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Background

• 6G Industrial Internet of Things (IIoT) for intelligent robots

– Features of 6G IIoT: high data-rate, ultra-reliability, low-latency, 
massive access, energy-efficient, accurate localization and sensing, …

– 6G IIoT for robotics: wirelessly connected multi-robot systems 
empowered by digital twins, edge computing, cooperative 
intelligence, …
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Background

• Applications of intelligent robots

– Industry: logistics, sorting, construction, manufacturing, …

– Service: public service, household duties, delivering, …

– Special purpose: rescue, medical service, underwater tasks, …

Precision manufacturing

Automobile production Household duties

Delivering
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Background

• From single-agent systems to multi-agent cooperative systems

– Precise localization and sensing is the foundation of multi-agent 
cooperative tasks

– Advantage of cooperative systems: accuracy, efficiency, robustness, 
flexibility, autonomy, …
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Background

• From single-agent systems to multi-agent cooperative systems

– Precise localization and sensing information is the foundation of 
multi-agent cooperative applications
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• Localization and sensing technologies

– Visual-inertial odometer (VIO)

• Integrating visual and inertial information

• Precise localization and mapping

• Challenges: Accumulative error, 
illumination condition, …

– Global Navigation Satellite System (GNSS)

• Absolute position information

• Poor in indoor/harsh environments  

• Challenges: Multipath, blockage, …

Background
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Background

• Localization and sensing technologies

– Wireless network localization 

• Precise and robust self-localization in GNSS-challenged scenarios

• Measurements: Ranging and bearing based on wireless signals (UWB,
Wi-Fi, BLE, 5G, etc.)

• Cooperative localization: Information fusion in multi-agent networks
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Motivation

• Challenges of network localization for multi-robot systems 

– Asynchronous networks

• Asynchronous even with initial calibration: affected by varying voltage, 
ambient temperatures, hardware aging… 

• Require high measurement rates, especially in dynamic scenarios
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Motivation

• Challenges of network localization for multi-robot systems  

– Asynchronous networks

– Large network scale

• Hundreds of mobile devices, sensors, and objects wait to connect for 
the foreseeable future
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Motivation

• Challenges of network localization for multi-robot systems  

– Asynchronous networks

– Large network scale

– Infrastructure-free

• Determination of the network geometry without absolute position 
information reference
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Motivation

• Challenges of network localization for multi-robot systems  

– Asynchronous networks

– Large network scale

– Infrastructure-free

– Limited resources

• Low-cost sensors with short battery life are preferred to expend 
coverage areas, and limited spectrum

shenyuan_ee@tsinghua.edu.cn 11

frequency

time

space

Limited resourcesLow-cost nodes



Motivation

• Challenges of network localization for multi-robot systems 

– Asynchronous networks

– Large network scale

– Infrastructure-free

– Limited resources

• Goal

– Provide high-precision localization and sensing capability for large-
scale mobile networks within acceptable resource consumptions
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• Relative localization theory

– A unified theoretical framework to address the
state estimation in relative localization networks

• Network measuring protocol 

– Signal-multiplexing network ranging (SM-MR) 
protocol, ranging and clock synchronization
with minimal signal transmission

• Distributed relative localization algorithm

– Infrastructure-free distributed localization 

• Lightweight 3-D UWB array

– Pairwise relative localization based on ranging 
and 3-D bearing using UWB antenna arrays
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THEORY: RELATIVE LOCALIZATION 
FOR MULTI-ROBOT SYSTEMS
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Relative Localization: Theory

• An Unified localization framework

– From single-antenna to MIMO

• MIMO system model, characterization of agent 3D orientations

– State uncertainties

• Effects of state uncertainties on the relative localization accuracy

– Spatiotemporal measurements

• Relative localization in spatiotemporal cooperative networks
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Relative Localization: Theory 

• Network Model

– 3D wireless network with        agents

– Agent state vector

• Measurement Model

– Graph representation: 

– Neighbors of agent :

– Pairwise measurements:

16
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Relative Localization: Theory 

• State estimation in relative localization

– State equivalent class

•           collects the states with the same measurements as 

– Relative error for the state estimation

• Example: relative error for entire states
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Definition

The equivalent class w.r.t. the network state vector    is defined as the set

Definition

Given a network state vector       and its estimate    , denote       as the index set of 
the interested states. Then the relative error for states in       is defined as



Relative Localization: Theory 

• Example 1: Single-antenna case (no orientation)

– Relative error for all agent positions

– Solved by Procrustes coordinates: closed-form solution
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Relative Localization: Theory 

• Example 2: Relative error for partial states

– Subnetwork-aware relative localization
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Relative Localization: Theory 

• Performance analysis in relative localization

– (Equivalent) Fisher information analysis

– EFIM incorporates the effect of nuisance states

– Singular FIM/EFIM due to rank-deficiency in relative localization
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Definition

The Fisher information matrix (FIM) for the state vector     is defined by 

Partition                           and             into 

Then the equivalent  Fisher information matrix (EFIM) for partial states       is



