Learning Scheduling and Optimization in
Federated Edge Learning

Yu Wang
Temple University
November 14, 2023

ComSoc TCCN Online Seminar Wang LAB TEMPLE

UNIVERSITY

Wireless Networking and Sensing Lab



Outline

- Introduction
Mobile edge computing and federated learning
Federated edge learning (FEL)

- Learning Scheduling and Optimization in FEL
Problem and multi-stage solution
Consider learning topology
Quantum-assisted solution

-  Conclusion

3 Wang LAB Yu Wang, Dept. of Computer & Information Sciences, Temple University




Mobile Edge Computing
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- Mobile Edge Computing (MEC) - a "new” computing paradigm

- offers applications and content providers cloud-computing capabilities and a
service environment at the edge of the mobile network

> supports diverse services (e.g., data management, mobile computing, VIL/A
services) for wide range of applications and loT/smart/mobile devices

- This environment is characterized by o
> proximity
> |location awareness Edge nodes =
- ultra-low latency \
- high bandwidth R \ -
- real-time access to radio network Edge devices ' ' TN

/IR
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and network resources
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Federated Learning

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

- Federated Learning (FL) - a "new”
distributed ML paradigm

many clients (e.g. mobile devices)
collaboratively train a shared ML model under
the orchestration of a central server (PS),
while keeping the training data decentralized

- Advantage over traditional, centralized ML e @
> embody the principles of focused data E é ﬁ E @ E
collection and minimization

mitigate many of the systemic privacy risks
and costs
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Federated Learning Meets Edge Computing
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- MEC and FL share the same principles .
- keep data/computing closer to users .
- protect user privacy 1
> |leverage distributed resources

- Federated Edge Learning (FEL)

- widely studied and applied

IN many application scenarios e

recently

- enables Edge Al & Edge ;;./
Intelligence
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Federated Edge Learning: Current & Challenges

»  Current works in FEL focus on «  Multi-model FEL
- learning convergence and learning control [1.2] - multiple FL models trained
>~ communication and energy efficiency [3.4.9] simultaneously (resource
- edge association and resource management [5.6] competition, affecting performance
- client selection/sampling to battle non-lID data [7.8.9] of each other)

- model aggregation and learning topology [5.10.11] - different convergence

» . . performance with different learning
]Ic\i/)l(%SC} I%fatrhneir% ?Qpilz'ggle shared global ML model with rate settings or learning topologies

1] Client-edge-cloud hierarchical federated learning, ICC, 2020. " Model

2] Adaptive federated learning in resource constrained edge computing systems, JSAC, 20109. %@ FEL of Model 1
3] Energy efficient federated learning over wireless communication networks, TWC, 2020. | : ‘
4] To talk or to work: flexible communication compression for energy efficient federated learning over heterogeneous
mobile edge devices, INFOCOM, 2021.
5]
6]
7]
8]

SHARE: Shaping data distribution at edge for communication-efficient hierarchical federated learning, ICDCS 2021
HFEL: Joint edge association and resource allocation for cost-efficient hierarchical federated edge learning, TWC 2020
Sample-level data selection for federated learning, INFOCOM 2021

8] Power of redundancy: Surplus client scheduling for federated learning against user uncertainties, TMC 2022

9] Client selection for federated learning with heterogeneous resources in mobile edge, ICC 2019

[10] Resource-efficient federated learning with hierarchical aggregation in edge computing, in INFOCOM 2021 }
[11] Learning-driven decentralized machine learning in resource-constrained wireless edge computing, INFOCOM 2021 T fisia BE FEL Models

Edge Server

Traming Data
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Our Work on Federated Edge Learning

How to select PS, workers to
reduce total learning costs?

~

Joint Participant Selection and
Learning Scheduling for Multi-
Model FEL

Participant Selection

How to adjust training iteration,

Learning Schedulin
5 5 convergence speed, etc.?

Joint Participant Selection and
FL Scheduling in Distributed
Networks

__________’

How to handle different data

Data Distribution .
distribution?

’——————————§
B I I I I I I S S e -
B T e |

~

How to determine the optimal
learning topology (CFL, DFL, HFL)?

