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Background

* 6G Industrial Internet of Things (lloT) for intelligent robots

— Features of 6G lloT: high data-rate, ultra-reliability, low-latency,
massive access, energy-efficient, accurate localization and sensing, ...

— 6G lloT for robotics: wirelessly connected multi-robot systems
empowered by digital twins, edge computing, cooperative
intelligence, ...

_ Production ez

— empowered
— plan

digital twins,
edge computing,
cooperative
Cloud Intelligence,...

Industrial robots

Wirelessly connected multi-robot system for smart factory

[1] N. H. Mahmood, G. Berardinelli, E. J. Khatib, R. Hashemi, C. De Lima and M. Latva-aho, "A Functional Architecture for 6G Special-Purpose
Qldustrial loT Networks," in IEEE Transactions on Industrial Informatics, vol. 19, no. 3, pp. 2530-2540, March 2023, /
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Background

* Applications of intelligent robots
— Industry: logistics, sorting, construction, manufacturing, ...

— Service: public service, household duties, delivering, ...

— Special purpose: rescue, medical service, underwater tasks, ...

\ Precision manufacturing Delivering Medical treatment
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Background

* From single-agent systems to multi-agent cooperative systems
— Precise localization and sensing is the foundation of multi-agent

cooperative tasks
— Advantage of cooperative systems: accuracy, efficiency, robustness,

flexibility, autonomy, ...

Applications of multi-agent

cooperative systems = 4 proTTTT
= i Cooperative i
Autonomous Search and ‘S i ]
driving rescue @ | ! systems
. , o] L L LT T TP 1
O

Single-agent
intelligence

Autonomous Intelligent
delivery manufacturing
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Background

* From single-agent systems to multi-agent cooperative systems

— Precise localization and sensing information is the foundation of
multi-agent cooperative applications

\

Robot2 Map

Obstacle Avoidanee Rééiprocal,fAVpid;r;éé:;:f"f i
Multi-robot cooperative
environment exploration

Drone formation

[1] Zhou X, Wen X, Wang Z, et al. Swarm of micro flying robots in the wild[J]. Science Robotics, 2022, 7(66): eabm5954.

[2] MR-TopoMap: Multi-Robot Exploration Based on Topological Map in Communication Restricted Environment, in IROS2022 / RAL.
[3] J. Yu, J. Tong, Y. Xu, et al, SMMR-Explore: SubMap-based Multi-Robot Exploration System with Multi-robot Multi-target Potential Fiel
Exploration Method, in ICRA2021.
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Background

* Localization and sensing technologies

— Visual-inertial odometer (VIO)
* Integrating visual and inertial information

* Precise localization and mapping

* Challenges: Accumulative error,
illumination condition, ...

— Global Navigation Satellite System (GNSS)
* Absolute position information
* Poor in indoor/harsh environments

* Challenges: Multipath, blockage, ...

.
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Background

* Localization and sensing technologies
— Wireless network localization

* Precise and robust self-localization in GNSS-challenged scenarios

* Measurements: Ranging and bearing based on wireless signals (UWB,
Wi-Fi, BLE, 5G, etc.)

* Cooperative localization: Information fusion in multi-agent networks

.
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Motivation

* Challenges of network localization for multi-robot systems

— Asynchronous networks

* Asynchronous even with initial calibration: affected by varying voltage,
ambient temperatures, hardware aging...

* Require high measurement rates, especially in dynamic scenarios
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Motivation

* Challenges of network localization for multi-robot systems
— Asynchronous networks

— Large network scale

* Hundreds of mobile devices, sensors, and objects wait to connect for
the foreseeable future

\_ Large-scale networks
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Motivation

* Challenges of network localization for multi-robot systems
— Asynchronous networks
— Large network scale
— Infrastructure-free

e Determination of the network geometry without absolute position
information reference

shenyuan_ee@tsinghua.edu.cn
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Motivation

* Challenges of network localization for multi-robot systems
— Asynchronous networks
— Large network scale
— Infrastructure-free

