

Ecosys Lab

Power Line Communications: a Brief Introduction

Andrea M. Tonello

Institute of Networked and Embedded Systems University of Klagenfurt, Austria www.andreatonello.com

IEEE ComSoc TC-PLC and TC-SGC Webinar on the Potential of Power Line Communications for Smart Grid, Residential and Industry Applications

6 October 2023

© A. M. Tonello 2023. This material is for the talk use only. It cannot be copied and/or distributed without author's permission.

□ Introduce you to the world of powerline communications

□ Illustrate key research domains

Open the floor to Cedric Lavenu's and Marcos Martinez' talks

The rationale behind PLC

Diversity of requirements

It is not all about wireless

Power lines are pervasively deployed to deliver electrical energy

PLC has a role !

Evolution of PLC technology

UNIVERSITÄT

AGENEURI

Channel characterization and modeling

What we have learnt

REF. Zimmermann et al.,, "A multi-path signal propagation model for the powerline channel in the high frequency range", IEEE ISPLC 1999

- REF. Cañete et al., "Analysis of the Cyclic Short-Term Variation of Indoor Power L. Channels", IEEE JSAC 2006
- REF. Galli, "A Simple Two-Tap Statistical Model for the Power Line Channel," IEEE ISPLC 2010.
- REF. Tonello et al., "Bottom-up Statistical PLC Channel Modeling Part I: Random Topology Model and Efficient Transfer Function Computation," IEEE Trans. Power Del., 2011

REF. Schwager et al., "MIMO PLC: Theory, Measurements and System Setup," IEEE ISPLC 2011

Channel modeling approaches

- REF. Zimmermann et al., "A Multipath Model for the Powerline Channel," IEEE Trans. Commun., 2002.
- **REF.** Esmailian et al., "In-Building Power Lines as High-Speed Communication Channels: Channel Characterization and a Test Channel Ensemble," Int. Journ. of Commun. Syst., 2003.
- REF. Tonello et al., "Bottom-up Statistical PLC Channel Modeling Part I: Random Topology Model and Efficient Transfer Function Computation," IEEE Trans. Power Del., 2011.
- REF. Tonello et al., "A Fitting Algorithm for Random Modeling the PLC Channel," IEEE Trans. on Power Delivery, 2012
- REF. Pittolo, et al., "A Synthetic Statistical MIMO PLC Channel Model Applied to an In-Home Scenario," IEEE Trans. Comm. 2017.

Statistical modeling and emulation

Noise characterization and modeling

What we have learnt

REF. Zimmermann et al., "Analysis and Modeling of Impulsive Noise in Broad-Band PowerLline Communications," IEEE Trans. Electr. Compat., 2002. REF. Cortés et al., "Analysis of the indoor broadband power-line noise scenario", IEEE Trans. Electromagn. Compat., 2010. REF. Antoniali et al." An Experimental Characterization of the PLC Noise at the Source," IEEE Trans. on Power Delivery, 2016.

Physical layer

Filter bank modulation at the heart of PLC

- The need to provide spectrum confinement and notching capabilities have brought to the study and adoption of filter bank modulation:
 - Pulse-shaped OFDM (adopted in ITU and IEEE NB/BB standards)
 - Wavelet OFDM (essentially DWMT, adopted in IEEE BB standard)
 - FMT: Filtered multitone
 - CB-FMT: Cyclic block FMT
 - OQAM/OFDM: Offset QAM OFDM
 - ..
 - **Channel coding:** interleaved CC, Turbo and LDPC codes
 - No specific design, if not the decoding metric to take into account the noise statistics
- Adaptation is a key concept:
 - Bit-loading, coding rate, number of tones, spectrum management, cyclic prefix length

REF. Lampe et al., "Power Line Communications: principles, standards, applications from multimedia to smart grid," Wiley 2016.

How to increase throughput ?

Increase bandwidth up to 300 MHz

- Gains are possible depending on the scenario
- The channel is low pass, though
- Attenuation and radiation increases

MIMO

- Multiple conductors may be available
- Exploit both differential and common mode transmission

In-band full duplex

- Double bidirectional throughput, ideally
- High levels of self interference are generated because of impedance mismatches
- Need to implement analog and digital cancellation stages
- In short: quite challenging and with unclear use cases

REF: Versolatto et al. "PLC Channel Characterization up to 300 MHz: Frequency Response and Access Impedance," IEEE Globecom 2012. REF. Berger et al., "MIMO Power Line Communications: Narrow and Broadband Standards, EMC, and Advanced Processing," Taylor&Francis, 2014. REF. Prasad et. al, "In-band full duplex broadband power line communications," IEEE TCOM 2016.

MAC and above layers

MAC and above

MAC in PLC

- CSMA, Flooding for large PLC sensor networks
- Adaptive TDMA to exploit the cyclic variations of the channel and noise
 - This is unique of PLC and brings to beautiful RA strategies

Relaying and routing

- To improve coverage repeaters and relays are used
 - The relay cannot be placed anywhere differently from wireless
- For large networks, such as metering networks, routing is very relevant. The conceivement of light protocols is a current research topic

Coexistence, interoperability and convergence layer

- Different PLC standards can coexist through an inter-system coexistence protocol
- Interoperability is implemented at the network and IP layer
- Convergence with other technologies (wireless, VLC, ...) is realized at L3

Second use case: PLC enabled power grid diagnostics
Sensing of faults, cable degradation, and grid topology reconstruction etc.

REF. Lampe et al., "Power Line Communications: principles, standards, applications from multimedia to smart grid," Wiley 2016. REF. Passerini et al., "Smart Grid Monitoring Using Power Line Modems: Anomaly Detection and Localization," IEEE Tr. on Smart Grid, 2019.

Final remarks

What is next in PLC ?

- Reduce the market receptivity barriers
- Harmonize standards
- Keep technology evolving
 - Look for new applications (see next presentations)
 - Still space to invent something in all L1-L3 layers
 - Two domains where work has just started are:
 - AI for complex PLC network management
 - ML to design and analyze PLC technology

Machine Learning Tips and Tricks for Power Line Communications

ANDREA M. TONELLO¹, (Senior Member, IEEE), NUNZIO A. LETIZIA², DAVIDE RIGHINI³, and FRANCESCO MARCUZZI⁴

IEEE Access 2019