Including communication cost,
computing cost, rental cost, etc.?

Learning Topology

Joint Participant and Learning
Topology Selection in Multi-
Model FEL

Learning Cost

Hierarchical Federated Learning

Group Formation and Group
Sampling for Gourd-based
Hierarchical FEL

~

Yu Wang, Dept. of Computer & Information Sciences, Temple University TEMPLE

UNIVERSITY




Outline

Joint Participant and Topology utaum-Assistant Federated

Joint Participant Selection and
Selection in FEL

Scheduling in FEL

Learning Scheduling

Joint Participant Selection and Learning Scheduling
for Multi-Model Federated Edge Learning

Joint Participant and Learning Topology
Selection in Federated Edge Learning
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Abstract—Deploying federated learning (FL) in edge clouds is a challenging task, particularly when multiple models are trained
concurrently in resource-constrained edge environments. Current research on federated edge learning primarily focuses on client
i S selection for training a single FL model with a fixed learning topology. Our experiments demonstrate that FL models with adaptable
<" Model | T N topologies result in lower learning costs than those with fixed topologies. In this paper, we investigate the problem of jointly selecting
FELofModeli\\ participants and learning topologies for multiple FL models being trained simultaneously in the edge cloud. We formulate this as an
X integer programming problem, with the goal of minimizing total learning costs for all FL models, subject to edge resource constraints.

Abstract—As edge computing complements the cloud to enable
computational services right at the network edge, federated »
learning (FL) can also benefit from close-by edge computing g %

infrastructure. However, most prior works on federated edge
learning (FEL) mainly focus on one shared global model during
the federated training in edge systems. In a real edge computing
scenario, there may co-exist multiple various FL models that are
owned by different entities and used by different applications.
Simultaneously training these models competes both computing
and networking resources in the shared edge system. Therefore,
in this work, we consider a multi-model federated edge learning
where multiple FEL models are being trained in the edge
network and edge servers can act as either parameter servers or
workers of these FEL models. We formulate a joint participant
selection and learning scheduling problem, which is a non-linear
mixed-integer program, aiming to minimize the total cost of all
FEL models while satisfying the desired convergence rate of
trained FEL models and the constrained edge resources. We then
design several algorithms by decoupling the original problem
into two or three sub-problems which can be solved respectively
and iteratively. Extensive simulations with real-world training
datasets and FEL models show that our proposed algorithms
can efficiently reduce the average total cost of all FEL models in
a multi-model FEL setting compared with existing algorithms.

I. INTRODUCTION

With the advances of Internet of Things, smart sensing and
artificial intelligence, there has been a tremendous trend that
data sources shift from the cloud center to the network edge.
Generally, in order to train a machine learning (ML) model,
one needs to upload the collected training data to the cloud
data center and train the model using the whole dataset there.
However, it is non-trivial to send a large amount of data to
the remote data center due to the limited network bandwidth
and data privacy concerns. Therefore, an alternative solution
is the distributed training of ML models at the network edge
or even on the user devices. However, there are still major
challenges to prevent users from performing efficient model
training at the edge. On one hand, the computing capacity

H @ Edge Server
— . E @ Training Data

bt % FEL Models

.. Worker3 FEL of Model 2"

Fig. 1. Multi-model FEL example: two FEL models are trained with 3 and 4
participants (1 PS + 2 or 3 workers), respectively, in a shared edge network.

resources and the competition among various users, servers
and applications.

Recently, federated learning (FL) has been emerging as
a new distributed machine learning paradigm [1]-[3], which
enables multiple servers collaboratively learn a shared ML
model while keeping all training data on the local server. It is
very natural to deploy the FL framework in edge computing
to provide efficient distributed training at the network edge.
Therefore, federated edge learning (FEL) has been proposed
in various settings [4]-[12]. In FEL, edge servers can col-
laboratively train a shared global ML model by aggregating
local models trained at individual local servers, decoupling
the ability to do model training from the need to store data
in centralized server. More precisely, as shown in Fig. 1, in
each global iteration, edge severs, worked as workers, first
download the latest global model from the parameter server
(PS), and then perform a fixed number of local training based
on their local data. After that, edge servers will upload their
local model to the parameter server which is responsible for
aggregating parameters from different workers and sending the

111 1 P =

We propose a two-stage algorithm that decouples the original problem into two sub-problems and addresses them iteratively. By
allowing FL models to independently select participants and learning topologies, our method improves resource competition and load
balancing in edge clouds. Our extensive experiments with real-world networks and FL datasets confirm the superior performance of
our algorithm in terms of average total cost compared to prior methods for multi-model FL.