— Limited resources

* Low-cost sensors with short battery life are preferred to expend
coverage areas, and limited spectrum

space

time

frequency

Low-cost nodes Limited resources

shenyuan_ee@tsinghua.edu.cn
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Motivation

* Challenges of network localization for multi-robot systems
— Asynchronous networks
— Large network scale
— Infrastructure-free

— Limited resources

e Goal

— Provide high-precision localization and sensing capability for large-
scale mobile networks within acceptable resource consumptions

shenyuan_ee@tsinghua.edu.cn 12




Contribution

Relative localization theory

Broadcasting

— A unified theoretical framework to address the
state estimation in relative localization networks

Network measuring protocol

— Signal-multiplexing network ranging (SM-MR)

protocol, ranging and clock synchronization
with minimal signal transmission

Distributed relative localization algorithm

— Infrastructure-free distributed localization

Lightweight 3-D UWB array

— Pairwise relative localization based on ranging ﬁﬂ =i
and 3-D bearing using UWB antenna arrays .Lg'ﬁ' é

\_ )
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THEORY: RELATIVE LOCALIZATION
FOR MULTI-ROBOT SYSTEMS




Relative Localization: Theory

* An Unified localization framework
— From single-antenna to MIMO
* MIMO system model, characterization of agent 3D orientations
— State uncertainties
* Effects of state uncertainties on the relative localization accuracy
— Spatiotemporal measurements

 Relative localization in spatiotemporal cooperative networks

Orientation uncertainties

time {541
A
* -
/ - .
/ -7 Spatial
/) -7 measurements
)/ ! N
S~ -1 IR
P '~ V4 *» fa” ’¢”
- N~ ”/ ”/
s [ _-=""Temporal
N measurements
\_ Position uncertainties 4 time ¢, )
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Relative Localization: Theory

* Network Model
— 3D wireless network with /V, agents

— Agent state vector

J
efd’.’

Orientations

—_—— _—— =

Positions

______

e Measurement Model
Agents

— Graph representation: G(V, &) Links
— Neighbors of agent 7 :

— Pairwise measurements:

z

Measurement function,
e.g., distance
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Relative Localization: Theory

e State estimation in relative localization
— State equivalent class

The equivalent class w.r.t. the network state vectors is defined as the set

[(s)={s"€S:g(s) =g(s)}

 I'(s) collects the states with the same measurements as s
— Relative error for the state estimation

Given a network state vector s and its estimate S, denote T as the index set of
the interested states. Then the relative error for states in 7 is defined as

er,r = infzerg |1z © (8 — 8)||2

* Example: relative error for entire states

shenyuan_ee@tsinghua.edu.cn
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Relative Localization: Theory

 Example 1: Single-antenna case (no orientation)

— Relative error for all agent positions
er = infaerp) [P — Pll2
\ rotation translation
Fp)=1{p:p =N, ®R)-p+1n, @t}

— Solved by Procrustes coordinates: closed-form solution

R(U)*
<
o
<$
¥ Transform
N
Q%O Error
v
Absolute Error Relative Error . R(U)
Relative Error
Geometricillustration Error Decomposition

shenyuan_ee@tsinghua.edu.cn
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Relative Localization: Theory

 Example 2: Relative error for partial states

— Subnetwork-aware relative localization

Network position p Position estimate p

CAR— - N~
Subnetwork | VS / \\ ’
of interest \_J

1 — -—

| 4 -

___________

Subnetwork Total network
Projection Projection

Subnetwork-aware estimate P, s,  General estimate p,

:: Insights for
algorithm design!

shenyuan_ee@tsinghua.edu.cn
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Relative Localization: Theory

* Performance analysis in relative localization
— (Equivalent) Fisher information analysis

The Fisher information matrix (FIM) for the state vector s is defined by

J(s)=E { e fzs)]| | fz(Z;S)]T}

Partition s = [s] s3|" and J(s) into
A B
J(s) =
= g o
Then the equivalent Fisher information matrix (EFIM) for partial states 81 is

J =A—-BC 'BT

— EFIM incorporates the effect of nuisance states

— Singular FIM/EFIM due to rank-deficiency in relative localization

. /
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Relative Localization: Theory

