

Reconfigurable Holographic Surfaces: A New Paradigm to Ultra-Massive MIMO for 6G

Lingyang Song

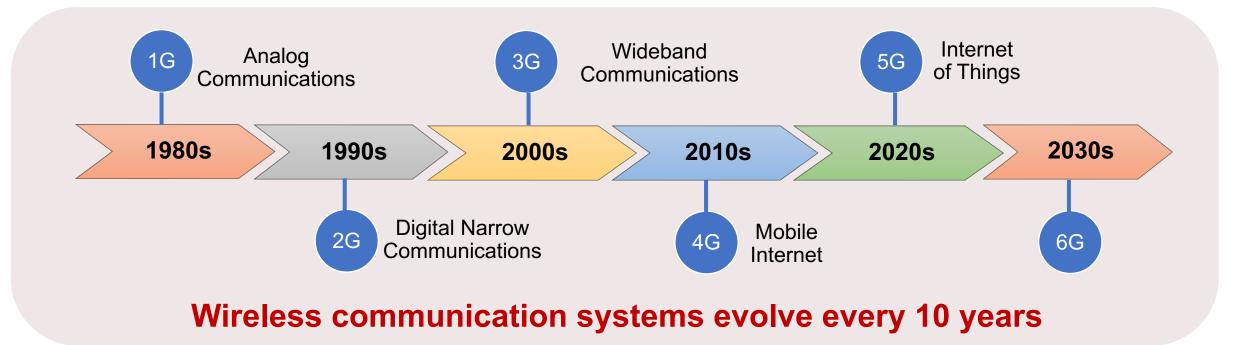
Boya Distinguished Professor Department of Electronics, Peking University, China

IEEE ComSoc TCCN, Kuala Lumper, Dec. 5, 2023

Outline

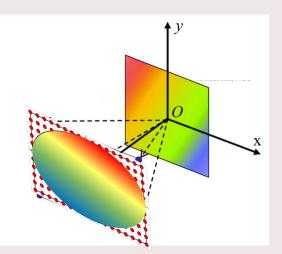
1. Background

- 6G Communications and Challenges
- Reconfigurable Holographic Surface


2. RHS-aided Wireless Communications

- Holographic Beamforming
- Holographic-Pattern Division Multiple Access
- 3. RHS Prototype and Experiment Results

6G Communications


6G KPIs

- Peak data rate: from 1Gbps to 50 Gbps
- Energy efficiency: 10 times of 5G
- Area traffic capacity: 10 Mbits/s/m² to 50 Mbits/s/m²

Holographic MIMO/Communications

Three interpretations at different levels

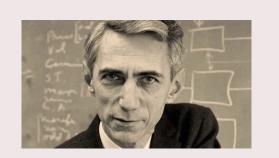
ultimate degree of freedom

Continuous aperture packing infinite number of antennas

Theoretical Bound

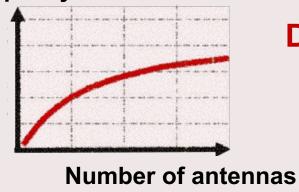
Ultra-high spatial resolution via extremely large-scale antenna array

Enabling Technique



Fully immersive, real-time, 3D experiences

Application


Ultra-Massive MIMO

Claude Shannon

Capacity

Data Rate \propto Number of antennas

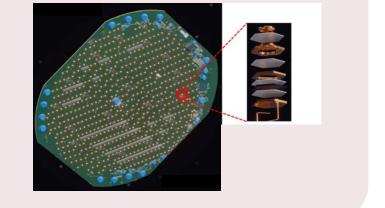
- $\boldsymbol{C} = \boldsymbol{B} \log_2(1 + \boldsymbol{N}\boldsymbol{P})$
 - **N**: number of antennas

Ultra-massive MIMO: evolving towards mmWave band for high data rate, enabled by ultra large-scale multi-antenna technology

