

Art of Marriage: Performance Trade-offs and Waveform Synthesis in Integrated Sensing and Communications

Husheng Li

Purdue University School of Aeronautics and Astronautics & Elmore Family School of Electrical and Computer Engineering

April 29th, 2024

(日) (字) (日) (日) (日)

Outline

Motivation of ISAC

- 2 Fundamental Views and Trade-offs
- **3** ISAC Algorithm Design
- **4** Conclusions and Future Work

Integrated Sensing and Communications

- Communications and radar are major consumers of wireless spectrum that is facing resource shortage. It improves the efficiency to share the spectrum between communications and radar.
- In Integrated Sensing and Communications (ISAC), the waveform completes communications in the forward propagation, and then sensing in the backward propagation.

Integrated Sensing and Communications

- Communications and radar are major consumers of wireless spectrum that is facing resource shortage. It improves the efficiency to share the spectrum between communications and radar.
- In Integrated Sensing and Communications (ISAC), the waveform completes communications in the forward propagation, and then sensing in the backward propagation.

ISAC As A Pilar of 6G

Usage scenarios

6 Usage scenarios

Extension from IMT-2020 (5G)

- eMBB 🔿 Immersive Communication
- mMTC

 Massive Communication
- URLLC

 HRLLC (Hyper Reliable & Low-Latency Communication)

New

Ubiquitous Connectivity Al and Communication Integrated Sensing and Communication

4 Overarching aspects:

act as design principles commonly applicable to all usage scenarios

Sustainability, Connecting the unconnected, Ubiquitous intelligence, Security/resilience

Outline

Pundamental Views and Trade-offs

- ISAC Algorithm Design
- 4 Conclusions and Future Work

Outline

Fundamental Views and Trade-offs Different Views of ISAC

Fundamental Performance Trade-offs

ISAC Algorithm Design

Sphere Packing Picture

- A single waveform cannot send out communication information.
- There are N waveforms in the signal set. The selection of waveform to transmit conveys log₂ N bits.
- Each waveform is a codeword. The design of codebook in ISAC is essentially sphere packing.

Broadcast Channel Modeling

- We can consider JCS as broadcasting information to a virtual sensing user and a concrete communication user.
- Pros: Many techniques in the study of broadcast channels, such as TDM, FDM, linear precoding, or DPC, can be leveraged.
- Cons: The virtual sensing 'user' is not a real one, thus needing extra exploration and special handling.

Typical Broadcast Methodologies¹

- TDM: Separated in the time, which mainly concerns the MAC layer scheduling^a.
- FDM: Separated in the frequency. Studied in our other papers.
- Superposition Coding: We design the sensing waveforms first and then transform them to superimpose the communication message.

¹H. Li, "Feasible region in joint communications and sensing: A broadcast channel framework," IEEE Globecom, 2023

^aH. Li, "MAC scheduling in joint communications and sensing networks based on virtual queues," IEEE Conference on Global Communications, 2022.

Superposition Coding

- The message of User 1 is encoded into clouds (4 clouds for 2 bits).
- The message of User 2 is encoded as nuclei at each cloud (4 nuclei for 2 bits).

Superposition Coding

- The message of User 1 is encoded into clouds (4 clouds for 2 bits).
- The message of User 2 is encoded as nuclei at each cloud (4 nuclei for 2 bits).

Superposition Coding: Decoding

- User 1 estimates the identity of cloud and retrieves the bits.
- User 2 estimates the cloud first, and then figures out the nuclei for retrieving the bits.

Superposition Coding: Decoding

- User 1 estimates the identity of cloud and retrieves the bits.
- User 2 estimates the cloud first, and then figures out the nuclei for retrieving the bits.

Sensing-Centric ISAC

- User 1: sensing; User 2: communications.
- We design the set of sensing waveform first (e.g., using different phase codes, or transforming a prototype waveform).
- Then, communications are carried out by selecting one of the waveforms.
- Possible designs: watermarking in existing radar waveforms.