* Performance analysis in relative localization

— Performance bounds for the relative state error

Given the actual state vector 8 and its estimate s, under mild conditions, the
relative error for the entire states satisfies

Efe;} > tr{J(s)}

Furthermore, the relative error for the partial states in 7T satisfies

Pseudo-inverse of the FIM

E{eiz} > tr{Jg’I} Pseudo-inverse of the EFIM

* Compare with absolute localization
2 1 2 1
E{eabs} = tI‘{J (3)}7 E{eabs,l'} > tr{Je,I}
* Unified results for relative and absolute localization

— Inverse replaced by Moore-Penrose pseudo-inverse

. /
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Relative Localization: Theory

e Performance analysis with state measurements
— State measurement model

Zic = S + Ng
measurements actual states

— Performance bounds with state measurements

Given the actual state vector s and its estimate s, under mild conditions, the
relative error for the partial states with state measurements in L satisfies

E{elz} > tr{J] 7}

where the EFIM is calculated with respect to

Jo(s) = J(s) + [0 9

0 3k

Information gain from state
measurements

shenyuan_ee@tsinghua.edu.cn
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Relative Localization: Theory

e Performance analysis with state measurements

— Unique property in relative localization

 Extra state information may not contribute to the performance

Different from absolute localization!

— Interpretation based on error projection
 Relative error is determined by absolute error e and projection space R(P)
* With state measurements

& = PP s R(P) R(P)*
()
Larger projection space R(P) ' + Smaller absolute error ‘ ézpp/. "
! ! ~
6\
s S

The relative error
may not decrease

- /
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Relative Localization: Theory

e Performance analysis with state measurements

— Unique property in relative localization

 Extra state information may not contribute to the performance

Different from absolute localization!

— Geometric illustrations

Rotation and translation

Rotation around p;

Position measurements of pi

shenyuan_ee@tsinghua.edu.cn
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Relative Localization: Theory

* Performance analysis in spatiotemporal cooperative networks

— System model

* Timeinstants: t1,--- ,tn
* Agent states at time ¢, : Sén)
* Known orientations

— Intra-node measurement model _
Displacement measurements

ZECT]? = pgﬂn) _p,g;n_l) o n,ggn)7 Vk € Na’n = 1J v o 7N

— Relative localization error with multiple time instants

Denote p=p"™) and p =p"""") as the positions and estimates for all time
instants, then the relative localization at current time tn is

exr,n = infaer 1B — pV)2

Minimizing the relative localization error at current time

shenyuan_ee@tsinghua.edu.cn 25




.

Relative Localization: Theory

* Performance analysis in spatiotemporal cooperative networks

— Performance bounds with temporal cooperation

The relative localization error at current time t y satisfies
E{el n} = tr{J! y(p)}

where the EFIM J. n(p) can be calculated recursively

—_——

Jon(P) =y +Tno1 — Tno1 Syt 1)

. Spatial information Temporal information
with g
‘al —1

\Spy=Ji + Ty +Tp—1 — Te—15;, 1 Th—1

Carry-over information

S characterizes the effects of the information obtained previously on
the current time.

* The information fusion process acts like Kalman-filtering

shenyuan_ee@tsinghua.edu.cn
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Relative Localization: Theory

* Comparison of absolute/relative localization

— The relative localization error decays with the number of agents in
both relative and absolute localization

O TOA only
¢ TOA+AOA:unknown orientation
G - o O TOA+AOA:knownonentation
8r ~e
— o~ . _
l."‘*lE 'ﬂ'-— -
= 0 - Dashed line: relative - -~ 0
7 - R o
L ==
2 B O---
L
=
=T,
2
Solid line: absolute

10 12 14 16 18 20
K Number of agents
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Relative Localization: Theory

ranges

 Effects of agent orientations with different communication

— Remark: whether the knowledge of agent orientation decreases
the error depends on the network topologies

=
=)

unknown > known

Average rSPEB [n12]
P

=0~ 10 agents with unknown orientation
—©— 10 agents with known orientation
=D 20 agents with unknown orientation
=8 20) agents with known orientation

[=]
—

100

0.1 0.2 0.3 04 05 06 0.7 08 09
% [m]

