

Broadband Powerline – A status

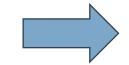
Marcos Martínez Vázquez – MaxLinear

October 2023

Agenda

Broadband Powerline (BB PLC) introduction

- > Definition
- > Applications
- BB PLC in smart grid
 - > 4 use cases
- BB PLC in residential
 - > Residential
- BB PLC in other markets
 - > Infrastructure
 - > Industrial
 - > Other


BB PLC introduction

What is **BB** PLC

Many possible definitions:

> From an application perspective:

- Best definition "Powerline technology that provides enough QoS performance to transport reliably broadband communication services"
- Performances needed are different depending on the application (normally > several tens of Mbit/s)
- > From a technology perspective
 - Technologies using frequencies above 2 MHz (up to 80 MHz)
- Definition evolves over time and application
- Several specifications & standards (ITU-T, IEEE) with different throughputs, and bandwidths
- Traditionally used in residential scenarios (connectivity), moving to many other scenarios as well

Adaptable technology that can provide Broadband without extra cables in difficult scenarios

BB PLC markets

Main markets

> Residential broadband:

- Evolves from "Provides connectivity in the home" to "Provides backhauling infrastructure for Wi-Fi"

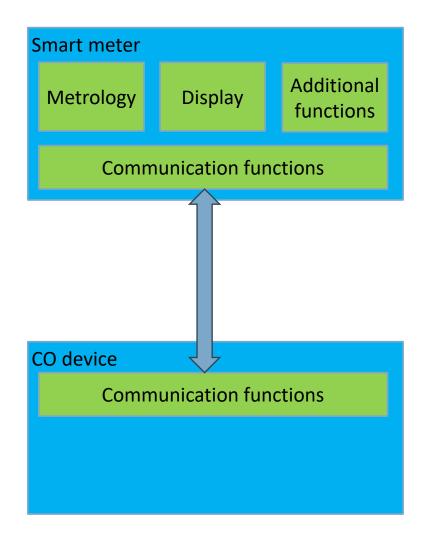
> Smart Grid:

 Provide "high" throughput infrastructure fully owned by the usitlity to transport control, monitoring and telemetry

> Infrastructure:

- Converting any infrastructure into "smart" by providing "high" throughput connectivity
- > "Other":
 - PLC is basically a "reliable, adaptive transmission engine". Technology can be reused in other applications where BB is also needed and that share similar characteristics but not the same medium:
 - LiFi
 - Access
 - Submarine
 - Etc...

BB PLC in smart grid


BB PLC in Smart grid - Applications

Description

- 4 main applications:
 - > Smart meter (SM)
 - > Smart meter GW (SMGW)
 - > Concentrator
 - > MV Connectivity

Use case 1: Smart meter

Description

 A communication module is directly integrated into a smart meter (SM) to provide connectivity and communications capabilities.

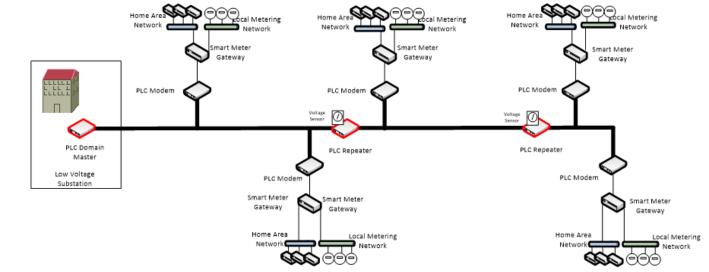
• Main functions:

- > Read metering data
- > Remote-control functions (e.g.) shutting down/limiting power supply
- > BPL network can also be used to provide meter reading information to the end-customer.

Reasons for using BPL:

- > SW stack (security) needs more performance (> 1Mbps)
- > Reliability
- > Additional functions
- > Scalability
- Challenges:
 - > Stability/Guarantee of throughput (as always)
 - > Cost
 - > Up to 250/500 nodes per network

> "Competes" with NB-PLC ENVISIONING = EMPOWERING = EXCELLING


Use case 2: Smart meter gateway (SMGW)

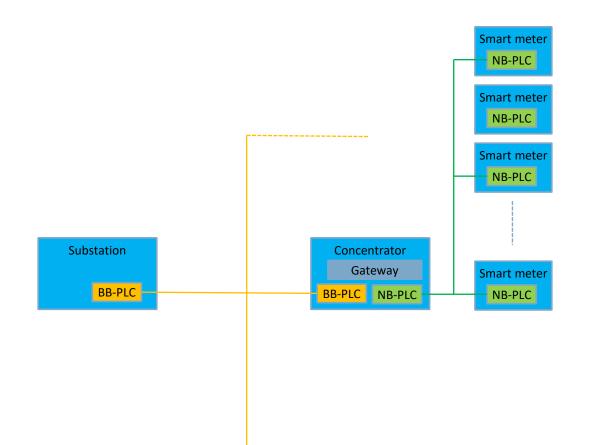
Description:

