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Introduction: Stochastic Programming
ü Stochastic Programming (SP) 
The probability distribution of random parameters is known (inferred from the historical data). Objective is to 
find a decision 𝑥 that minimizes a functional of the expected cost.

𝑥 -- Decision variables
𝜒 -- Convex set of feasible solutions 
𝜉            -- Uncertain parameter follows a certain distribution 𝑃
ℎ 𝑥, 𝜉 -- Objective function in 𝑥 that depends on parameters 𝜉

min
'∈)

𝐸*[ℎ 𝑥, 𝜉 ]

Classical assumptions in stochastic programming:

• The probability distribution of the random parameter vector is independent of decisions 

• The "true" probability distribution of the random parameter vector is known relaxing it requires addressing 
distributional uncertainty.
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Introduction: Robust Optimization
ü Robust Optimization (RO)
The probability distribution of random parameter is unknown, but its fluctuation range is known. Objective is to 
find a decision 𝑥 that minimizes the worst-case expected cost over an uncertainty set.

min
'∈)

max
+∈,

ℎ 𝑥, 𝜉 (2)

𝑥 -- Decision variables
𝜉 -- Uncertain Parameter
𝜒 -- Convex set of feasible solutions
𝑈 -- Uncertain set
ℎ 𝑥, 𝜉 -- Objective function in 𝑥 that depends on parameters 𝜉

• First find a decision 𝑥 that minimizes the cost.

• Then a parameter 𝜉 which leads to the maximum cost (worst case for given decision)
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Introduction: DRO
ü Distributionally Robust Optimization (DRO)
• In practice, the random parameters are uncertain. 

Choose an intermediate approach to obtain a robust form of distributed optimization problem (DRO):

min
'∈)

𝐸*[ℎ 𝑥, 𝜉 ] min
'∈)

max
*∈𝒫

𝐸*[ℎ 𝑥, 𝜉 ]

𝒫 is an uncertain set of probability distributions constructed from the samples.

Objective is to find a decision 𝒙 that minimizes the 
worst-case expected cost over an ambiguity set.

• Although the exact distribution of the random variables may not be known, people usually know partial 
statistic information via certain observed samples.
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Introduction: Uncertainty Sets

ü Key question: How to build ambiguity sets (uncertain sets)?
The probability distribution quantifying the model parameter uncertainty is known ambiguously.
When choosing ambiguity sets, we need to consider the following:

Ø Rich enough to contain the true data-generating distribution with high confidence.
Ø Small enough to exclude pathological distributions.
Ø Tractability
Ø Practical (Statistical) Meanings
Ø Performance (the potential loss comparing to the benchmark cases)

The form of ambiguity sets can be used to classify the distributionally robust optimization problems.

• Moment-based ambiguity sets :   𝒫 = {𝜉: 𝐸[𝜉] ≤ 𝜇, 𝐸[𝜉!𝜉] ≤ Σ,… }

• Discrepancy-based ambiguity sets: 𝒫 = {𝑃: 𝑑(4𝑃", 𝑃) ≤ 𝜌}
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Discrepancy-based DRO
Motivation

Ambiguity sets based on probability distance:

By selecting a suitable metric, certain infinite-dimensional convex DRO problems can be
transformed into finite-dimensional convex optimization problems

𝒫 = {𝑃: 𝑑((𝑃7, 𝑃) ≤ 𝜀}

4𝑃" -- Empirical probability
    𝜀 -- Radius
𝑑(4𝑃", 𝑃) -- Metric of the similarity of two distributions

Is there a metric that is simple to calculate and
suitable for discrete / continuous distributions?

Wasserstein
 distance

Discrepancy

• In many situations, we have an empirical estimate of the underlying probability distributions.
• A natural way to hedge against the distributional ambiguity is to consider a neighborhood of the 

empirical probability distribution 
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Discrepancy-based DRO
Wasserstein distance

𝑑9 𝑃:, 𝑃; = 𝑖𝑛𝑓
<~∏(?!,?")

𝔼(@,A)~< [ 𝑥 − 𝑦 ]

∏(𝑃!, 𝑃"): the set of all possible joint distributions of 𝑃! and 𝑃".
(𝑥, 𝑦)~𝛾: samples under joint distribution 𝛾
𝑥 − 𝑦 : sample distance
𝔼($,&)~)[ 𝑥 − 𝑦 ]: expectation of distance for sample 𝑥 and 𝑦 under joint  distribution 𝛾

used to measure the distance between two distributions.