6/32

feed

Traditional Design Methods


Phase Arrays for 5G

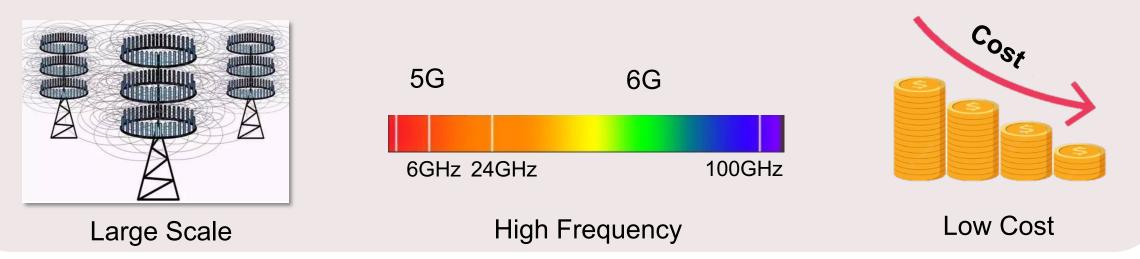
- Costly hardware components: numerous phase shifters
- High power consumption: complicated feeding network

Limiting the scale of the phased array

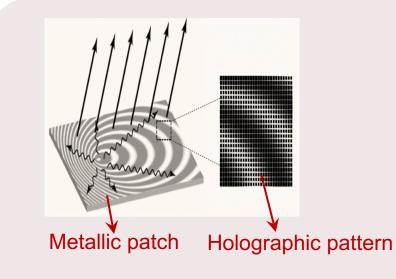
Reflecting Arrays for Satellites

- Hard to integrate: feed and antenna surface are separated → bulky structure
- Limited flexibility: mechanical manner for beam steering





Technical Barrier for Current Antenna Techniques


- Limited Scale: around the order of 10²
- High Energy Consumption: complex feeding circuit
- Unacceptable Cost: expensive RF components

Urging new technology to serve as an alterative of the phase arrays

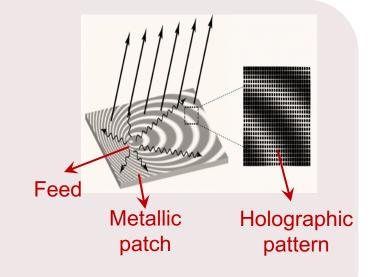
Holographic Antenna

Applying Hologram to Antenna Design

- Large Scale: numerous metallic patches
- Low Cost: PCB-level manufacturing
- Low Power Consumption: No complex phaseshifting circuits

Military Applications

- Satellites & terrestrial communications
- Radar detection for aircrafts


Emergency Communications

Working Principle

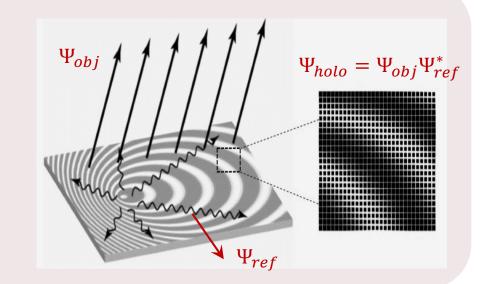
Hardware Structure: A Type of Leaky Wave Antenna

- The surface composes of numerous metallic patches
- The feed (which inputs the transmit signal) is embedded in the surface
 Ultra-thin
- EM wave propagates along the surface and then emitted to the free space
 Easy to be integrated

Key Concepts

- Holographic pattern: a specific geometric configuration of metallic patches designed by the holographic principle
- Beamforming: One holographic pattern refers to a specific EM radiation pattern in the free space, utilized to generate directional beams

Working Principle


Definitions

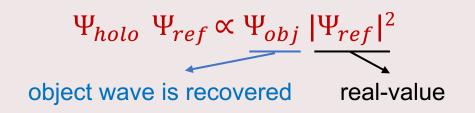
- **Reference wave** Ψ_{ref} is the input of the feed, which carries the transmit signal, propagating along the surface
- **Objective wave** Ψ_{obj} is the directional beam that we aim to generate
- Holographic pattern $\Psi_{holo} = \Psi_{obj} \Psi_{ref}^*$ is the interference between reference and object waves