 High-capacity network over power lines to provide a common communication infrastructure over which several services can be run

Main functions:

- Receives and stores data from meters and processes them for consumption by market players.
- > Administrative activities
- Communicates with the controllable energy consumers or energy generators (e.g. intelligent household appliances, combined heat and power units or photovoltaic systems).
- Supplies data for the final consumer and for service technicians working within the HAN

Reasons for using BPL:


- > Complex GW needs more communication capabilities
- > Guarantees ownership of the infrastructure network
- > Seamless integration with other technologies (e.g, LTE, optics, etc.)
- > Scalability
- Challenges:
 - > Stability/Guarantee of throughput (as always)
 - > Cost
 - > Up to 250/500 nodes per network

~ 10 Mbps

ENVISIONING = EMPOWERING = EXCELLING

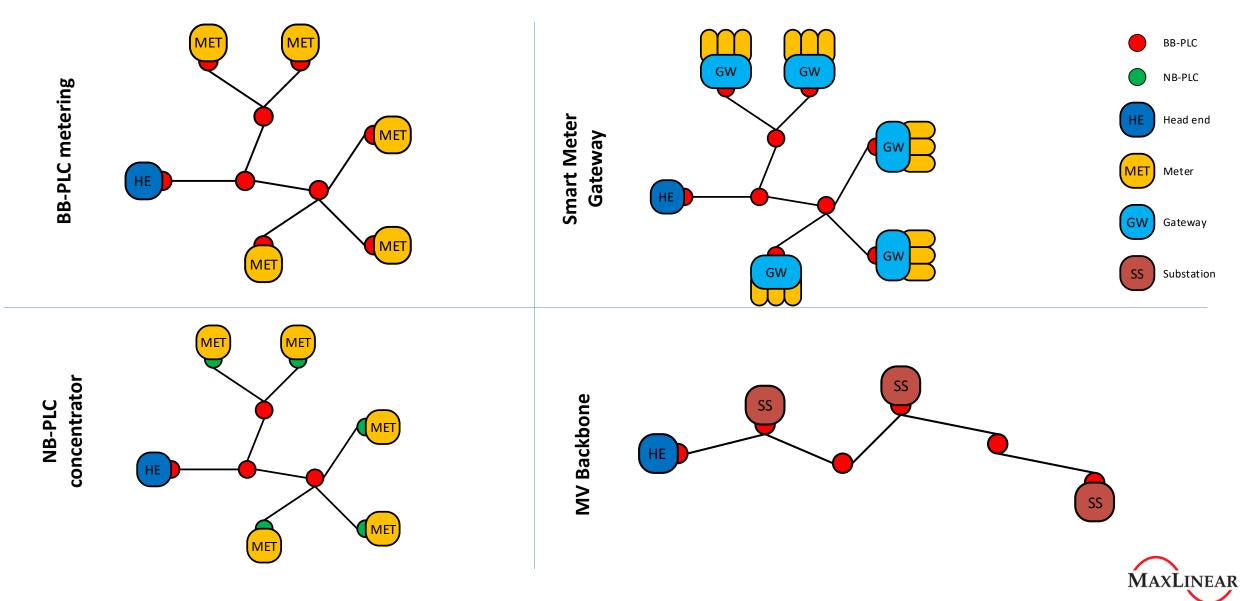
Use case 3: Narrow-band Smart meters concentrator

- Description:
 - Complements AMI deployments based on narrow-band powerline communications (NB-PLC) operating below 2 MHz.
 - Concentrates data from a building into a single flow
 - Allows parallelizing groups of meters, speeding up the process

• Main functions:

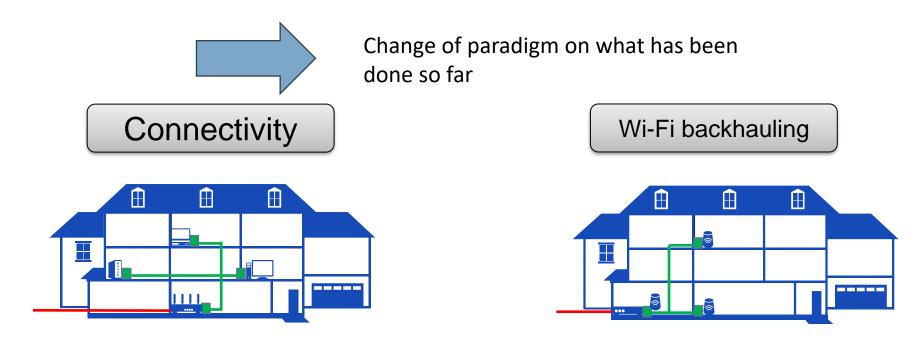

- Meter reading by blocks of meters
- Metering room monitoring
- Reasons for using BPL
 - Upgrades existing Narrowband networks with limited investment
 - Reuses existing infrastructure
- Challenges
 - Integration with metering architecture and protocols (security)
 - Performance >> 10 Mbps