Communication-Centric ISAC

- User 1: communications; User 2: sensing.
- We first generate standard communication waveforms such as OFDM or OTFS.
- Then, the waveform is reshaped for improving the sensing performance (e.g., reducing the sidelobes).
- Possible designs: PSD windowing or trellis shaping.

Going Beyond Broadcast Modeling

- In broadcast channel, the communications to different users are a zero-sum game. In ISAC, sensing and communications are beneficial to each other.
- Sensing provides physical information for communications, thus helping beamforming and interference mitigation,
- Communication signals provide power and bandwidth for sensing (e.g., the Wi-Fi sensing).

Outline

Fundamental Views and Trade-offs Different Views of ISAC

- Different views of ISAC
- Fundamental Performance Trade-offs
- ISAC Algorithm Design
- 4 Conclusions and Future Work

Design and Performance Metrics

- Communications: We can use channel capacity to measure the data rate.
- Sensing: For a generic signal *x*, the corresponding ambiguity function is defined as

$$\chi(\tau, f) = \int_{-\infty}^{\infty} x(t) x^*(t-\tau) e^{-j2\pi f(t-\tau)} dt,$$

where τ is time delay and *f* is the frequency offset.

 It is important to suppress sidelobes χ(τ, 0) in order to detect weak targets.

Bitter Conflicts of Interests

- Communications and sensing have different purposes and characteristics, thus resulting conflicts in the waveform synthesis, as well as the networking of ISAC:
 - · Waveform sensitivity to environment
 - Sensing uncertainty caused by communication randomness
 - Complexity of EM field
 - et al

Sensing Uncertainty due to Data Randomness²

- In traditional radar sensing, the waveform is dedicatedly designed and deterministic (e.g., the Golomb code).
- In ISAC, we can use the communication waveform for sensing, which is pseudo-random (known to the transmitter).
- Compare the sidelobes of Golomb code and OFDM communication waveform: the randomness of waveform degrades the performance of sensing.

²H. Li, "Conflict and trade-off of waveform uncertainty in joint communication and sensing systems," IEEE International Conference on Communications (ICC), 2022.

EM Field Complexity³

- A higher Degrees of Freedom (DoF) of EM field provides more independent channels for communications, thus higher data rate.
- A higher DoF of EM field brings more burdens to radar sensing.
- A trade-off exists between communications and sensing in terms of EM field DoF.

Sphere Packing⁴

- For generic sensing performance metrics, we can consider the level sets of sensing waveforms, given a tolerable performance degradation.
- For the waveform set satisfying the performance degradation, we can use sphere packing argument to find bounds for the data communication rate, thus finding a trade-off between communications and sensing.

⁴H. Li, Z. Han and H. V. Poor, "Sphere packing analysis for performance trade-off in joint communications and sensing-Part I: General principle," IEEE IGC, 2024.

Rate-SNR Trade-off⁵

- The major challenge is the high-dimensional volume evaluation.
- Consider waveforms with *N* chips (fast time) and *M* communication symbols (slow time). The sensing performance metric is the SNR.
- The data rate R₁ with suboptimal waveforms is given by (when δγ is small)

 $R_1 \geq R_0 + \log_2 C_0 + N \log_2 \delta \gamma,$

where R_0 is the maximum data rate using optimal sensing waveforms, $\delta \gamma = \frac{\gamma_{\max} - \gamma}{\gamma_{\max}}$ is the SNR loss for sensing and C_0 is determined by the system parameters.

• The data rate increases versus the sensing SNR drop in a logarithmic way.

⁵H. Li, Z. Han and H. V. Poor, "Sphere packing analysis for performance trade-off in joint communications and sensing-Part II: Fourier analysis of volume," IEEE ICG, 2024.