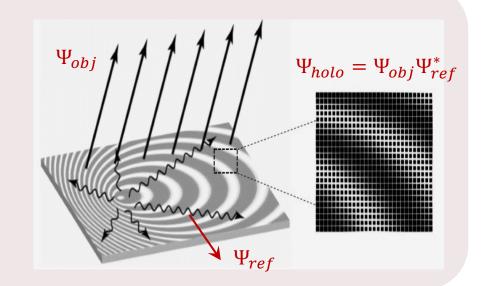
Step 1: Holographic Pattern Recording

• Record a holographic pattern Ψ_{holo} by placing the metallic patches on the surface in a specific manner such that adjacent patches can interfere with each other

$$\Psi_{holo} = \Psi_{obj} \Psi_{ref}^*$$

Working Principle

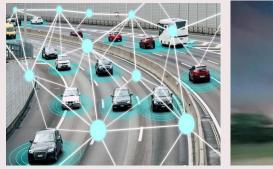



Definitions

- **Reference wave** Ψ_{ref} is the input of the feed, which carries the transmit signal, propagating along the surface
- Objective wave Ψ_{obj} is the directional beam that we aim to generate
- Holographic pattern $\Psi_{holo} = \Psi_{obj} \Psi_{ref}^*$ is the interference between reference and object waves

Step 2: Holographic Beamforming

• When the reference wave Ψ_{ref} is fed to the surface, it interferes with the holographic pattern Ψ_{holo}



Problem and Solution

Limitation of Holographic Antenna

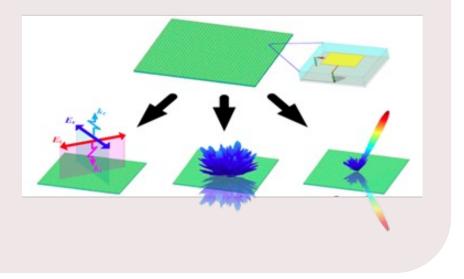
- Placement of metallic patches is fixed
- One holographic antenna only has a fixed beam pattern
- Unable to support the mobile scenarios

Reconfigurable Holographic Surface (RHS)

- Apply reconfigurable metasurface technique to holographic antenna design
- Holographic pattern can be reconfigured

Reconfigurable Metasurface Technique

Metasurface


- Artificial structures that are non-existent in nature
- A thin surface composed of subwavelength elements

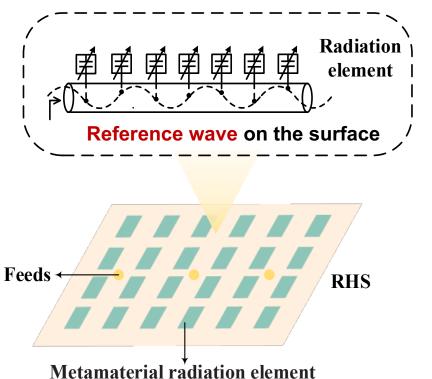
Reconfigurable Metasurface Element

- Active components: PIN diodes
- Reconfiguration: dynamic control for pointing of beams by biased voltages on PIN diodes

Benefits

- **Dynamic Beams:** Capable of controlling EM response of antenna elements
- Low cost & energy consumption: cheap PIN diodes and PCB techniques