Definition:

Wasserstein distance of 𝑷𝟏 and 𝑷𝟐: the lower bound of this expectation.
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Discrepancy-based DRO
Wasserstein distance

Move mass 𝑃! into the shape and position of 𝑃". 

Bulldozing cost : amount of moving soil multiplied by the distance the soil moves. 
Wasserstein distance: the smallest bulldozing cost from 𝑃! to 𝑃".

𝑷𝟏

𝑷𝟐

∏(𝑃!, 𝑃"): transportation plan
𝑥 − 𝑦 : distance the soil moves
𝑌(𝑥, 𝑦): amount of moving soil from 𝑥 to 𝑦
𝔼($,&)~)[ 𝑥 − 𝑦 ]: bulldozing cost 
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Discrepancy-based DRO
Wasserstein distance

𝔹< .𝑃= = {𝑄: 𝑑> (.𝑃= , 𝑄) ≤ 𝜀}

Wasserstein distance-based ambiguity set:

• The ambiguity set 𝑄 can be viewed as a Wasserstein ball which contains all probability
distributions whose Wasserstein distance to the empirical distribution @𝑃, is less than 𝜀.

• 𝑄 will cover the true distribution with a higher probability with a larger value of 𝜀.
• There exists a trade-off between the accuracy and the complexity
• It is important to well design the value of 𝜀
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Discrepancy-based DRO
Wasserstein distance
How to calculate 𝜀 of ambiguity set
Light-tailed distribution assumption: Distribution is call light-tailed if there exists an exponent
𝑎 > 1 such that

This assumption requires the tail of the distribution to decay at an exponential rate. The assumption
guarantees that the ambiguity set can cover most of the possible distributions.

Radius selection: With this assumption, suppose that @P- is the empirical distribution, m is related
to the dimension and cost parameter, for 𝑚 ≠ 2 and 𝑐!, 𝑐" > 0, under a confidence level of 1 − 𝛽,
we have

Number of samples
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Discrepancy-based DRO
Tractability of  Wasserstein DRO

Challenges to Compute Wasserstein Distances:
Computing the Wasserstein distance between two distributions @𝑃, and 𝑃, is NP-hard if one of them 
is continuous since the dimension will be infinite.

With Wasserstein ball, the DRO problem can be rewritten as

min
$∈/

max
0∈𝔹! 20"

𝐸0[ℎ(𝑥, 𝜉)]

Solution:
Rewrite the problem into a finite-dimensional convex program by leveraging tools from robust
optimizations

Assumption:
• The uncertainty set is convex and closed
• ℎ(𝑥, 𝜉) is convex with respect to 𝜉
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Discrepancy-based DRO
Tractability of  Wasserstein DRO
How to transform an infinite-dimensional optimization problem into a finite-
dimensional convex program:

max
!∈𝔹# $!$

𝐸![ℎ(𝑥, 𝜉)] =
sup
𝚷,𝑷

∫𝚵 𝒉 𝑥, 𝜉 𝑷(𝒅𝝃)

𝒔. 𝒕. ∫𝚵𝟐 𝝃 − 𝝃) 𝚷(𝒅𝝃, 𝒅𝝃′) ≤ 𝜺

=
sup

𝑷𝒊∈𝓜(𝚵)

𝟏
𝑵
∑𝒊0𝟏𝑵 ∫𝚵 𝒉 𝑥, 𝜉 𝑷𝒊 (𝒅𝝃)

𝒔. 𝒕. 𝟏
𝑵
∑𝒊0𝟏𝑵 ∫𝚵 𝝃 − ?𝝃𝒊 𝑷𝒊(𝒅𝝃) ≤ 𝜺

   

𝜫 is a joint distribution of 𝝃3 and 𝝃 with marginals distribution 𝑃 and @𝑷𝑵 of 𝝃3 given 𝝃3 = T𝝃𝒊 ,and 
conditional 𝑷𝒊 of 𝝃. N is number of samples. Due to the law of total probability, we have

Π =
1
𝑁
C
102

3

𝛿 45'⨂𝑃1

4𝑃" =
1
𝑁
D
()*

"

𝛿+,! Convex reduction
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Discrepancy-based DRO
Tractability of  Wasserstein DRO