Network Topology 1

Average rSPEB [mzl

= 0= 10 agents with unknown orientation
=—8— 10 agents with known orientation
= DO~ 20 agents with unknown orientation
=8 2() agents with known orientation

L 1 1 1 1
04 05 06 0.7 08 09
9, [m]

Network Topology 2

1
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Relative Localization: Theory

e Effects of orientation uncertainties

— As the uncertainty vanishes, the localization performance
approaches the orientation-known case

10° 3
=8 2() agents with orientation uncertainty | ]
= = =7() agents with known orientation ]

4 == 10) agents with orientation uncertainty | |

107¢ = = = () agents with known orientation E

S
@ 107
84
ALy
L]
2107
-
e
107
10°

0 10 20 30 40 50 60 70 80 a0 100

0"0] [m'1 |
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Relative Localization: Theory

» Effects of spatiotemporal cooperation

— The relative localization error decays exponentially with time and
finally converges to a stable value

O 10 agents| |

O 20 agents| ]

)
as]
S8
(=
7]
=
—
Q
=
(5]
=Ty}
]
bt
(5]

> [

.Q: |

\ |

-~ f

S a
Dashed line:o, = 0.1 — B~ = _ .
; = ~0= -
10] | 1 1 | -
1 10 20 30 40 50

Time instant

.
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SCHEME: NETWORK MEASUREMENT
FOR MULTI-ROBOT SYSTEMS

31
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Challenge

* Asynchronous networks

—Asynchronous even with initial calibration:
need joint clock synchronization and ranging
for precise ranging

e Large network scale

— Hundreds of mobile devices, sensors, and
objects to be connected: leading to excessive
signal overhead

e Efficiency of measurements

— Ranging-based localization: fail to utilize
bearing information and hence inefficient

RIT

Dy 5®

/d3

At least 3 neighbor
nodes for localization /

shenyuan_ee@tsinghua.edu.cn
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- ™
Signal-Multiplexing Network Ranging

e Current clock synchronization and ranging methods

. . RTT
— Mass transmission, unsuitable to s
I~

large-scale networks

* Long latency, large energy, heavy hardware
resource occupation...

— Does not consider the nodes’ mobility

- /
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- ™
Signal-Multiplexing Network Ranging

e Current clock synchronization and ranging methods

. . RTT
— Mass transmission, unsuitable to s
I~

large-scale networks

)
gy
<
!
S
N
)

* Long latency, large energy, heavy hardware

resource occupation... RTT e RTT
l.ﬁ !lu X
— Does not consider the nodes’ mobility L
O(N?)
* Proposed SM-NR Broadcasting O(N)
— Multiplexing signals for network measuring sil Qg
* Reduce the number of signal transmissions = %
to the minimum RX
— High-accuracy range estimation %E\
* Clock errors, user mobility '

* High measurement update rates, small accumulated errors

- /
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- ™
Signal-Multiplexing Network Ranging

e Current clock synchronization and ranging methods

. . RTT
— Mass transmission, unsuitable to s
I~

large-scale networks

)
gy
<
!
S
N
)

* Long latency, large energy, heavy hardware

resource occupation... RTT ""ai.\ RTT
— Does not consider the nodes’ mobility N
O(N?)
¢ Proposed SM-NR Broadcasting
— Multiplexing signals for network measuring sil LR
* Reduce the number of signal transmissions RX= %
to the minimum
— High-accuracy range estimation :”‘: .
* Clock errors, user mobility RX\..