Outline

- 2 Fundamental Views and Trade-offs
- ISAC Algorithm Design
 - 4) Conclusions and Future Work

Outline

3

Fundamental Views and Trade-offs

ISAC Algorithm Design

Broadcast: Communication-Centric Design

- Broadcast: Sensing-Centric Design
- Beyond Broadcast: Sensing Helping Communications
- Beyond Broadcast: Communications Helping Sensing

4 Conclusions and Future Work

Comm-Centric Scheme 1: Trellis Shaping⁶

- The transmitter generates standard communication waveforms (e.g., OFDM), and then uses trellis-shaping to refine the waveform, in order to improve the sensing performance (e.g., lower sidelobes).
- This is similar to the reduction of Peak-Average-Power Ratio (PAPR) in 4G and 5G OFDM modulation.

⁶H. Li, Z. Han and H. V. Poor, "Trellis shaping for joint communications and sensing: A duality to PAPR reduction," IEEE Symposium on JC&S, 2024

Duality to PAPR Reduction

- Autocorrelation and power profile are a Fourier transform pair.
- Sidelobe (PAPR) reduction in ISAC (OFDM) needs lower sidelobes in the time-domain autocorrelation (more constant time-domain power profile) and thus more constant PSD (lower sidelobes in frequency-domain autocorrelation). The two tasks are dual to each other.

Trellis Shaping

- With data rate less than 1, we prepare a codebook of convolutional (trellis) code.
- Given a message, the Viterbi algorithm is used to select a codeword with good sensing performance (e.g., lower sideblobes).
- The sensing performance is refined at the cost of lower data rate.

Trellis Shaping

- With data rate less than 1, we prepare a codebook of convolutional (trellis) code.
- Given a message, the Viterbi algorithm is used to select a codeword with good sensing performance (e.g., lower sideblobes).
- The sensing performance is refined at the cost of lower data rate.

Comm-Centric Scheme 2: QPSK Modulation and PSD Shaping⁷

- We propose to use OFDM signaling: QPSK modulation over each subcarrier and window masking for the subcarrier powers.
- In the wideband regime, QPSK is shown to be asymptotically optimal for the spectral efficiency.
- The time autocorrelation (thus the sidelobes) is determined by the PSD, which can be shaped using window functions.

Experimental Results

- We used USRP X410 to build an ISAC system, with OFDM signaling and 200MHz bandwidth.
- Various windows are used for 64 subcarriers of OFDM. The autocorrelation function has been calculated using the received signals.
- In the experiment results, the Bartlett window has the lowest sidelobes, while the rectangle window has the highest.

Outline

3

Fundamental Views and Trade-offs

ISAC Algorithm Design

Broadcast: Communication-Centric Design

- Broadcast: Sensing-Centric Design
- Beyond Broadcast: Sensing Helping Communications
- Beyond Broadcast: Communications Helping Sensing

Conclusions and Future Work

Superposition Coding Schemes for ISAC⁸

- We first generate the sensing waveform as a vector (as the cloud), or multiple sensing waveforms (for radar waveform diversity, as clouds).
- Then, the communication message is modulated over the vector operation of the sensing waveform.

⁸H. Li, "Functional multiplexing in joint communications and sensing: A superposition coding framework," IEEE Globecom, 2023.

Superposition Coding Schemes for ISAC

- Addition Dirty paper coding: The clouds are formed by adding communication signals to sensing signal.
- Scalar Multiplication Spectrum spreading: The clouds are formed by multiplying communication symbols on the sensing signal.
- Matrix Multiplication (Linear transformation) OFDM+QPSK: The communication message is encoded in the linear transformation matrix.

Addition: Dirty Paper Coding⁹

- We can superimpose the communication message x_c to the sensing waveform x_s.
- The signal sent out is $x = x_s + x_c$. x_s is a KNOWN interference to x_c . We can use dirty paper coding to generate x_c based on the communication message and x_s , such that the interference from x_s can be eliminated at the receiver.

⁹H. Li, "Dirty paper coding for waveform synthesis in integrated sensing and communications: A broadcast channel approach," IEEE International Conference on Communications, 2022

Scalar Multiplication: Spectrum Spreading¹⁰

- We generate the sensing waveform x_s (vector) and communication symbol x_c (scalar). The transmitted signal is given by x = x_cx_s.
- This is essentially spectrum spreading (CDMA), where **x**_s plays the role of spreading code.