Using a standard duality argument, we obtain

max
?∈𝔹# 4?$

𝐸?[ℎ(𝑥, 𝜉)]

= sup
𝑷𝒊∈𝓜(𝚵)

inf
𝝀:𝟎

𝟏
𝑵
\
𝒊<𝟏

𝑵

]
𝚵
𝒉 𝑥, 𝜉 𝑷𝒊 (𝒅𝝃)+𝝀(𝜀 −

𝟏
𝑵
\
𝒊<𝟏

𝑵

]
𝚵

𝝃 − T𝝃𝒊 𝑷𝒊(𝒅𝝃))

≤ inf
𝝀I𝟎

sup
𝑷𝒊∈𝓜(𝚵)

𝝀𝜀 + 𝟏
𝑵
∑𝒊Q𝟏𝑵 ∫𝚵 (𝒉 𝑥, 𝜉 −𝝀 𝝃 − I𝝃𝒊 )𝑷𝒊 (𝒅𝝃)

= inf
𝝀I𝟎

𝝀𝜀 + 𝟏
𝑵
∑𝒊Q𝟏𝑵 sup

𝝃∈𝚵
(𝒉 𝑥, 𝜉 − 𝝀 𝝃 − I𝝃𝒊 )

Maximum minima is 
always less than 
minimum maxima

The uncertainty set 
contains all distributions
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Discrepancy-based DRO
Tractability of  Wasserstein DRO
Introducing epigraphical auxiliary variables 𝐬𝐢, 𝐢 ≤ 𝐍:

max
*∈𝔹! @*"

𝐸*[ℎ(𝑥, 𝜉)]

=

inf
𝝀,𝒔𝒊

𝝀𝜺 +
𝟏
𝑵
R
𝒊Q𝟏

𝑵

𝒔𝒊

𝒔. 𝒕. sup
𝝃∈𝚵

𝒉 𝒙, 𝝃 − 𝝀 𝝃 − W𝝃𝒊 ≤ 𝒔𝒊, ∀𝒊 ≤ 𝑵

𝝀 ≥ 𝟎

As such, the problem is transformed into a finite convex program and can be solved by existing 
convex optimization techniques.
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Discrepancy-based DRO
Special Case
For the case of quadratic loss (possibly non-convex and non-concave), we still can derive its exact 
form.

max
*∈𝔹! @*"

𝐸*[ℎ(𝑥, 𝜉)] =

inf
<,𝒔𝒊

𝛾𝜺𝟐 +
𝟏

𝑵
∑𝒊Q𝟏
𝑵 𝒔𝒊

𝒔. 𝒕.
𝛾 − 𝑄 𝑞 + 𝛾 I𝝃𝒊

𝑞V + 𝛾 I𝝃𝒊
𝑻

𝒔𝒊 + W𝝃𝒊 ;
; ≥ 0

Assume that 𝑥 𝜉 = 𝜉=Q𝜉 + 2𝑞=𝜉 is a (possibly indefinite) quadratic loss function. Then the worst-
case risk coincides with the optimal value of a tractable semidefinite program (SDP), that is,
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Application 1: Computation Offloading

Yali Chen, Bo Ai, Yong Niu, Hongliang Zhang, and Zhu Han, “Energy-Constrained Computation 
Offloading in Space-Air-Ground Integrated Networks using Distributionally Robust Optimization,” 
IEEE Transactions on Vehicular Technology (Volume: 70, Issue: 11, Nov. 2021)

Space-Air-Ground Integrated Networks:
• IoT devices: request services
• UAV: collect data from IoT devices

• Determine to offload to a nearby BS or 
offload to a certain satellite and utilize the 
cloud server

• Determine the proportion of tasks to 
offload, and the others will be done by 
the UAV

• The task request received by the UAV is 
uncertain
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Application 1: Problem Formulation
Objective: minimize the expected total latency of T time slots under the worst-case distribution realization in
uncertainty set D

the sum of tasks processed by UAV, all BSs, 
and all LEO satellites equals to the amount of 
tasks arrived

ensure the tasks assigned 
cannot exceed its capacity

total system latency

energy constraint
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Application 1: Algorithm and Results

For deterministic scheme, many tasks cannot
be processed and retransmission is required,
leading to a higher latency

The same as Wasserstein metric
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DRO and Risk Aversion
VaR& CVaR Representation

Risk functions: graphical 
representation of VaR, VaR Deviation, 
CVaR, CVaR Deviation, Max Loss, 
and Max Loss Deviation.