* High measurement update rates, small accumulated errors

- /
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- ™
Signal-Multiplexing Network Ranging

e Current clock synchronization and ranging methods

. . RTT
— Mass transmission, unsuitable to s
I~

large-scale networks

-
ok
<
‘
S
.
)

* Long latency, large energy, heavy hardware

resource occupation... RTT e RTT
I.ﬁ !lu X
— Does not consider the nodes’ mobility -
l O(N?)
* Proposed SM-NR
— Multiplexing signals for network measuring si g
* Reduce the number of signal transmissions R)Z_/ %
to the minimum RX
— High-accuracy range estimation %ﬁ‘
* Clock errors, user mobility o

Broadcasting
* High measurement update rates, small accumulated errors

- /
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— Protocol

— Ranging method

* Robust to the coupling effects of clock errors and node mobility

e
Signal-Multiplexing Network Ranging
* New method for network ranging and clock synchronization

* Reduce the signal overhead from O(N?) to O(N), boost scalability

* Ensure access to the freshest measurement data, diminish the
ranging/localization errors incurred by outdated measurements

 Estimate time-varying distances without the knowledge of velocity

15 run 20 pun 3run (P 1frun  Trun
1@ =] =1 B | = =1 * * * *x . .
L = L = & v Ri,e vy = argmax flo(Op; Dk, Ri, e, Vi)
20 [T [T I - - - [ Dk, Ri,e,vk
7.6 [ I — S — Decouple the Establish a global
: ' ' ' ' ' effects of node average time as ToF/TDoF
s o IINEEDN D R - - - [ . . o
: mobility and reference time for estimation
fiot et ettt e, fanen N, EpegN  Eeonar  ty, Time clock errors clock synchronization
@ Activenode © Silentnode B Broadcasting transmitter [ Receiver
shenyuan_ee@tsinghua.edu.cn 37




4 ™
Signal-Multiplexing Network Ranging

* ToF estimation against clock errors and node mobility

Ak

T p = argmax fe (t ; TOF)
ToF /
likelihood fun. w.r.t the clock drifts Timestamps

Proposition 1

The ToF estimation between active nodes © and j at time instant k when active
nodet broadcasts is given by

S i) — L~ t ) — Raltg) — 1)
oF\&s.J /1% = 510 _ 10 4 10) _{0)
(tp, —t, Tt —t.)

R, = LG (J’)) _ T (t(’i) (i)) Ry — T (t(’i) (’i)) _ T (t(j) (j))

_W(tlﬁl _tkl T (i) ha _tk‘l T() ks _tkz T6) N ks ks

in which the synchronization is fabricated as

T 240 ) ) 4, fora—i,j

~

\ with estimation T* = argmaxle(t;T) y
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Signal-Multiplexing Network Ranging

 SM-NR achieves higher ranging resolution with fewer measuring

signals

TWR 13
MPLS 1/M
PER Ng/3

Our (N, — 1)(V, + 1)
method

v

v

Emaxtmaz T G(N A maxVmax)

™~

Measurement | Mobi
ToF | TDoF Worst-case errors
update rates lity

AltDS-

Estimation error  Error induced by outdated

measurements
N\

l‘j{Emu dma.x} + G ['\lhirf,‘rmax 1-’rrm.:'l::]'

7N\

O(emaxC

t,J

7N\

. S, N ﬂ(\Na}rmuﬂmax}

0 — L) + OAN o)

/
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Numerical Results

 RMSEs vs clock errors and node mobility

— The low measurement update rate replaces clock errors, becoming
the dominating factor in range errors

— SM-NR effectively eliminates clock errors, significantly improving
the ranging accuracy by boosting the efficiency, achieving about
one order of magnitude lower error than those of the others

I T T T T
10%r - 10°F

IE—

—— MPLS
—a4— AliDS-TWR.
0P - —e—SM-NR (active ranging)
1 —+— Proposed SNM (active ranging)

—+— MPLS
—a— AltDS-TWR.

—e— 3M-NR (active ranging)

—a— Propoged SNM (active ranging)

=

EMBE of absolute ranges Ft,r (m)
RMSETE of absolute ranges Frp (m)

a 20 40 6l 80 100 2 4 6 8 10 12 14 l6 18 20
Maximal clock fraquency deviation emg (ppm) Maximal velority vm (m/s)
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Numerical Results

e RMSEs vs network scale

— Ranging errors increases with the number of active nodes, and the
growth rates reflect the scalability of the ranging methods

— SM-NR exhibit a smaller growth rate and lower errors, manifesting
its adaptability to large-scale networks

107 F

=2
AT ¥

DI:I
rree -

—&—MPLS3
—a— AlIDS-TWR

—o— SM-NR. (active ranging)