Relative Localization: Theory 

• Performance analysis in relative localization

– Performance bounds for the relative state error

• Compare with absolute localization

• Unified results for relative and absolute localization 

– Inverse replaced by Moore-Penrose pseudo-inverse
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Theorem 1 

Given the actual state vector     and its estimate   , under mild conditions, the 
relative error for the entire states satisfies     
    
            
Furthermore, the relative error for the partial states in      satisfies

Pseudo-inverse of the FIM

Pseudo-inverse of the EFIM



Relative Localization: Theory 

• Performance analysis with state measurements

– State measurement model

– Performance bounds with state measurements
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measurements actual states

Theorem 2

Given the actual state vector     and its estimate   , under mild conditions, the 
relative error for the partial states with state measurements in      satisfies

where the EFIM is calculated with respect to 

Information gain from state 
measurements



Relative Localization: Theory 

• Performance analysis with state measurements

– Unique property in relative localization

• Extra state information may not contribute to the performance

– Interpretation based on error projection

• Relative error is determined by absolute error     and projection space

• With state measurements
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Different from absolute localization!
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Relative Localization: Theory 

• Performance analysis with state measurements

– Unique property in relative localization

• Extra state information may not contribute to the performance

– Geometric illustrations
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Relative Localization: Theory 

• Performance analysis in spatiotemporal cooperative networks

– System model

• Time instants： 

• Agent states at time      :

• Known orientations

– Intra-node measurement model

– Relative localization error with multiple time instants
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Displacement measurements

Definition

Denote                  and                   as the positions and estimates for all time 
instants, then the relative localization at current time       is

Minimizing the relative localization error at current time



Relative Localization: Theory 

• Performance analysis in spatiotemporal cooperative networks

– Performance bounds with temporal cooperation

•      characterizes the effects of the information obtained previously on 
the current time.

• The information fusion process acts like Kalman-filtering 
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Proposition 3 

The relative localization error at current time      satisfies 

where the EFIM              can be calculated recursively

with
Spatial information Temporal information

Carry-over information



• Comparison of absolute/relative localization

– The relative localization error decays with the number of agents in 
both relative and absolute localization

Solid line: absolute

Relative Localization: Theory 
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Relative Localization: Theory 

• Effects of agent orientations with different communication 
ranges

– Remark: whether the knowledge of agent orientation decreases 
the error depends on the network topologies
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Relative Localization: Theory 

• Effects of orientation uncertainties

– As the uncertainty vanishes, the localization performance 
approaches the orientation-known case
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Relative Localization: Theory

• Effects of spatiotemporal cooperation

– The relative localization error decays exponentially with time and 
finally converges to a stable value
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SCHEME: NETWORK MEASUREMENT 
FOR MULTI-ROBOT SYSTEMS

shenyuan_ee@tsinghua.edu.cn 31



• Asynchronous networks

–Asynchronous even with initial calibration: 
need joint clock synchronization and ranging 
for precise ranging

• Large network scale

– Hundreds of mobile devices, sensors, and 
objects to be connected: leading to excessive 
signal overhead

• Efficiency of measurements

– Ranging-based localization: fail to utilize 
bearing information and hence inefficient

32

Challenge
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Signal-Multiplexing Network Ranging

• Current clock synchronization and ranging methods

– Mass transmission, unsuitable to 
large-scale networks

• Long latency, large energy, heavy hardware
resource occupation…

– Does not consider the nodes’ mobility

33
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Signal-Multiplexing Network Ranging

• Current clock synchronization and ranging methods

– Mass transmission, unsuitable to 
large-scale networks

• Long latency, large energy, heavy hardware
resource occupation…

– Does not consider the nodes’ mobility
 

• Proposed SM-NR

– Multiplexing signals for network measuring

• Reduce the number of signal transmissions
to the minimum

– High-accuracy range estimation 

• Clock errors, user mobility

• High measurement update rates, small accumulated errors
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Signal-Multiplexing Network Ranging

• Current clock synchronization and ranging methods

– Mass transmission, unsuitable to 
large-scale networks

• Long latency, large energy, heavy hardware
resource occupation…

– Does not consider the nodes’ mobility
 

• Proposed SM-NR

– Multiplexing signals for network measuring

• Reduce the number of signal transmissions
to the minimum

– High-accuracy range estimation 

• Clock errors, user mobility

• High measurement update rates, small accumulated errors
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Signal-Multiplexing Network Ranging

• Current clock synchronization and ranging methods

– Mass transmission, unsuitable to 
large-scale networks

• Long latency, large energy, heavy hardware
resource occupation…

– Does not consider the nodes’ mobility

• Proposed SM-NR

– Multiplexing signals for network measuring

• Reduce the number of signal transmissions
to the minimum

– High-accuracy range estimation 

• Clock errors, user mobility

• High measurement update rates, small accumulated errors
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Signal-Multiplexing Network Ranging

37

• New method for network ranging and clock synchronization

– Protocol 

• Reduce the signal overhead from              to           , boost scalability

• Ensure access to the freshest measurement data, diminish the 
ranging/localization errors incurred by outdated measurements

