11], the

greater the sensitivity of FNR to low sampling rate. Because

1G data has smaller IDC than that of 100M data, FNR can be

relatively degraded with larger sampling rate.

We also ran the simulation by changing the anomaly size for

a fixed sampling rate, p = 1/1000, and found the relationship
between the anomaly size and FNR (Fig. 4). It can be seen

that to achieve an FNR of under 1% with a sampling rate of

1000, the anomaly size should be larger than 5 or 6 times σ,
the standard deviation of normal traffic.

Then, we evaluated the relationship between anomaly size

and sampling rate to achieve FNR=1%. The minimum

anomaly that can be detected with FNR=1% for a given

sampling rate is shown in Fig. 5. Like Fig.4, the anomaly size

was normalized by the standard deviation of normal traffic.



Fig. 4. False negative ratio vs. anomaly size for sampling rate 1/1000

Fig. 5. Anomaly size that can be detected with given sampling rate.

With a sampling rate of 1, the minimum anomaly size was

4.66(= 2×2.33)σ. The same as for the result shown in Fig. 3,
when the sampling rate decreased under 1/100, the minimum
anomaly size started to increase, and when the sampling rate

was 1/10000, the minimum anomaly sizes were 10σ for 100M
data and 12σ for 1G data.

III. MONITORING GRANULARITY

A. Mean and variance of classified traffic and its detectability

In the previous section, we considered only a single time

series of traffic data (packet volume) and detected an anomaly

as a deviation of the time series. In many types of anomalous

traffic, the values of some packet header fields are concentrated

in specific ranges. For example, in DDoS attacks, the destina-

tion IP addresses are, and in scans, the source IP addresses are.

Thus, by counting the number of packets with each particular

field value and making a multiple time series, we should

be able to detect anomalies that we failed to find when we

treated the entire traffic deviation. However, counting traffic

for each source/destination IP address requires a large number

of counters and is impossible in backbone monitoring. Thus,

it usual to aggregate some ranges of the field values and

measure traffic for each aggregated value (e.g., IP address

prefixes). Here, there is a trade-off between detectability and

the aggregation level or the monitoring granularity. In this

section, we evaluate the optimal monitoring granularity in

terms of the mean rate of counters, with given anomaly size

to be detected and sampling rate. Through the evaluation,

we derive some rules, such as “to detect an anomaly of

10 kpps with a sampling rate 1/10000, we must measure the
traffic with granularity of x pps”, which is useful for network
operators.

In determining the granularity in terms of mean packet

rate, we need to have the relationship between the mean and

standard deviation of normal traffic because the detectability

equation, Eq. (4), is based on both the mean and standard

deviation. Here, we assume that the standard deviation of a

counter σm can be written with mean rate m as

σm = cmφ, (11)

where where 0 ≤ φ ≤ 1 and c is a constant.
As for φ, If the time series of non-aggregated traffic (e.g.,

time-series for each destination IP address) are mutually

independent, then the variance of the aggregated traffic is the

sum of the individual traffic variances and φ = 0.5. On the
other hand, if time series are highly correlated, then phi can be
nearly one. There have been some studies of the relationship

for actual Internet traffic. Gunnar et al. analyzed the relation-

ship shown in Eq. (11) for each cell of the real traffic matrix

and found that φ = 0.7 ∼ 0.8 [12]. When various aggregate
levels for web traffic were measured, φ = 0.5 was found to
fit the actual data [13]. To evaluate the relationship with the

two datasets that we used, we divided the traffic according

to its destination IP address with various prefix lengths and

calculated its mean and standard deviation. A scatter plot of the

mean and standard deviation of each address prefix is shown

in Fig. 6. We also plotted the standard deviations that follow

the relationship in Eq. 11, where c was determined so that
when m was equal to the total traffic, σm coincided with the

standard deviation of the total traffic. Most of the points fall

into the region between φ = 0.5 and φ = 1.0. Here, because
as the standard deviation is large, detectability is low, so we

used φ = 0.5 for an evaluation that is mostly on the safe side.

We first evaluated how the spatial granularity affects the

detectability for a given anomaly size and sampling ratio. We

compared the calculated FNR obtained by substituting σm

in Eq. (11) into Eq.(4) with the simulated FNRs for each
divided traffic time series using the same method as in the

previous section. The results are shown in Fig. 7. While there

are some discrepancies between the simulation results and the

calculated results for 1G data, which are expected because

of the negatively correlated traffic, most of the plots coincide

with each other.

Next, we investigated which granularity is optimal in the

sense the granularity is maximum (number of time series is

minimum) while the FNR(p) is above the threshold for a
given sampling rate and anomaly size.



Fig. 6. Scatter plot of mean and sigma of number of packets

Fig. 7. Comparison of calculated and simulated FNR for each partitioned
traffic

Here, for the given target FNR∗, the maximum monitoring
granularity m∗ is obtained as the solution for the following
equation in terms of m, in a similar manner to finding the
optimal sampling rate p∗.