¹⁰H. Li, "Interference mitigation in joint communications and sensing-Part I: Correlation and collision," the 3rd IEEE International Symposium on Joint Communications & Sensing, 2023

Using Sensing Waveform As Carrier¹¹

- Using sensing waveform as carrier can achieve the goals of improving sensing performance and combating interference.
- A coding-spreading trade-off exists between communications and sensing, in terms of the length of sensing waveform.

¹¹H. Li, "Interference mitigation in joint communications and sensing-Part II: Coding-Spreading Trade-off," the 3rd IEEE International Symposium on Joint Communications & Sensing, 2023

Linear Transformation

- The transmitted signal is given by **x** = A_{b1},...,b_n**x**_s, and the selection of linear transformation matrix A is determined by n bits b₁, ..., b_n.
- The mapping from $b_1, ..., b_n$ to *A* is flexible. We consider transforming waveforms constructed from optimal filtering for radar¹².

-

¹²H. Li, "Waveform synthesis for MIMO joint communications and sensing with clutters-Part I: Space-time-frequency filtering," IEEE International Conference on Communications, 2023.

Linear Transformation: OFDM+QPSK¹³

• The linear transform is given by

$$\mathbf{A} = \mathbf{F}^{-1} \Lambda \mathbf{F},$$

where **F** is the Fourier transform matrix and $\Lambda = diag(e^{\theta_1}, ..., e^{\theta_n})$ is the PSK modulation.

- Using OFDM, we specify the amplitude of the subcarriers using the sensing filters and modulate the phases over the subcarriers.
- We can extend to the traditional structure of spatial+temporal+frequency filtering in radar systems.

¹³H. Li, "Waveform synthesis for MIMO joint communications and sensing with clutters-Part I: Spatial-Time-Frequency Filtering," IEEE International Conference on Communications, 2023.

Linear Transformation: OFDM+QPSK¹⁴

• The linear transform is given by

$$\mathbf{A} = \mathbf{F}^{-1} \Lambda \mathbf{F},$$

where **F** is the Fourier transform matrix and $\Lambda = diag(e^{\theta_1}, ..., e^{\theta_n})$ is the PSK modulation.

- Using OFDM, we specify the amplitude of the subcarriers using the sensing filters and modulate the phases over the subcarriers.
- We can extend to the traditional structure of spatial+temporal+frequency filtering in radar systems.

¹⁴H. Li, "Waveform synthesis for MIMO joint communications and sensing with clutters-Part II: Bits through filter design," IEEE International Conference on Communications, 2023.

Nonlinear Mapping: Watermarking¹⁵

- We consider the traditional sensing waveform (e.g, the FMCW waveform) as the host signal, and communication message as the watermark.
- The communication message is embedded into the host sensing waveform, with a minimum distortion.

¹⁵H. Li, "Watermarking based waveform synthesis in joint communications and sensing," IEEE Global Communications Conference, 2023.

Outline

3

Fundamental Views and Trade-offs

ISAC Algorithm Design

- Broadcast: Communication-Centric Design
- Broadcast: Sensing-Centric Design
- Beyond Broadcast: Sensing Helping Communications
- Beyond Broadcast: Communications Helping Sensing

Conclusions and Future Work

Interference Mitigation in Wireless Networks

- Interference, as co-channel signals of other users, is a major challenge in wireless communication networks.
- In existing communication systems, interference is mitigated either in the MAC layer by scheduling, or in the PHY layer by signal processing (e.g., multiuser detection).
- Can we do better when the communication users know more physical information?

Physical Information for Interference Mitigation

- Angle: We can use beamforming to avoid interference from different angles (used in practice).
- Range: If the receiver knows the range to the transmitter, it can reject signals from other transmitters with different ranges.
- Doppler shift: A receiver can reject interference from transmitters with different moving speeds (similarly to clutter mitigation in radar systems).