– Ranging method

• Estimate time-varying distances without the knowledge of velocity

• Robust to the coupling effects of clock errors and node mobility

Decouple the 
effects of node 

mobility and 
clock errors

Establish a global 
average time as 

reference time for 
clock synchronization 

ToF/TDoF 
estimation
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Signal-Multiplexing Network Ranging

• ToF estimation against clock errors and node mobility
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likelihood fun. w.r.t the clock drifts Timestamps

Proposition 1 

The ToF estimation between active nodes    and     at time instant when active 
node    broadcasts is given by 
               
    
           
where                                             

in which the synchronization is fabricated as 

with estimation 
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Signal-Multiplexing Network Ranging
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• SM-NR achieves higher ranging resolution with fewer measuring 
signals

Method
Measurement 
update rates

Mobi
lity

ToF TDoF Worst-case errors

AltDS-
TWR



MPLS  

PER 

Our 
method

  

Estimation error Error induced by outdated 
measurements
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Numerical Results

40

• RMSEs vs clock errors and node mobility

– The low measurement update rate replaces clock errors, becoming 
the dominating factor in range errors

– SM-NR effectively eliminates clock errors, significantly improving 
the ranging accuracy by boosting the efficiency, achieving about 
one order of magnitude lower error than those of the others
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Numerical Results

41

• RMSEs vs network scale

– Ranging errors increases with the number of active nodes, and the 
growth rates reflect the scalability of the ranging methods

– SM-NR exhibit a smaller growth rate and lower errors, manifesting 
its adaptability to large-scale networks 
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SCHEME: RELATIVE LOCALIZATION 
FOR MULTI-ROBOT SYSTEMS
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Challenge

• Distributed networks

– Centralized:  global optimization, 
high latency, high complexity, vulnerable

– Distributed:  local optimization, 
low latency, low complexity, high robustness

• Infrastructure-free demands

– Determination of the network geometry without 
absolute position information reference

• Information fusion

– The local networks share no unified coordinate 
system in decentralized networks

– In networks with multi-sensors, high-effiecient 
information fusion scheme is required for 
spatiotemporal cooperation 
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Relative Localization Algorithm

• Distributed Relative Localization framework
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Relative Localization Algorithm

• Distributed Relative Localization framework

– Static relative localization

• Local Geometry Determination: Estimate the geometric shape of the 
network without any absolute position information

• Global Geometry Merging: Fuse the information of different 
geometries under different reference frames

– Dynamic relative localization

• Exploit the spatio-temporal gain by inter-intra node cooperation with 
multi-sensory information fusion

• Achieve distributed localization via dynamic reference frame alignment 
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Relative Localization Algorithm

• Local Geometry Determination

– Without absolute position reference, the high-efficient estimation 
of the shape of the local geometry is achieved by a dynamic 
selection scheme of reference frames
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Relative Localization Algorithm

• Global Geometry Merging

– Distributed information fusion under different reference frames is 
achieved by minimizing relative error within the equivalent state 
class with a merging priority evaluation criterion
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Relative Localization Algorithm

• Dynamic Relative Localization

– In dynamic scenarios, real-time distributed relative localization is 
achieved via dynamic reference frame alignment and multi-sensory 
information fusion
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PLATFORM: RELATIVE LOCALIZATION 
FOR MULTI-ROBOT SYSTEMS
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System and Module
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• Cloud test field

– Motion capture system：50m*25m*12m, 144 cameras, 
reconstruction error <0.5mm, update frequency 100Hz+

– Remote test: Cloud computing and simulation
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System and Module
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• Cloud test field

– Virtuality and reality combination

– Sensing in simulation, control and motion in reality
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Real-world Experiment

• Three application scenarios
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Real-world Experiment

• Three application scenarios

– Scenario 1: Formation

• 4UGV(active) + 1UAV(active)

• U-shape formation route

• Involve high-speed (accel.) movement

– Scenario 2: Search and Rescue

• 4UGV(active) + 4UGV(silent)
+ 2UAV(active)

• Involve a few obstacles

• Involve high-speed (accel.) movement

– Scenario 3: Overtaking

• 4UGV(active)

• One UGV overtakes the other 3 on 
the two-lane road
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Real-world Experiment

• Network ranging performance

– CDF of ranging estimation errors
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Real-world Experiment

• Relative localization performance

– Localization results
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Conclusion

• Theory
– Deriving the performance bounds of the relative error, investigating the 

effects of state measurements, clock asynchronization and temporal 
cooperation

• Scheme
– Network measurement protocol: The proposed SM-NR minimizes the 

signal overhead, ensuring scalability and timeliness for accommodating 
larger swarm sizes

– Localization algorithm: The proposed relative localization scheme exploits 
multi-sensory information fusion and achieves real-time alignment for 
local reference frames, ensuring distributed localization with high 
efficiency, accuracy, and robustness

• Platform
– Leveraging SM-NR on our UWB arrays, where an implementation attains 

centimeter-level accuracy at an update rate over 100 Hz, solely utilizing 
UWB
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