Fa,n((a + m)p+cth((cmφ))2p2+(a + m)p(1 − p))=FNR∗ (12)

Here, by setting FNR∗ to be the same as FPR, we get
the explicit solution as

m∗=
(a/cth)2 + 2a + c2

th − 2a/p− 2c2/p + c2/p2

4(1/p− 1 + c2)
. (13)

The optimal granularity in terms of the mean packet rate

for various sampling rates is shown in Fig. 8. We set the

target FNR∗ as 1%, anomaly size as 10 kpps, φ = 0.5, and
two values of c corresponding to 1G and 100M data. It can

be seen that the monitored granularity of the two parameters

differed for a high sampling rate because the major factor

in the sampling rate is the standard deviation of the original

traffic, that is, the first term of Eq. (7). On the other hand,

when the sampling rate was very low, the second term become

dominant and the two optimal granularity approached the same

value, about 20 kpps (19.3 Kpps for 1G data and 16.5 Kpps
for 100M data) with sampling rate 1/10000.

Fig. 8. Maximum granularity to detect 10 Kpps anomaly for each sampling
rate

Prefix Granularity FNR
length (max/avg/min) [Kpps] (max/avg/min)[%]

28bit (hash) 21.3/10.5/7.5 2.5/1.3/0.0

28bit 86.3/10.6/0.00 60.8/5.0/0.0

29bit (hash) 30.9/21.1/17.2 3.3/1.5/0.0

29bit 106.1/21.2/0.27 58.3/12.4/0.0

TABLE I
FNRS WITH PARTITIONED TRAFFIC WITH HASHED IP ADDRESSES

B. Classifying packets to achieve target granularity

In this subsection, we discuss how to realize the granularity

calculated with Eqn.(13), e.g. how to classify packet so

that counters for those classified packets will be the given

granularity. Here, we describe two classifications, based on IP

address and based on DDoS type.

As for the former classification, we must consider the effect

of high spatial locality in the Internet traffic [14]. That is the

concentration of large number of packets to a small number

of IP address space. Thus, only by classifying the aggregated

IP address range, there will be large bias among the counters

as shown in Fig. 7. In that case, increasing the number of

counters may not improve the detectability. By hashing the

IP addresses, it is expected that the effect of locality can be

avoided and the number of packets among the counters will

be balanced.

For example, to achieve the granularity of 19.3 Kpps for
1G data to detect 10 Kpps anomaly with 1/10000 sampling as
shown in the previous subsection, we should divide into about

nine counters of whole 170 Kpps traffic. That is achieved by
using first 28 or 29 bits of hashed IP addresses. Table I shows

the results. It can be seen that by using hashed IP address, the

objective FNR is almost achieved, while with non-hashed IP

addresses, FNR can be 60% even with classified traffic.

Next, we evaluate the classification based on DDoS type.

We classified ICMP, UDP, and TCP SYN packets, each of

which is used for typical DDoS attacks [15]. We found that it

consists of 12%, 8%, and 2% of total packets, respectively for

both 1G and 100M data, except that in 1G data, only 0.3% of



Fig. 9. Scatter plot of mean and sigma of number of packets for classified
packets

icmp packets, where filtering is suspected. As shown in Fig. 9,

with this classification, standard deviations almost fall into the

region of 0.5 ≤ φ ≤ 1 in Eqn. (11), so we can apply results
provided in the previous section. For example, the mean packet

rate of UDP traffic in 1Gdata is 20.7 Kpps, which is almost the
same as the maximum granularity to detect 10 Kpps anomaly
with sampling rate 1/10000 and FNR = 1 %. Through the
simulation for UDP packets with the above condition, we can

achieve FNR = 2.5 %, which is nearly to the target FNR

IV. CONCLUSION

In this paper, we showed how sampling decreases the

detectability of anomalous traffic. We derived equations for

FNR and FPR when the random packet sampling method is

used. Using the equations, we derived the minimum sampling

rate to achieve the target values of FNR and FPR. The
results were evaluated through simulations using actual traffic

data. Especially, we showed that when sampling rate decrease

under a value such as 1/100, the FNR rapidly degrade and

the degradation depends on IDC of the normal traffic. Then

we found that by changing the measurement granularity, we

could detect anomalies even with sampled traffic. In addition,

how to realize the optimal granularity to detect anomalies with

given volume to be detected. For example, by counting only

UDP traffic, FNR can be improved from 48 % to 2.5 % for

detecting UDP Flooding attack.
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APPENDIX

Let f(n) := Pr[Pt = n] and fp(n) := Pr[Pnt(p) = n].
Then,

σ2(p)
=

∑
n2fp(n) − [m(p)]2

=
∑

n

n2
∑

m

Pr[Pnt(p) = n|Pnt = m]f(m) − (mp)2

=
∑

n

n2
∞∑

m=n

mCnpn(1 − p)m−nf(m) − (mp)2

=
∞∑

m=1

m∑

n=1

n2[mCnpn(1 − p)m−n]f(m) − (mp)2

=
∞∑

m=1

f(m)
m∑

n=1

n2[mCnpn(1 − p)m−n] − (mp)2

=
∞∑

m=1

f(m)[mp(1 − p) + (mp)2] − (mp)2

= p(1 − p)m + p2[σ2 − m2] − (mp)2

= p(1 − p)m + p2σ2 (14)