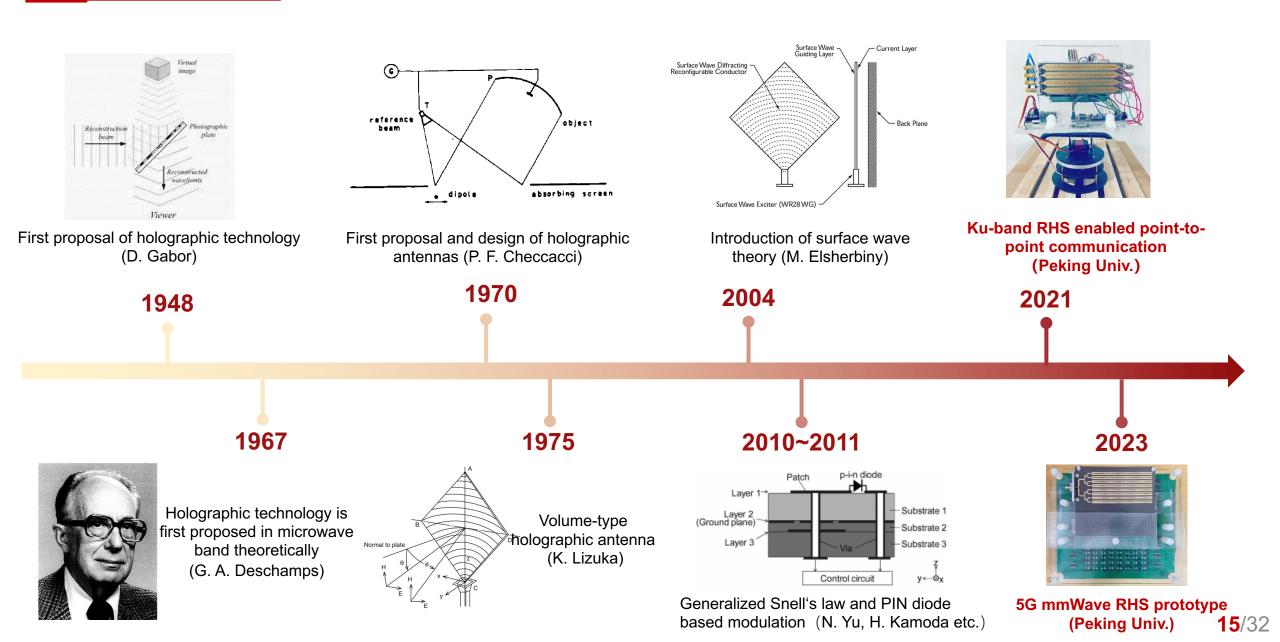
14/32


RHS Working Principle

- Metasurface: a 2D planar structure with ultra large number of sub-wavelength elements
- **Reconfiguration:** by controlling each element, the EM amplitude response can be adjusted
- 1. The feed (RF chain) inputs the reference wave (transmit signal) to the surface
- 2. When reference wave arrives at RHS element, it interplays with **holographic pattern** and **radiates energy** into the space
 - Holographic pattern is recorded by amplitude responses

dynamically controlled by diodes at each element

3. Reference waves turn into radiated signals in free space


• Superimpose to form directional beams (objective wave)

Historical Development

RHS VS RIS

Technology	Physical Structure	Operating Mechanism	Typical Applications		
RHS	RF front end is integrated into the metasurface	 Leaky-wave antenna Serial feeding Serial feeding Feed Different elements 	 Transmit/Receive antennas Mounted on mobile platforms Sensing, microwave imaging 		
RIS	RF front end is outside of the metasurface	 Reflection antenna Parallel feeding Ource Source Simultaneous reflection 	 Passive relays Deployed in the cell edge for coverage extension 		

RHS-enabled Communication System

Goal: Implement a mmWave RHS-enabled communication system as an alternative to phase array

Key Design Parameters

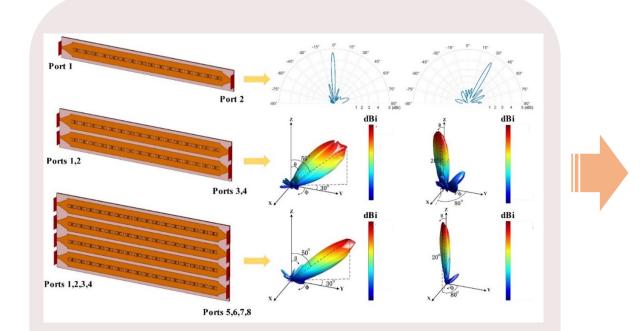
- Frequency: above 26GHz
- Bandwidth: 800MHz
- Polarization: cross-polarization
- Hardware architecture: 4 pieces of RHS corresponding to 4 RF chains