Use case 4: MV backbone


• Description:

- Use of BPL technologies in MV grids as a complement of WAN access solutions at secondary substation level for smart grid services
- Using medium-voltage power lines as a means of data transmission is a great advantage in itself.
- Main functions:
 - Control and monitoring of substations
 - Viseosurveillance
- Reasons for using BPL:
 - No dependence on external 3rd parties to provide connectivity
 - Fine tuning for the necessities
- Challenges:
 - Difficult and unknown channel
 - Low pass channel
 - Repetitions are needed / "Serial" topologies (spatial reuse)
 - Self-repair

Smart grid use cases: Summary



BB PLC – Residential

BPL for residential (1)

- Traditional use of BPL technology
- Is it over?... Not really. New opportunities to <u>complement</u> Wi-Fi
 - PLC technology needs to focus on the Backhaul (Fronthaull will be Wi-Fi)
 - > Integration with Wi-Fi technology (e.g., Easymesh)

Change of paradigm on what has been done so far. From <u>"competing"</u> with Wi-Fi to <u>"complementing"</u> Wi-Fi

ENVISIONING = EMPOWERING = EXCELLING

BPL for residential (2)

- Why keep using BPL in residential to complement Wi-Fi in a new "Wi-Fi 7 world"
 - > "classical reasons"
 - Self install and flexible: It is still an "easy technology"
 - No new cables
 - 200 Mbps is enough for 90% of the users/Applications

> "New reasons"

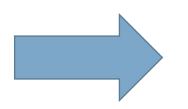
- Low latency. End to end latency < 5 ms. Difficult to achieve in Wi-Fi consistently
- Spectrum offloading. Scarce resource that have to be preserved for Fronthaul links. Whenever possible, use a wired backhaul and focus air resources in fronthaul
- Reduced number of neighboring networks (Main issue in Wi-Fi)
- The use of 5GHz/6GHz does not help in coverage
- Allows reducing power in remote APs (facilitating spatial reuse)

Improve the weaknesses

- Instability
- Predictability
- Latency controllability
- > Integration with Wi-Fi

BPL for residential (3)

	Connectivity	Wi-Fi backhauling (wish)	Comments/Consequences
Socket coverage	Guaranteed 100 Mps in every socket	Guaranteed 250 Mbps in "selected" sockets	We can monitor socket quality and change it
Medium Access	"Pure" mesh	P2MP. GW-centric.	We can simplify MAC and reduce overheads Wi-Fi (and Easymesh) are P2MP Added value service need traffic to go through the router
Integration	Standalone technology	Cooperation with Wi-Fi	Authentication mechanisms, per-Flow traffic routing, bonding, etc
Main focus	Peak throughput	Reliability, stability, predicatibility	It is better to have a reliable, stable 250 Mbps backhaul than a peak throughput of 1 Gbps in some sockets
РНҮ	100 Mbps per connected device	??	With Flow selection and bonding, trade off between Wi-Fi and BPL can be done. " <i>The more</i> <i>BPL is used, the better Wi-Fi will work</i> "


BB PLC – Other markets

Infrastructure/industrial/Other markets

- Provide infrastructures with connectivity through a reliable existing backbone (>10 Mbps)
- This allows:
 - Monitoring
 - Control
 - Deployment of advanced services

Examples

- Entrance guard systems
- Smart Lighting
- Smart Traffic lights
- Navigation lightning aid at airports
- Charging stations

- BPL impact
 - Higher number of nodes
 - Longer distances (multi-hop)
 - High level of repetitions
 - Low latency & jitter
 - Extremely noisy environments
 - Embedding specific protocols
- The good side: Some of these requirements are similar to smart grid and we know how to handle them
- The bad side: HIGHLY FRAGMENTED MARKET that requires specific adaptations → Need SW development and more flexible APIs

Infrastructure (2)

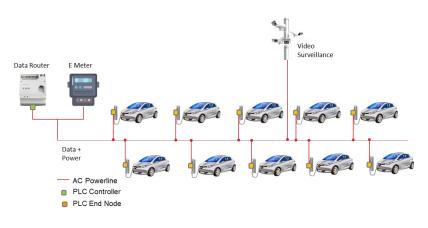
Smart Buildings

Benefits

- Use existing building wires
- Simplify installation through data/power wire integration
- Reverse power feed option
- Extend ethernet distance

Simplify wiring architecture

Robust data through wired backbone


Lower operating cost than using LTE

•

٠

19

Smart Charging stations

- Benefits
 - reliable and stable high-speed data backbone
 - No costly Ethernet/Fiber cable installation
 - Simplified installation through data/power wire integration

Connecting the World

Conclusions

Main conclusions

- BPL is a mature technology with many applications
- Many applications and market opportunities
- Fragmented market. We need to aggregate technical solutions and provide adaptability through SW
- Work to do with a focus on reliability, predictability and low latency
- Integration in the overall "networking ecosystem" is a must (e.g. in residential). PLC SHALL not be a standalone technology.

