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I. INTRODUCTION 
 

Internet of Things (IoT) based systems are expected to 
revolutionize the healthcare domain. The prevalence of 
continuous health monitoring wearables, and, fast and 
low-power wireless communication have motivated a 
shift to connected health models. Connected health is an 
umbrella term that encompasses a combination of 
different technologies that enable real-time exchange of 
health information. In particular, there has been a 
growing interest in continuous real-time monitoring of 
chronically ill patients outside the clinical setting. The 
potential benefits of such systems are enormous, ranging 
from improving the quality of life of patients and 
increasing their independence, to reducing unnecessary 
hospital admission costs [1]. At the same time, allowing 
healthcare professional to keep an eye on their patients 
and detect any problematic event. 

However, the mixed-criticality nature of remote 
health exacerbates the weaknesses of IoT based systems. 
Typically, data from low-power wireless-enabled sensor 
nodes is collected by a nearby IoT edge-device (hub or 
gateway) [2]. The gateway routes the data to a cloud, 
where automatic analysis is performed [2]. Then, useful 
information is extracted, stored, and visualized for the 
end user (e.g., physicians or nurses). Some disadvantages 
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of this framework are the high energy consumption due 
to raw data streaming, big data issues, latency related to 
cloud computing, and user-privacy [3], [4]. In healthcare 
systems, where real-time, reliable, secure, and safe core 
functionalities are of utmost importance; the typical IoT 
paradigm falls short. 

Conventionally, the IoT edge-device is looked at as a 
simple router between the sensor and the cloud. 
However, state of the art multicore and heterogeneous 
platforms offer high, energy-efficient, low-area, and cost-
effective computing power [5]. Only recently, such 
architectures are considered as the potential gateway for 
critical applications, such as healthcare. They can be used 
to reconstruct compressed signals in real-time, classify 
the data locally, encrypt summarized status reports, and 
deliver them locally to the patient, and remotely to 
healthcare centers. Additionally, local analytics empower 
the system in terms of robustness when handling medical 
anomalies and technical faults. For example, if an 
Internet connection fault occurs, the system will still be 
able to deliver diagnostics to the patient, or, sound a 
local alarm in the patient’s household. 

In our project, the objective is to put forth a 
framework that facilitates quick implementation and 
validation of modular and reconfigurable connected 
health systems and environments. In addition to 
providing solutions to challenges of reliability, security, 
and real-time signal acquisition and processing using 
embedded multicore platforms. We (i) describe 
connected healthcare in a general, formal, and model-
driven methodology using a standardized modeling 
language; (ii) develop and optimize compressive sensing, 
signal classification, pattern-recognition, data-fusion, and 
encryption techniques in multicore embedded systems; 
(iii) simulate remote health-scenarios and investigate 
their real-time power-consumption tradeoffs, 
classification accuracy, and tolerance to faults; and (iv) 
create validation tools to ensure the system meets the 
requirements set-forth by the model. 

Using a systematic, model and embedded systems 
oriented approach, aids in the reduction of system design 
cost and the effort and time required for re-validation 
after making changes. Additionally, it introduces a design 
workflow to fight the ever-increasing technical 
complexity of IoT systems. 

Deploying countries on CEF eHealth digital service 
infrastructures (eHDSI) are in alphabetical order: Austria, 
Croatia, Cyprus, Czech Republic, Estonia, Finland, France, 

Germany, Greece, Hungary, Ireland, Italy, Luxemburg, 
Malta, Portugal, Sweden and Switzerland. 

In what follows, we provide more details with respect 
to the scenarios of usage in Section II, the Cyprus’ 
national architecture in Section III, and the validation 
schemas in Section IV. Section V provides the concluding 
remarks 

 

II. CASE STUDIES 

A.  Remote Elderly Monitoring System 

The remote elderly monitoring system (REMS) focuses 

on continuous real-time monitoring and diagnosis of the 

sensitive demographic of critically and chronically ill 

seniors. The aim is to enable healthcare providers to 

monitor the health status of their patients without 

frequent hospital visits. Such service provides 

independence for patients and quality of life 

improvement, instead of frequent hospital visits or 

nursing homes.  