Interference Elimination Based on Ranging

- Using ISAC, the receiver knows the distance to the transmitter and thus the signal propagation time.
- Then, interference beyond a certain time window is rejected.

¹⁶H. Li, "ISAC-motivated interference elimination in wireless communication networks: A pulse compression approach," IEEE Globecom, 2023 (2014) (20

Long-duration Waveforms

- When the length of waveform is comparable to the time gaps of legitimate signal and interference, the interference will be mixed with the signal.
- Thanks to ISAC, the waveforms are non-stationary (otherwise, ranging cannot be accomplished), thus facilitating pulse compression that turns long waveforms into narrow pulses.

Interference Elimination Based on Doppler Shift¹⁷

- We can further use the difference of transmitter and interferer in the Doppler domain, similarly to the clutter mitigation.
- The temporal filtering (in the slow time domain) needs to be employed.

¹⁷H. Li, "Interference elimination via doppler filtering in joint communication and sensing networks," submitted to IEEE Globecom, 2024

Outline

3

Fundamental Views and Trade-offs

ISAC Algorithm Design

- Broadcast: Communication-Centric Design
- Broadcast: Sensing-Centric Design
- Beyond Broadcast: Sensing Helping Communications
- Beyond Broadcast: Communications Helping Sensing

Conclusions and Future Work

Experiment 1: Tracking via Blockage of mmWave Communications¹⁸

- Millimeter wave is very sensitive to blockages, which also leave information about the moving object.
- We have carried out experiments in our 60GHz testbed.

¹⁸Z. Zhang, J. Bao, Y, Fan, and H. Li, "Tracking via blocking in millimeter wave communication networks," in *Proc. of IEEE International Conference on Communications*, 2018.

Experiment 2: Speed Estimation via mmWave Blockage

- We have observed oscillations before and after the blockage, which is due to reflection and interference.
- We can estimate the speed of the moving object by solving nonlinear equations. Experiment shows that the estimation error of speed is around 10% for pedestrians.

Experiment 3: Estimating Wind Speed Using mmWave Communications¹⁹

Figure 1: Observed light pole movement

- Outdoor millimeter wave transceivers may be mounted to lamp post or tall building.
- The oscillation due to wind makes the phases incoherent (a displacement of 1mm causes a 20% change of phase in the 60GHz band).
- The velocity of transceiver due to the oscillation incurs Doppler shift of frequency, or equivalently phase modulation.

¹⁹Z. Zhang, J. Bao, Y. Fan and H. Li, "Sensing wind velocity by leveraging millimeter wave communications," IEEE DySPAN, 2019. (日) (字) (日) (日) (日) Sar

Experiment 3: Gone with Wind

- We have tested the frequency/phase oscillation, with winds from different directions.
- It is demonstrated that the variance of frequency is approximately proportional to v⁴_{wind}.

More Experiments²⁰

Rain Gauge Using mmWave

500

²⁰Y. Fan, J. Bao, M. S. L. Aljumaily and H. Li, "Communications via frequency-modulated continuous-wave radar in millimeter wave band," IEEE Globecom, 2019

Outline

Motivation of ISAC

Fundamental Views and Trade-offs

ISAC Algorithm Design

Conclusions and Future Work

Conclusions

Communication and sensing are reasonably compatible.

Broadcast channel is a good framework to integrate both functions.

Various trade-offs need to be identified and reconciled.

Future Work: Multi-Static ISAC

- We consider the collaborations among the transmitter, communication receiver and other sensing receivers.
- The major challenge is the time and frequency offsets that can hardly be addressed by using GPS reference synchronization.
- We propose to leverage the redundancy in the observations and the mechanism of message passing.

Future Work: Multi-Static ISAC

- We consider the collaborations among the transmitter, communication receiver and other sensing receivers.
- The major challenge is the time and frequency offsets that can hardly be addressed by using GPS reference synchronization.
- We propose to leverage the redundancy in the observations and the mechanism of message passing.