• Risk Management is a procedure for evaluating loss distribution in Risk Aversion.
• Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are popular function for 

measuring risk. 
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DRO and Risk Aversion
VaR & CVaR

VaR Definition

is nonconvex and discontinuous function of the confidence level α for discrete distributions.

Difficult to control/optimize for non-normal distributions:  VaR has many extremums for discrete distributions.

A lower α-percentile of the random variable X.

Let X be a random variable, with the X may have meaning of loss or gain.
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DRO and Risk Aversion
VaR& CVaR

CVaR Definition

The CVaR of 𝑋 with confidence level 𝛼 ∈ 0, 1 is the mean of the generalized 𝛼-tail distribution:

where the distribution in question is the one with distribution function defined by

CVaR is continuous with respect to 𝛼.CVaR is convex in 𝑋

For random variables with continuous distribution functions, CVaR-(X) equals the conditional expectation of
X subject to 𝑍 ≥ 𝑉𝑎𝑅. (𝑋).
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DRO and Risk Aversion
VaR& CVaR Example
Main focus: Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) [Rockafellar and Uryasev, 2000].

• If more than lost 3% happens with 5%, but we still do not know average lost. 
• CVAR describes the average lost conditioned on VaR happens. 

CVaR gives us an average expected loss
VaR gives us a range of potential losses
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Equivalence of Chance Constraints and VaR Constraints

Let 𝑓(𝑥, 𝑦) be the loss associated with the decision vector 𝑥 and the random vector 𝑦.

In general, 𝑉𝑎𝑅> 𝑥 is nonconvex w.r.t. 𝑥, (e.g., discrete distributions)

Then the following holds:

Let 𝑉𝑎𝑅- 𝑥 be the 𝑉𝑎𝑅- of a loss function 𝑓(𝑥, 𝑦)

In portfolio management, often it is required that portfolio loss at a certain future time is, with high reliability, at 
most equal to a certain value.

𝑃𝑟𝑜𝑏{𝑓? 𝑥, 𝑦 } ≤ 0} ≥ 𝑝?  , 𝑖 = 1, … ,𝑚.

( ) ( ){ }{ }min : Pr ,VaR x ob f x ya z z a= £ ³

Pr𝑜𝑏 𝑓 𝑥, 𝑦 ≤ 𝜁 ≥ 𝛼 ↔ Pr𝑜𝑏 𝑓 𝑥, 𝑦 > 𝜁 ≤ 1 − 𝛼 ↔ 𝑉𝑎𝑅-(x) ≤ 𝜁

DRO and Risk Aversion



28

Minimization and CVaR Constraints
The underlying probability distribution of 𝑦 will be assumed for convenience to have density 𝑝(𝑦). The 𝛼-CVaR 
of the loss associated with a decision x is the value

The main idea is to define a function that can be used in connection with VaR and CVaR

( ) ( ) ( )
( , ) ( )

1 ,
1 f x y VaR x

CVaR x f x y p y dy
a ³

=
- ò

1.                   is convex with respect to α;
2.                    is a minimum point of function                w.r.t. ;
3.   As a function of            ,                is finite and convex (hence continuous), :

z

DRO and Risk Aversion

( ) ( ) ( )1, ,
1 my

F x f x y p y dya z z z
a

+

Î
= + -é ùë û- ò 
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Chance constrained programs
It is known that distributionally robust chance constraints can be conservatively approximated 
by Worst-Case Conditional Value-at-Risk (CVaR) constraints.

The chance constraint
requires a set of 𝑚
uncertainty-affected
inequalities to be jointly
satisfied with a probability of
at least 1 − 𝜖.

𝒙 is the decision vector and c 
is a cost vector

𝑷𝒓 can be unknown arbitrary 
distribution

DRO and Risk Aversion
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Distributionally robust approach
A natural way to immunize the chance constraint against uncertainty in the probability distribution is 
to adopt the following ambiguous or distributionally robust chance constraint.

