

#### IEEE Webinar October 6<sup>th</sup> 2023

Potential of Power Line Communications for Smart Grid, Residential and Industry Applications

Narrowband PLC Technologies

Cédric Lavenu, EDF R&D



NB-PLC for smart metering infrastructure
 Smart metering and smart grid use cases
 Future Challenges for NB-PLC technologies



NB-PLC for smart metering infrastructure
 Smart metering and smart grid use cases
 Future Challenges for NB-PLC technologies



# The Smart Meter is at the interface between the grid and the customer



# Smart meter infrastructures constitute the first building block of the smart grid

#### Distant control (Automated Meter Management)



balance

Reduce on-field operation delays

#### Enhance efficiency of grid investments

Manage local production/consumption

# EREDIS's Linky infrastructure

**S**edf



\*SCADA: Supervisory Control And Data Acquisition; \*\*MDMS: Metering Data Management System

7





#### 6 years

- 2015 2021 Roll out

#### 4 billion €



Investment until 2021

٠

#### 4 manufacturers



With production factories based in France









**Energy Regulation Commission requirements** 

**General Data Protection Regulation** 

#### **Cybersecurity requirements**

- 98 % success rate for remot
- 98 % success rate for remote operations (up to 40 000 / day)

98 % success rate for daily data collection

 7 million customers monitor their electrical consumption online

# Market penetration of NB-PLC in smart grid / smart metering



# Market penetration of NB-PLC in smart grid / smart metering

- Mainly Europe
- Growing interest worldwide favored by hybrid PLC & RF technologies...





NB-PLC for smart metering infrastructure
 Smart metering and smart grid use cases
 Future Challenges for NB-PLC technologies

#### Phase detection service 1/3



- Phase connection information of customers is useful to:
  - Balance load in the three-phase public distribution network
  - Detect phase-neutral inversion
  - Get fine-grained information about outages, surges, etc. → enables LV grid monitoring
- Phase connection information is a need for some AMI programs and part of its business plans
- Continuous update of phase connection information during grid maintenance and operations is of great benefit from an operational perspective
- G3-PLC provides relative phase detection between neighbors:
  - Use of CSMA/CA (unlike some PLC standards using TDMA-like va 50/60 Hz-bound medium access)
  - Use of a « Phase Detection Counter » which value is included in the PHY header of each G3-PLC frame
  - The PDC field of the received frame updates the « PhaseDifferential » attribute related to the

transmitter node in the neighbor table

edf



#### Phase detection service 2/3

- LinkyRéseau Cartography and studies
- The absolute phase differential with the data concentrator can be established using neighbour tables.



#### Phase detection service 3/3





LinkyRéseau





Cartography and studies

### Grid cartography consolidation 1/3



- As many utilities, **Enedis operates a public distribution network developed over many years**, some parts having been installed more than a century ago : **existing cartographic data is prone to approximations**.
- It is possible to gather information about all links established between neighbour nodes together with the collection of all active paths/routes between nodes (similar to the IP "traceroute" program).



# Grid cartography consolidation 2/3





Cartography and studies

LinkyRéseau

# Grid cartography consolidation 2/3





and studies



#### Grid cartography consolidation 3/3



#### Beauty of PLC : Telecom Links ≈ Electrical Links !



#### ... NB-PLC gains attraction for a growing number of applications Example of PLC over DC bus for photovoltaic production systems

- Adding flexible, state-ofthe-art communication to enable key functions:
  - Energy efficiency (e.g. MPPT Maximum Power Point Tracker)
  - Safety (e.g. Rapid Shut Down)
  - Integration with Energy Management Systems
- Enabling local and remote
  DER management to
  support grid digitalization



# ... NB-PLC gains attraction for a growing number of applications









NB-PLC for smart metering infrastructure
 Smart metering enabling smart grid use cases
 Future Challenges for NB-PLC technologies

NB-PLC is one communication technology amongst many. Its ability to suit future use cases and to sustain in a telecommunication market evolving at a fast pace relies on its ability to interact with other solutions.

- Heterogeneous networks
  - Hybridization with other technologies (RF, Visible Light Communications, Fiber, Cellular, etc.)
  - Enhance performances for future use cases (mix of NB-PLC with BPL, 4G/5G networks, etc.)
  - Smart infrastructures (multi-utility approach, benefit from existing infrastructures for backhauling, etc.)



The reduction of overhead, in particular due to routing, is still an important area of improvement. Many smart grid NB-PLC technology-based infrastructures will be operated for years while facing a growing demand for increased bandwidth (new application use cases, etc.).

- **Enhancement of routing** 
  - **Dense network enhancements** (return on experience still required) Ο
  - Path-Aware Semantic Addressing aka "PASA" (see https://datatracker.ietf.org/doc/draft-ietf-6lo-path-aware-semantic-addressing/) Ο



Improved performances of G3-PLC networks



Figure 6: An example of PASA addresses allocation.

implementing dense network enhancements (lab)



As in many domains, AI/ML techniques have a key role to play in the domain of NB-PLC technologies, covering various aspects ranging from the operation of new added-value services in existing deployments, to real-time protocol stack configuration for next-gen technologies ("cognitive PLC", "Software Defined Networks for PLC",...).

- Artificial Intelligence & Machine Learning to optimize NB-PLC protocol stacks
  - **o** Grid diagnostics
  - Auto-adaptive signal processing below the PHY to learn about noise and cancel it
  - Auto-adaptive protocol stack behavior for next gen NB-PLC (PLC and hybrid)
  - **Cooperative routing** for next gen NB-PLC
  - SDN for IoT : dynamic updates of next gen protocol stack parameters & modular stacks (micro-FWs in an "edge computing" framework)



Last but not least, there is still room for improvement of PLC coupling techniques to allow for enhanced impedance matching (at a reasonable cost) and to enable the derivation of data which is valuable to end-users (such as Power Quality information).

- Enhancement of PLC coupling techniques
  - Dynamic impedance matching
  - Additional benefits of PLC couplers (PQ, etc.)



# SedF

# Thank you!