Future Work: LTV System Identification

- Consider an LTV environment, sounding pulses are needed for sensing the LTV system (e.g., using the sampling in the Delay-Doppler domain).
- What is the trade-off between sounding the LTV environment and communications over the sounding pulses? Is OTFS good?

Future Work: Cognitive ISAC

- "Radar as a game of 20 questions with an operator" R. Calderbank
- Cognitive sensing wants to ask questions, adaptively to the answers, and explore unknowns, while communications just want to exploit known good channels. What is the trade-off between exploration and exploitation?

Related Papers

- H. Li, "Spectral efficiency in wideband joint communications and sensing: Is OFDM+QPSK (near) optimal?" IEEE International Conference on Communications (ICC), 2024
- H. Li, Z. Han, and H. V. Poor, "Sphere packing analysis for performance trade-off in joint communications and sensing-Part I: Fourier Analysis of Volume," IEEE International Conference on Communications (ICC), 2024
- H. Li, Z. Han, and H. V. Poor, "Sphere packing analysis for performance trade-off in joint communications and sensing-Part I: Generic Principle," IEEE International Conference on Communications (ICC), 2024
- H. Li, Z. Han, and H. V. Poor, "Trellis Waveform Shaping in Joint Communications and Sensing: A Duality to PAPR Mitigation" IEEE International Symposium on Joint Communications and Sensing, 2024
- H. Li, "ISAC-Motivated Interference Elimination in Wireless Communication Networks-Part I: Pulse Compression Approach," IEEE Global Communications Conference, 2023
- H. Li, "ISAC-Motivated Interference Elimination in Wireless Communication Networks-Part II: Performance Analysis," IEEE Global Communications Conference, 2023
- H. Li, "Watermarking Based Waveform Synthesis in Joint Communications and Sensing," IEEE Global Communications Conference, 2023
- H. Li, "Whistleblower Joint Communications and Sensing Using Retrodirectional Array Processing," IEEE Global Communications Conference, Workshop, 2023
- H. Li, Z. Han and H. V. Poor, "A Broadcast Channel Framework for Joint Communications and Sensing-Part I: Feasible Region," IEEE Global Communications Conference, 2023
- H. Li, Z. Han and H. V. Poor, "A Broadcast Channel Framework for Joint Communications and Sensing-Part II: Superposition Coding," IEEE Global Communications Conference, 2023

Related Papers (Continued)

- H. Li, 'Turbo Bi-static radar in OTFS based joint communications and sensing," IEEE International Conference on Communications (ICC), 2023.
- H. Li, 'Waveform synthesis for MIMO joint communications and sensing with clutters: Part I-Space-time-frequency filtering," IEEE International Conference on Communications (ICC), 2023.
- H. Li, "Interference mitigation in joint communications and sensing-Part I: Correlation and collision" IEEE International Symposium on Joint Communications and Sensing, 2023
- H. Li, "Interference mitigation in joint communications and sensing-Part II: Coding and spreading" IEEE International Symposium on Joint Communications and Sensing, 2023
- H. Li, "MAC scheduling in joint communications and sensing networks based on virtual queues," IEEE Global Communications Conference (Globecom), 2022
- H. Li, "Trade-off in joint communications and sensing with frequency modulation waveforms," IEEE International Symposium on Joint Communications and Sensing, 2022
- H. Li, "Unified waveform design in joint communications and sensing with clutter: Shannon or Cramer-Rao?" IEEE International Symposium on Joint Communications and Sensing, 2022
- H. Li, "Dual-function multiplexing for waveform design in OFDM-based joint communications and sensing," IEEE International Workshop on Signal Processing for Communications, 2022.
- H. Li, "Interferometry based radar imaging by leveraging cellular communication networks," IEEE International Workshop on Signal Processing for Communications, 2022

Related Papers (Continued)

Related Papers (Continued)

Thank You!

Any question?