- Size: 11.16×9.65×0.0873 cm³
- **Control:** 1 bit PIN diode amplitude control
- **Range:** horizontal $\pm 60^{\circ}$, vertical $\pm 15^{\circ}$
- Switching speed:
 - 1 us (beam switching)

RHS Element Design

How an Element Works

• By tuning the voltage imposed on the diode, the element resonance state is controlled, thus the EM wave is manipulated

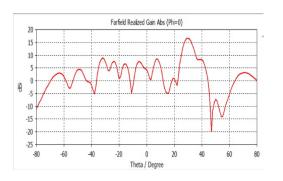

Designing parameters

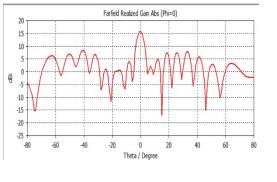
• Selection of dielectric material, geometric structure, diode equivalent circuit

RHS 2D Antenna Array Design

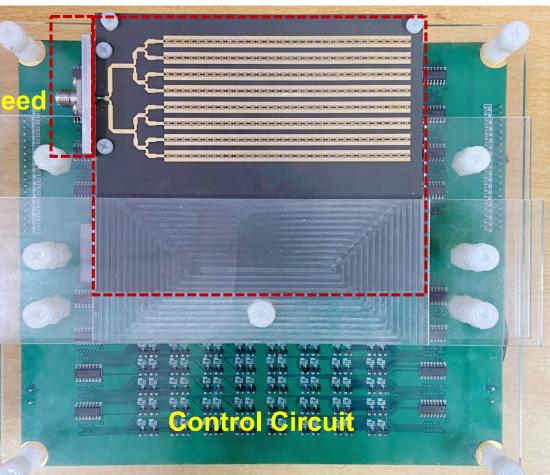
The antenna gain increases by 3dB when the size of RHS doubles **Feed:** send the transmit signal (carried by the reference wave) to the surface

Micro strip power divider: deliver the reference wave to the whole surface


256 RHS elements


RHS Control Circuit and Integration

- **Control:** 1 bit PIN diode amplitude control
- **Range:** horizontal $\pm 60^{\circ}$, vertical $\pm 15^{\circ}$
- Switching speed:

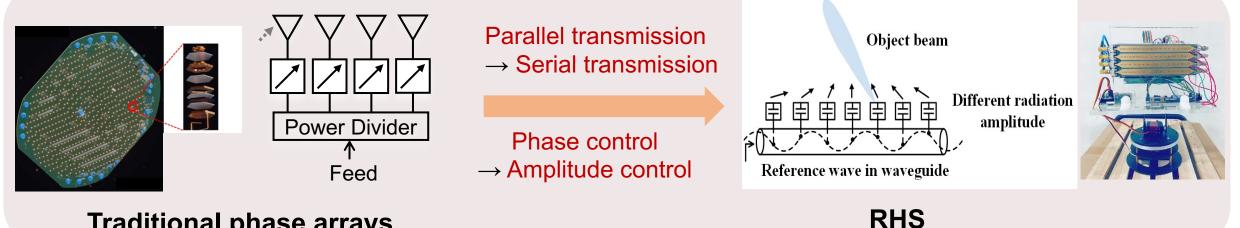

1 us (beam switching only)3 us (including control signaling)