REMS consists of three subsystems as illustrated in Fig 

1. In the Home subsystem various physiological sign 

monitoringsensors contentiously transmit data to a 

gateway. In this implementation, Shimmer wearable 

sensors are used. Shimmer devices can measure 

electromyography (EMG), electrocardiography (ECG), 

respiration, weight, acceleration, torque, and many more 

physical and physiological signs. They feature Bluetooth 

low-energy (BLE4) and are equipped with a TI MSP430 

microcontroller running tinyOS. The component-based 

programming language, nesC, can be used within the 

tinyOS operating system to implement on-node 

processing algorithms. As for the gateway, the Xilinx Zynq 

system-on-chip (SoC) platform and the Odroid XU4 are 

used. The Zynq features a dual core arm processor in 

conjunction with a field-programmable gate array (FPGA) 

fabric, and the XU4 is based on the Samsung Exynos 5422 

octa-core big.LITTLE processor. These devices open new 

possibilities for co-and-parallel processing, reducing 

power and improving efficiency in computationally 

intensive applications such as security (encryption, 

compression), data interpretation, classification, and 

fusion. The reconfigurability of both the sensor and the 

gateway layers enables the system to fight dynamically 
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Fig  1. Overview of the remote elderly monitoring system (left) and smart ambulance service (right) 

changing environments and allow many scenarios to be 

tested, optimized for a particular requirement (e.g., real-

time analysis, power-consumption), and validated. 

The REMS data repository is a combination of a cloud-

based service and a medical database. Data reports sent 

by the gateway are stored, and additional analysis is 

performed. Using medical records and present data, 

cloud-based analytics can recognize patterns and give 

healthcare professional a comprehensive overall look at 

the patients’ history and their current status, further 

personalizing health delivery. Finally, relevant 

information is visualized, and analytics or emergency 

alarms are delivered to stakeholders (patient, physicians, 

pharmacist, ambulance dispatch, etc.). 

We dived the mixed-criticality nature of remote health 

motioning systems into three sub-categories as depicted 

in Fig 2. Safety-critical indicate requirements, which if not 

met, may jeopardize the patient or cause serious injury. 

Mission-critical indicates essential factors for reliable 

business operation, failure or disruption might result in a 

negative impact upon the organization, such as the loss 

of credibility. All criticalities that do not fall under the 

aforementioned categories are classified as non-critical. 

Identifying the type and impact of criticalities is the first 

step in our model-driven approach. Next, we will model 

REMS subsystems as subsystems and explore the 

responsibility of each sub-subsystem component in 

meeting the set criticalities in the context of their 

function and real-world performance metrics. Then, 

validation tools will be developed to benchmark the 

system’s performance against the model’s requirements, 

and locate the components where deficiencies occur. 

Hence, deriving our research and implementation efforts 

systematically. 

In the past year, we investigated compression and 

machine learning algorithms in pursuit for better 

reconstruction quality, classification accuracy, and power 

efficiency. The subspace pursuit (SP) reconstruction 

algorithm was applied to feature Bluetooth low-energy 

(BLE4) and are equipped with a TI MSP430  



 

4 
 

 
Fig  2. REMS criticalities overview 

microcontroller running tinyOS. The component-based 

programming language, nesC, can be used within the 

tinyOS acceleration, ECG, and EEG signals. Acceleration 

and ECG signals were retrieved with sufficient 

information to permit classification. Physical falls were 

detected with 91.7% accuracy using the extended nearest 

neighbor (ENN) with a signal compression factor of 0.35. 

And, heart arrhythmia was recognized with an accuracy 

of 99.3% using both K-nearest neighbor (KNN) and EEN 

with a signal compression factor of 0.25. Efforts relating 

to EEG signals were focused on improving the 

reconstruction quality. First, the joint sparsity of EEG 

signals was exploited, and we found that measuring four 

or eight EEG channels simultaneously leads to an 

improvement in reconstruction quality. Second, a signal 

dependent sparsifying bases and signal structure 

dependent sparsity estimation were developed; leading 

to a better signal quality and energy compaction. 

 

B. Smart Ambulance System 

The smart ambulance system (SAS) aims to improve 

ambulances dispatching and patient localization speed. 

Also, it capitalizes on the inherit en-route time by 

delivering patient diagnostics from the ambulance to 

emergency clinicians. The SAS ambulance houses a 

similar technology to the Home subsystem from the  

 
Fig  3. SAS criticalities overview 

previous section. However, in addition to diagnostic 

sensor, the ambulance has imaging and therapeutic 

equipment such as ultrasound machines, a general 

positioning system (GPS) to keep concerned individuals 

up to date with its location, and is equipped with 

video/audio (AV) capabilities for the emergency medical 

technician (EMTs) to consult with clinical experts. 