For m = 1, the feasible set is denoted by

Distributionally robust chance constraint means                                  satisfies the probability at least 1 −
𝜖 in the presence of channel uncertainties.

the worst case 

DRO and Risk Aversion

denotes the distribution       belongs to an uncertainty set       with certain known structural 
properties.
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CVaR chance constraints
The CVaR at  𝜖 level with respect to      is defined as

CVaR essentially evaluates the conditional expectation of loss above the (1 −𝜖)-quantile of the loss distribution. 
It can be shown that CVaR represents a convex functional of the random variable

DRO and Risk Aversion
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Application 2: Age of Information
Age of Information Minimization in Healthcare IoT Using 
Distributionally Robust Optimization [2] 

[2] Z. Ling, F. Hu, H. Zhang and Z. Han, "Age of Information Minimization in Healthcare IoT Using Distributionally Robust Optimization,"  IEEE Internet of Things 
Journal, to be appeared.

How can I deal with channel state information (CSI) errors in
Healthcare IoT system ?

q The perturbations in CSI are modeled 
to be statistically unbounded 
according to Gaussian distribution 
and Rayleigh distribution. 

q These statistical channel assumptions 
may not match the healthcare IoT 
applications perfectly.

q The retransmission scheme is 
investigated against CSI errors to 
reduce the AoI.

q The retransmission will lead to the 
energy consumption of the IoT 
device increase dramatically, 
especially when the IoT device is 
used to retransmit the same updates 
for infinite times

A key open problem is to consider the case of imperfect CSI and investigate 
how CSI error effects may be mitigated through quantitative designs.
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Application 2: Body Area Networks

System model

As shown in this picture, we consider
a single-hop cellular IoT to support
healthcare IoT applications:

1. the wearable IoT devices harvest
wireless RF energy from a
dedicated power cell BS

2. the wearable IoT devices send
their sensing physiological
information signals to a
separate information receiving cell
BS.
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Application: Age of Information

Age of Information= Time – Timestamp

Evolutions of AoI function.

Measure the “age of information” that destination know about a source node.

Potential application: UAV,  Uplink, Down link system in wireless 
communication IoT network, etc.



35

Application 2: Problem Formulation

CVaR constraint.

Power constraint
Outage probability constraint for energy harvesting.

Outage probability constraint for transmission

CVaR constraint.
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Application 2: CVAR Algorithm
To get the optimal average AoI, we propose a low-complexity upper bound of AoI minimization (UBAM)
algorithm in an iterative manner to address the distributionally robust optimization problem.
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Application 2: Results

The energy harvesting and information transmission successful opportunities for each link become lower with
more wearable IoT devices. In this sense, we find an AoI-energy tradeoff in the healthcare IoT system.
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Motivation
ØPrevious works considering robustness in Reinforcement Learning

• Mainly focus on uncertain environment for searching strategies to achieve best performance 
üRobust reinforcement learning 

n Guard against common systematic perturbation situations

üRobust Adversarial Reinforcement Learning
n Conquer rare, catastrophic events

ØDRO RL
• Not only consider uncertainty in environment
• Limited collected samples when training
→ Affect how to transit to new state based on current state and action

ü Estimation error in Policy Iteration

• Concentrate on learning process for agent itself
ü Conservative policy in unknown environment
ü Optimistic policy in familiar environment

Estimation error
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Distributionally robust policy evaluation
ØUncertainty set:

ØAdversarial Bellman operator:
• Evaluate with an adversarial policy

ØRewrite the maximum problem by

ØDistributionally robust modified policy iteration (MPI)
• Policy improvement:
• Policy evaluation:

𝐷no ≤ 𝜖

𝜋pworse case

𝜋
c𝜋

Best policyConsidered possible policies

adversarial policy
Adversarial
temperature

Re-weight policy action probabilities opposite
to Q-values

𝜋 𝜋p

𝑎! 𝑎" 𝑎@𝑎! 𝑎" 𝑎@
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Regularized Bellman Optimality Operator
Ø Rewritten of Bellman operator for value function

• [𝑇A𝑉] 𝑠 ≔ 𝐸B~A(C|E) ∑F:G 𝛾F𝑟F| 𝑠G = 𝑠, 𝜋

= 𝐸B~A(C|E) 𝑟 𝑠, 𝑎 + 𝛾 𝐸E$~H 𝑠3 𝑠, 𝑎 𝑉 𝑠3

= < 𝜋 } 𝑠 , 𝑄! 𝑠, 𝑎 > … inner product of the policy and Q-function

𝑄q 𝑠, 𝑎

Ø Regularized Bellman optimality operator
• [𝑇",$𝑉] 𝑠 ≔ 𝑇"𝑉 − 𝛺(𝜋) is a Fenchel dual function and can be seen as the normal value 

function minus the baseline.
• Set of optimal policies 

§

Ø Lengendre-Fenchel duality (Conjugate function)
• Fenchel dual : [𝛺é𝑉] 𝑄! = max

"∈&'
(< 𝜋, 𝑄! > −𝛺(𝜋))