Index Terms—Edge Computing, Federated Learning, Participant Selection, Learning Topology

1 INTRODUCTION

Federated Learning (FL) [1]-[7] is an efficient approach for
improving machine learning (ML) performance and pro-
viding better privacy solutions for data owners. It enables
multiple devices to collaborate and train a shared global
ML model by aggregating local models trained on each
device. FL ensures that training data remains local to protect
users’ privacy, and only transmits essential model data
(e.g. gradients). With the growth of smart sensing, mobile
computing, and wireless networking, there is also a trend
of moving data sources and intelligent computation from
centralized clouds to edge clouds, to provide agile services
to mobile devices and users. Therefore, it is important to
deploy FL frameworks on edge clouds and provide efficient
distributed training for mobile devices at the network edge.
Such solutions have been studied [8]-[12] and can support
many emerging applications [13], such as mobile Al, AloT
or AR/XR applications.

Current FL frameworks can be categorized into three
types based on the learning topology used for model ag-
gregation: centralized FL (CFL), hierarchical FL (HFL), and
decentralized FL (DFL). CFL is the classical FL [10] where

train the model by using their local data. After each worker
performs several local updates, the local model will be
forwarded to the PS for global aggregation. The potential
bottleneck of CFL is the communication congestion at the
PS since all workers have to communicate with the PS
concurrently for multiple rounds. In addition, the PS in CFL
may cause a single point of failure. Therefore, DFL [11], [14]
has been proposed, where each worker only communicates
with its neighbors (with mutual trust) by exchanging their
local models and there is no centralized PS, as shown in
Fig. 1(b). While such distributed P2P learning topology
increases the robustness of FL, it might suffer from larger
communication costs or slower convergence. Recently, HFL
[15]-[17] has been proposed by introducing several middle-
layer PSs (or called group leaders) in a hierarchical topology
such that each of them only aggregates a group model from
workers inside its group and sends the group model to
the PS for global aggregation, as shown in Fig. 1(c). HFL
can effectively hide local updates submitted by individual
workers within a group, thereby enhancing privacy pro-
tection from malicious or honest-but-curious PS [15]. HFL
can also provide better scalability with larger workers but
mav increase the total latencv due to multiple exchanges

\

¥
@

Abstract—The scheduling problem for federated learning (FL)
with multiple models in a distributed network is challenging,
as it involves NP-hard mixed-integer nonlinear programming.
Moreover, it requires optimal participant selection and learning
rate determination among multiple FL. models to avoid high
training costs and resource competition. To overcome those chal-
lenges, in literature the Benders’ decomposition algorithm (BD)
can deal with mixed integer problems, however, it still suffers
from limited scalability. To address this issue, in this paper, we
present the Hybrid Quantum-Classical Benders’ Decomposition
(HQCBD) algorithm, which combines the power of quantum
and classical computing to solve the joint participant selection
and learning scheduling problem in multi-model FL. HQCBD
decomposes the optimization problem into a master problem
with binary variables and small subproblems with continuous
variables. This collaboration maximizes the potential of both
quantum and classical computing, and optimizes the complex
joint optimization problem. Simulation on the commercial D-
Wave quantum annealing machine demonstrates the effectiveness
and robustness of the proposed method, with up to 18 % improve-
ment of iterations and 81% improvement of computation time
over BD algorithm on classical CPUs even at small scales.