Instead of going through a data repository, the 

ambulance directly communicates with the remote 

facility where the data is displayed and recorded for 

physicians to assist and give instructions, pre-diagnose, 

and prepare the emergency room adequately. The 

ambulance dispatch center tracks the locations of all 

ambulances, receives emergency calls and reports, and 

dispatch ambulances with the fastest expected arrival 

time. 

The attended workflow for SAS is as follows: 

i. The subject calls the ambulance service and 

provide information about the incident. 

ii. The ambulance dispatch center operator locates 

the subject and the closest ambulance and 

dispatches it. 

iii. The operator finds the nearest hospital to the 

subject and connects the ambulance’s SAS to the 

hospital’s SAS. 

iv. The ambulance arrives at the incident location 

and collects information about the criticality of 

the patient, provides the hospital with diagnostic 
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measures while en-route, and takes instructions 

and preparation steps from physicians over a live 

AV feed, if necessary. 

v. The hospital keeps track of the ambulance 

location and makes early diagnostics and 

preparations. 

Figure 3 illustrates SAS criticalities. Ambulance dispatch 

time, real-time monitoring, access to records, and 

external consultation are identified as safety-critical. 

Because, the time-of-arrival to the incident location, data 

validity, and the ability for EMTs to get assistant from 

experts are all detrimental to the patient’s welfare. 

Meanwhile, a secure and private telecommunication 

between the ambulance and healthcare facility is 

mission-critical as the organization’s credibility relies on 

accommodating the stringent privacy regulations on 

sensitive patient data and medical records. 

 

III. CONCLUSION 
 

Connected health models, especially continuous 

remote health monitoring, face many bottlenecks when 

considering the common IoT system framework. 

Meanwhile, multicore heterogeneous architectures can 

offer competent edge devices capable of retrieving and 

analyzing signals in real-time. In the implementation of 

REMS and SAS, the focus is placed on exploiting such 

platforms to address limitations within the IoT paradigm. 

They are used to reconstruct compressed signals, detect 

anomalies, and implement security and robustness 

measures. Additionally, a modular-model-drive design 

approach is followed; potentially reducing 

implementation cost and revalidation and recertification 

efforts, and providing a tool-kit to fight system 

complexity. 
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Call for Papers 

 
The IEEE Conference on Biomedical and Health Informatics (BHI) 2018 and the IEEE Conference on Body Sensor Networks (BSN) 
2018, two premier flagship venues in the area of mHealth, health analytics and wearable computers, will be co-located this year 
along with the Health Information Management Systems Society Annual Conference (HIMSS) 2018. Our joint event will take place 
in Las Vegas, Nevada, USA, 4-7 March 2018. 
 
The joint organization will provide a unique forum to showcase novel sensors, systems, signal processing, analytics and data 
management services. The presentations will offer the latest findings of researchers on efficient and innovative signal acquisition, 
transmission, processing, monitoring, storage, retrieval, analysis, visualization and interpretation of multi-modal signals including 
physiological, biomedical, biological, social, behavioral, environmental, and geographical data. 
 
The joint program will feature world-renowned keynote speakers from academic research institutions, government agencies and 
industry, with seminars outlining the future direction for research in the area of biomedical and health informatics and body 
sensor networks. 
 
Authors are invited to submit full papers (4 pages) and short abstracts (1 page) presenting innovative research as outlined under 
the topics of interest for each conference. 
 
Special sessions and workshops offering focused presentations on cutting edge research topics will be organized by experts in the 
field. 
 
Awards for the best paper and poster will be presented at the conference. Authors of a set of papers and presentations, selected 
by the peers, will invited to submit an extended version of the paper to a special issue of the IEEE Journal of Biomedical and 
Health Informatics, the flagship engineering journal in this area 
 

BHI-BSN Important Dates 

 
Full Papers 

Submission Due - Nov 6, 2017 
Decision Notification - Dec 10, 2017 

Final Paper Submission - Jan 15, 2018 
 

We are looking forward to seeing you in Las Vegas! 
 

Conference Website: https://bhi-bsn.embs.org/2018/# 

https://bhi-bsn.embs.org/2018/