 30° beam pattern

0° beam pattern

RHS

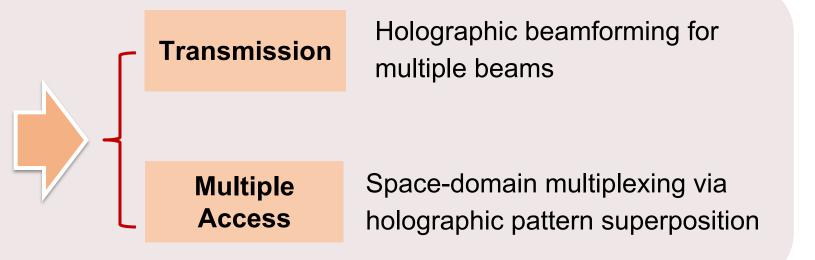
RHS Enabled Multi-Beam Transmission:


Amplitude-Controlled Holographic Beamforming

Ruoqi Deng, Boya Di, Hongliang Zhang, Yunhua Tan, and Lingyang Song, "Reconfigurable holographic surface-enabled multi-user wireless communications: amplitude-controlled holographic beamforming", IEEE Trans. Wireless Commun., vol. 21, no. 8, Aug. 2022.

21/32

Research Challenges

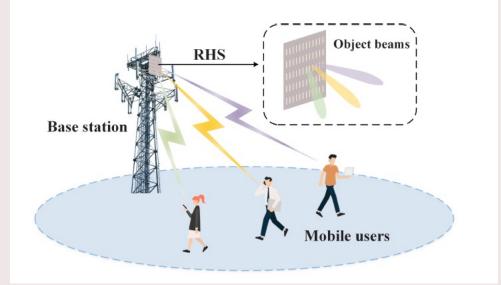


Traditional phase arrays

1. Serial feeding:

- signal propagates along the surface, urging new models
- **Amplitude control:** 2.
- traditional phase-controlled beamforming does not apply

System Model



Key Questions

- How to model the signal propagation on the surface?
- How to generate multiple beams via the RHS-enabled holographic beamforming?

Scenario

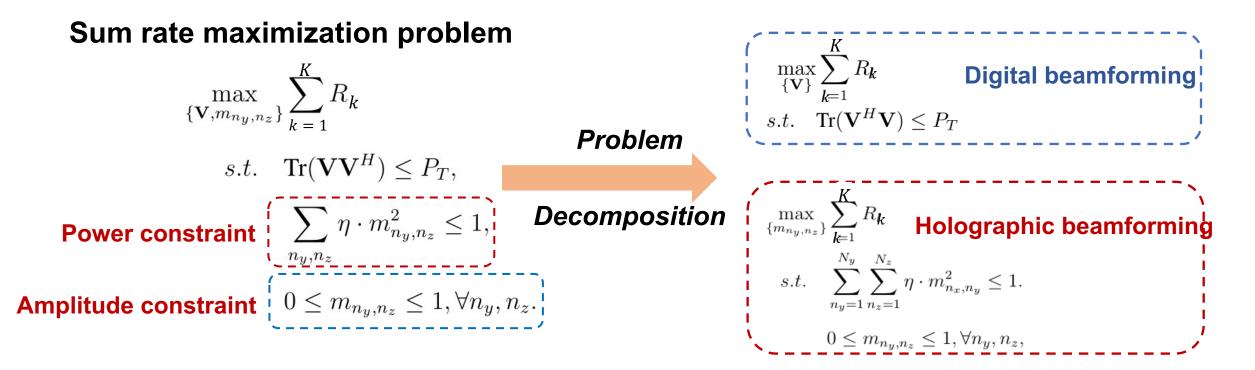
- Downlink RHS-aided MU-MIMO system
 - One RHS BS and K users
 - User: single antenna
 - RHS: *K* feeds, $N_v \times N_z$ radiation elements