—a— Proposed SNM (active ranging)

RMSE of absoluie ranges Frr (m)
S
i
T

2 4 6 ) 10 12 14 16 |8 20
K Number of active nodes N,
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SCHEME: RELATIVE LOCALIZATION
FOR MULTI-ROBOT SYSTEMS
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Challenge

e Distributed networks

— Centralized: global optimization, . TT - 9. % 0
high latency, high complexity, vulnerable \t&o‘ﬂ/ 4
N . ™ -
— Distributed: local optimization, o 1 T D Pl
low latency, low complexity, high robustness Se3 kel
e Infrastructure-free demands Centralized Distributed
— Determination of the network geometry without
absolute position information reference )-‘ >/
* Information fusion Local Coordinates
L . (not unified) eﬁ\(
— The local networks share no unified coordinate ) World Coordinata €
system in decentralized networks (unknown)

— In networks with multi-sensors, high-effiecient
information fusion scheme is required for
spatiotemporal cooperation

.
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Relative Localization Algorithm

e Distributed Relative Localization framework

Static Relative ! !
Localization Local Geometry Determination

Global Geometry Merging

Initialization

Dynamic Relative
Localization l l

[ o hmo ) ‘o

L UWB . Multi-sensory | IMU

Information
Intra-Node Fusien Inter-Node
Cooperation B Cooperation

shenyuan_ee@tsinghua.edu.cn
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Relative Localization Algorithm

e Distributed Relative Localization framework

— Static relative localization

* Local Geometry Determination: Estimate the geometric shape of the
network without any absolute position information

* Global Geometry Merging: Fuse the information of different
geometries under different reference frames

— Dynamic relative localization

* Exploit the spatio-temporal gain by inter-intra node cooperation with
multi-sensory information fusion

* Achieve distributed localization via dynamic reference frame alignment

== - 05

7 A N .7
/ = N / l_ N 4 p; 1'” "—\’ /,/ 5
4 / —==A \ / ol \ B R ‘g /(/
" —“L—— / N\ \ / /4.~~~\ 5 ‘Ns & /, ,\
Faal ) Vi \ 2| 3 2l ] S \ l~~ ’ o’ V4
ST~ ~we M | I </ :.--——-“:;':"?“' o Ssa )k\ A
~ gy s e AT ~
N ,I Pt ] ) \ Seo 1/ fl AN 'I,____g‘y 21
\ ——’ / \ :L_. / \ \“_—— Gow
\ =N \ Faal ey /
3L ~_ 27 . ‘¥ 3 y
N —_ ~ — o el -
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Relative Localization Algorithm

* Local Geometry Determination

— Without absolute position reference, the high-efficient estimation
of the shape of the local geometry is achieved by a dynamic
selection scheme of reference frames

Joint Optimization of

: : R Localization Performance
Reference Frame & 111111 ml_ln €r (pa r(p)) ' . .

i ; iy P i Relative CRLB
| Relative Position i SDp
' | Given the relative Given the reference |! $—GCRL
' | position estimate, I < | frame, optimize the i . L5t
| | optimize the selection |4 J | relative position i )
i | of reference frame estimate ! o
T e T e ! E 1+ 4
O Groundtruth © Virtual Anchor OO Localized Agent z A5%
<
]
' e
50 5Q-._4 "
o* Q\“ Q 57 05!
1,7 RN
P 2" ‘\ /’ é 2°
@) O O O:——O.~ Ol“xs \ 103
~
1 2 3 1 3 S 0 S
4 10 15 20 25 30 35 40
. . Number of Agents
\ Groundtruth Well-conditioned lll-conditioned /
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Relative Localization Algorithm