• Gradient form: [𝛻𝛺é𝑉] 𝑄! = 𝑎𝑟𝑔max
"∈&'

(< 𝜋, 𝑄! > −𝛺(𝜋))

ØSoft distributionally robust modified policy

ØDistributionally robust soft actor-critic
= 𝜆× ( )



42

Extension to Entropy-Regularized Policy Maximum Entropy

ØSoft distributionally robust modified policy
• Policy improvement: 
• Policy evaluation:

ØSoft adversarial Bellman operator

• Here, we take entropy form into consideration to obtain robustness guarantees on exploration 
process.

ØAdversarial entropy-regularized policy

• Recall the adversarial policy

entropy form E%~' : 𝑠 log[𝜋(𝑎|𝑠)]

Regularized policy
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Ø Apply this distributional robust MPI to the continuous control problem. 
Ø The formulation is intractable and we get the approximate formula as follows:

Extended to Continuous Control

Ø When it come to the implementation, it‘s quite simple.        Just change the reward
• encourage the agent to visit states with smaller variance

•  Regularized Bellman operator can be written in terms of Fenchel conjugate

• Fenchel conjugate = 𝜆× ( )
Prior policy 

Logarithm of moment-generating function

Taylor expansion

Potential-based 
reward shaping

reward shaping

• Regularization parameter
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Distributionally Robust Soft Actor-Critic (DRSAC)

Ø In this continuous control case: the distribution of the policy is Normal distribution.
• parametrized Gaussian policies

• Approximation the variance of Q-values by using the 1st order Taylor approximation of Q-values
around the mean action

• Combined with the soft-actor critic algorithm

1st order Taylor approximation of
Q-values around the mean action

Independent actions

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018a.

Importance: entropy V.S. reward 
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Application 3: Signal Localization

Gamma-Ray Signal Localization Task
Many 1D signals containing the same signal pattern are 
collected by the well-logging process and sent to human-expert 
to do hand-picking for oil&gas localization.

• The human experts pick the patterns associated with 
interested rock based on one reference signal:

• Recognize the pattern with domain prior knowledges.

• Roughly matching with correlation matching methods.

Well 1 Well 2

Traditional methods

Yuan Zi, Lei Fan, Jiefu Chen, and Zhu Han, “Active Gamma-ray Log Pattern Localization with Distributional 
Robust Reinforcement Learning,” submitted to IEEE Transactions on Neural Networks and Learning Systems.
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Application 3: Signal Localization
Reinforcement Learning Signal Localization Scheme

• Thoroughly studied log with interested signal 
fragment as reference/target.

• In the new log, there is a signal fragment that 
has the same pattern as the reference

• Initial the whole new log trace as the agent's 
observation.

• Let the agent move (left, right, expand, 
shrink) to search the reference pattern.
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Conclusion
• Motivation

• DRO accounts for the fact that one is never able to exactly specify a probability 
distribution in practice.

• Due to the finite experience sample, the distribution of the real experience is hard to get.
• DRO Optimization

• The Wasserstein distributionally robust problems can often be reformulated as (or 
tightly approximated by) finite convex programs within a certain Wasserstein distance 
from the empirical distribution constructed from training samples.

• CVAR
• Distributionally robust chance constraints can be conservatively approximated by worst-

case CVaR constraints.
• DRO RL

• The risk-averse exploration in approximate RL setting is required and we can 
use the distributionally robust modified policy iteration scheme that implements 
safety in policy evaluation step w.r.t. estimation errors to avoid.

• Implement DRO to the Reinforcement Learning is just add one safe regularizer
to encourage agent visit the state with smaller variance.
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Conditional value-at-risk in optimization
In problems of optimization under uncertainty, CVaR can be used in the objective or the constraints,
or both.

Optimization shortcut

* argmin ( )
x X

x CVaR x
Î

Î

CVaR accounts for losses exceeding VaR. So when CVaR is considering, VaR can be ignored

DRO and Risk Aversion