System Model

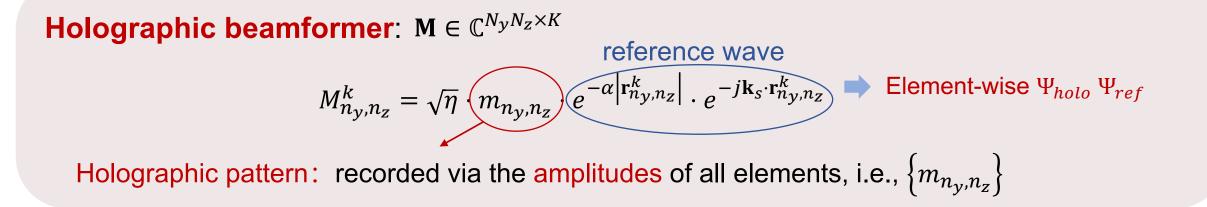
- RHS-aided hybrid beamforming framework
 - BS: Digital beamforming V
 RHS: Holographic beamforming M
 Enabling the function of traditional analog beamforming

Digital Beamformer $y_{l} = \mathbf{H}_{l} \mathbf{M} \mathbf{V}_{l} \mathbf{s}_{l} + \mathbf{H}_{l} \mathbf{M} \sum_{l' \neq l} \mathbf{V}_{l'} \mathbf{s}_{l'} + \mathbf{z}_{l}$ Holographic Beamformer

24/32


Problem Formulation

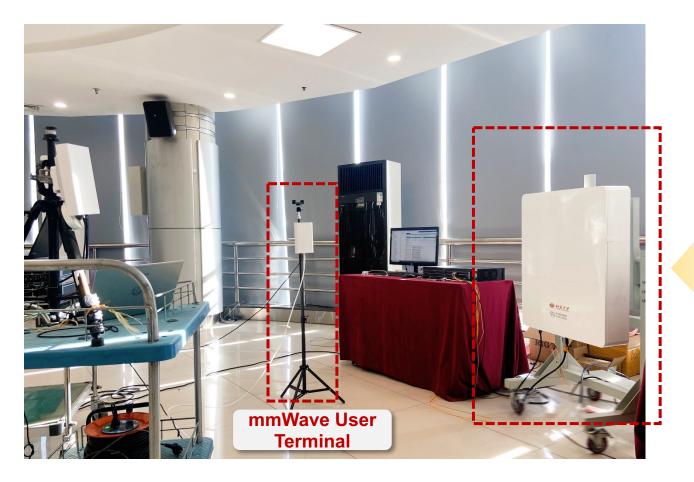
Achievable rate of each user

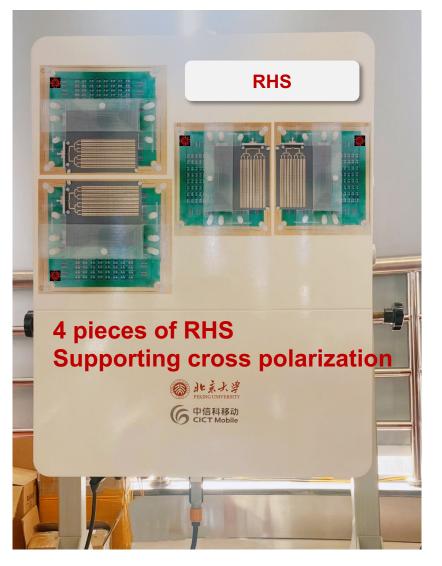

$$R_k = \log_2 \left(1 + \frac{|\mathbf{H}_k \mathbf{M} \mathbf{V}_k|^2}{\sigma^2 + \sum_{l' \neq k} |\mathbf{H}_k \mathbf{M} \mathbf{V}_{l'}|^2} \right)$$

Channel matrix between RHS and user k



Holographic Beamforming Model


- $m_{n_y,n_z} \in [0,1]$: radiation amplitude response of the (n_y, n_z) th RHS element, controlled via the diode
- $e^{-\alpha |\mathbf{r}_{n_y,n_z}^k|}$: surface propagation loss of reference wave
- e<sup>-jk_s·r^k_{ny,nz}: phase of the reference wave, and varies along its propagation
 </sup>