* Global Geometry Merging

— Distributed information fusion under different reference frames is
achieved by minimizing relative error within the equivalent state
class with a merging priority evaluation criterion

| Scale of Confidence of ! Localization Performance
i Common Geometry Local Geometry | 7 ——
I I Relative CRLB
1 1
I ) L I | —@®— GCRL-GM
i Merging = Nq (Bz + BJ 2/80) i 6 —— GCRL-PGM
1 . 1
 Confidence J Cond (C;, C,) L5l
I I =
i Common Geometry Condition ! c”/i
S ——— [ 4+
=
4,_ sl m D =~
/
weSL™ T A IR I, 23]
“$C*~ LN f /’__l.’}"\‘»’/" 5 =
s A S ver] <7 PR 4 Q
\ NS ﬁ, RV '}\' ‘0 oot
‘3 2, Broadcast N ,",*y !
<2~ \ NgTE T )
P and Merge \ o ’
g 1“»:‘\ <3 2’ Lt
P * oL LT
oSk 1 2 3 4 5 6 7 8 9 10
RSl Transmit Power (mW) /
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Relative Localization Algorithm

* Dynamic Relative Localization

— In dynamic scenarios, real-time distributed relative localization is
achieved via dynamic reference frame alignment and multi-sensory
information fusion

| Inter-Node Intra-Node ! Localization Performance
: : Multi-Sensory |
| [ Ifi?trejc;?rlje ]- Information ‘[Rec[:)lfoarﬂn ] i 1.2 ——Scenario 1|
i < Fusion g i —=@— Scenario 2
1
: i 1.1f
1 ~
= .
i | SR
I : n
i : E
g 09 B
Fijr  Reference frame VTR g=
. 1 N ) S
of node j . R " op;, "*ovy, <038
T 7"'=| 0 1 0
0 0 1 0.7
Fr.{i) Homogeneous State

<
o)

L Transformation:

T

Reference frame "0%-_ Alignment of origins, axes
K of node i Phofe) and translational velocities
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PLATFORM: RELATIVE LOCALIZATION
FOR MULTI-ROBOT SYSTEMS
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System and Module
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System and Module

* Cloud test field

— Motion capture system: 50m*25m*12m, 144 cameras,
reconstruction error <0.5mm, update frequency 100Hz+

— Remote test: Cloud computing and simulation
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System and Module

Entity deployment
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* Cloud test field
— Virtuality and
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Real-world Experiment

* Three application scenarios

Speed:4x

=
: i 8 I
E ) —
A

* and 4 UGVs form a trapezoidal fekmation toftake a'U-shaped routeh

o
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Real-world Experiment

* Three application scenarios

— Scenario 1: Formation
e 4UGV(active) + 1UAV(active)
e U-shape formation route

* Involve high-speed (accel.) movement

— Scenario 2: Search and Rescue

* 4UGV(active) +
+ 2UAV(active)

* Involve a few obstacles

* Involve high-speed (accel.) movement
— Scenario 3: Overtaking

* 4UGV/(active)

* One UGV overtakes the other 3 on
the two-lane road

.
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* Network ranging performance

CDF

0.8

0.6

0.4

0.2}

Real-world Experiment

— CDF of ranging estimation errors

I— O~ Active Ranging

—&é— Active Ranging (Calibrated)

—Pp— Silent Ranging
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1 L 1 O & L 1 I 0 / 1 I 1
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RMSE . . . _
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Ranging (calibrated) 6.22 cm 4.90 cm — 4.26 cm
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Real-world Experiment

» Relative localization performance

— Localization results

GroundTruth —— Estimation of Active Nodes Estimation of Silent Nodes

2
0

2
0

—
=

—
N

X [m]
RMSE Scena.rlo | .Scenano 2. Scena.rlo 3
Active Active Silent Active
Localization 16.84 cm 1920 cm | 30.71 cm 6.23 cm
L /
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Conclusion

* Theory
— Deriving the performance bounds of the relative error, investigating the
effects of state measurements, clock asynchronization and temporal
cooperation

e Scheme

— Network measurement protocol: The proposed SM-NR minimizes the
signal overhead, ensuring scalability and timeliness for accommodating
larger swarm sizes

— Localization algorithm: The proposed relative localization scheme exploits
multi-sensory information fusion and achieves real-time alignment for
local reference frames, ensuring distributed localization with high
efficiency, accuracy, and robustness

e Platform

— Leveraging SM-NR on our UWB arrays, where an implementation attains
centimeter-level accuracy at an update rate over 100 Hz, solely utilizing
UWB
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