RHS-enabled Communication Prototype

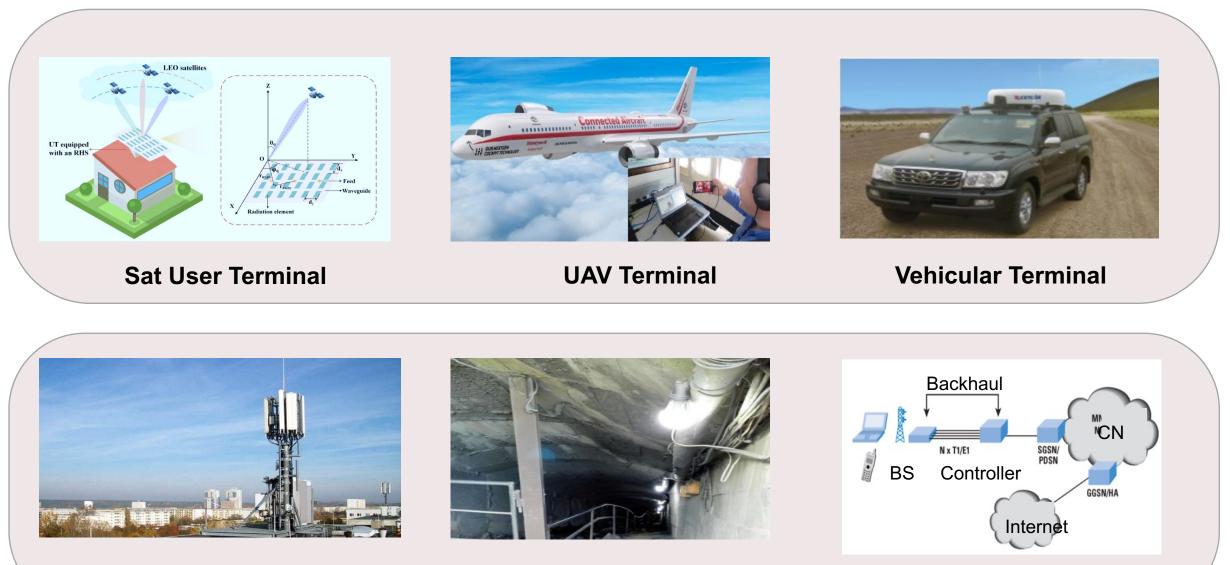
One RHS-enabled transmitter sends to two mmWave user terminals

RHS Prototype (Peking Univ. and CICT)

One RHS-enabled transmitter sends to two mmWave user terminals

 PEKING UNIVERSITY

- 64 QAM: achieving EVM at 6.87% (lower than the threshold 8%)
- Total throughput of two users: exceeding 4 Gbps


Demonstration Video

Prototype of RHS-Enabled Holographic Radio

Applications: Communications

Base Station

Emergency Comms Terminal

Backhauling

Publications

	1. RHS Proposal 3. I		Holographic BF		5. Satcoms	7. 5G	7. 5G-A Implementatio	
surface: Holographic s beamforming for v metasurface-aided wireless A		c sur wire wireless Am	"Reconfigurable holographic surface enabled multi-user wireless communications: Amplitude-controlled holographic beamforming," <i>IEEE TWC</i>		"Holographic MIMO for LEO Satellite Communications Aided by Reconfigurable Holographic Surfaces," <i>IEEE JSAC</i>		"Reconfigurable Holographic Surfaces for Ultra-Massive MIMO in 6G: Practical Design, Optimization and Implementation", <i>IEEE JSAC</i>	
2019	2021-06	2022-04	2022-06	2022-07	2021-08	2023-01	2023-08	
Kick o	division	"HDMA: Holographic-pattern division multiple access," IEEE JSAC		"Holographic integrated sensing and communication," <i>IEEE JSAC</i>		"Holographic Radar: Target Detection Enabled by Reconfigurable Holographic Surfaces", <i>IEEE CL</i>		
	2. Multiple Access		4. Hol	4. Holographic ISAC		6. Holographic Radar		

31/32

Thanks for your attention