Index Terms—Federated learning, participant selection, learn-
ing scheduling, hybrid quantum-classical optimization

I. INTRODUCTION

With the use of quantum superposition and entanglement,
quantum computing (QC) has demonstrated a quantum ad-
vantage over classical computing in random quantum circuit
sampling [1], Gaussian boson sampling [2], and combinatorial
optimization [3]—[5]. In this paper, by leveraging the parallel
computing capability of quantum computing, we focus on de-
signing a new quantum-assisted scheduling algorithm to solve
a complex joint participant selection and learning scheduling
problem for federated learning (FL) in distributed networks.

Federated learning is emerging as an effective and privacy-

nreserving machine learnine (MT ) paradiom [61-[O0] which

Worker1 ____ PS1

Worker 2

Worker 1 5'// \

- -
Worker 3
Eg Distributed Server : _____ __ Model broadcasting & global aggregating
PHE rvodels ] Local computation

Fig. 1: The training process of multi-model federated learning.

the computing capability and network resources of servers
and their data distribution are heterogeneous. Some low-
performance servers may decelerate the convergence process
and diminish the training performance. Also, the dispersed
computing resources and large network latency may lead to
high training costs. Second, for the practical scenario, training
multiple different models in the shared distributed network
simultaneously leads to competition for computing and com-
munication resources. As shown in Fig. 1, two FL models
are trained concurrently and each FL model requires one PS
and three workers for model training. In this case, which FL
model is preferentially served at which server directly affects
the total training cost of all FL models. To this end, appropriate
participant selection and learning schedules are fairly crucial
for multi-model FL training.

Therefore, we mainly concentrate on the joint participant
selection and learning scheduling problem in multi-model FL

training scenarios It shonld he emnhasized that each server in
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Joint Participant Selection and Scheduling in FEL
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-  Multi-model FEL

>~ multiple FL models trained
simultaneously (resource
competition, affecting
performance of each other)

> participant selection: certain
workers and a parameter
server (PS) for each model

> |learning scheduling: adjust
local learning rate of each
model
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Joint Participant Selection and Scheduling in FEL

FL Model

- Each global iteration includes four steps

- Selected parameter server (PS) initializes the global model;
- Selected workers download the global model from PS;

- Each worker runs the local updates using its holding raw

dataset for certain local iterations ?;;

- Workers upload the updated model to PS for global

aggregation to update the global model.

2 Yo ln( 1 ) 1 local convergence rate

# of global iterations: W > — ,
T % — 9 s 1 —[oj]
2 1 1

# of local updates: (». > loao(—)) 2 onloas(—).

222 1 1
in(—)
Sj 1
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Joint Participant Selection and Scheduling in FEL
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mixed integer non-linear

Problem Formulation

programming problem (MINLP)

- Joint participant selection and learning scheduling

Goal: minimize the total cost of all models

min Zﬁ o (3)

j= CPU frequency
S.t. | 4
StorageSt *)
constraints (5)
(6)
VJ (7)

One PS, K; FL workers

most work as one of two roles
v €{0,1},y; € 40,1}, 05 € [0.1). (9)

9 ;J
Participant selection and learning schedule decision

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Total learning cost

wz; _ C;:om*rn,t n C:liocal,t 4 C;]lobal,t i C;7z-it,t..

Communication
cost based on

»  Edge communication cost

N N
t_ o
C;?omm : L LIA y yl ; P )
k=1 1=1
g Local update COSt CPU cycles to process
N the sample data D]’.’i

local .t t t t ,
C; = Vj¢j E:yu

- Global aggregation cost

N IR

Cvglobal,t _ 19{,.' Z : ’I'¢ B Q,U(\,U] )
_7 .7 .QJI,,] ft .
- i

» |nitialization cost

Downloading cost
if t =1 or v, ' (m;) = NIL

.
if v, (mj) = v, (mj)

min{ny,pj(v S H(my), vl (my))}, otherwise.
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Joint Participant Selection and Scheduling in FEL
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Methodology

Problem Decomposition

Decompose to Three

Decompose to Two
' sub-problems (P4, P3)

wia|qo.d |euldiio syl ‘

) Solve x; ;, y{;,and g} in
, Sub-problems (P1, P2, P3) | P1,P2 and P3, respectively

| Solve (x{;, y{;) and g} in
3 P4 and P3, respectively

Algorithm Design

E Three-Stage Optimization 1_
) Algorithm (THSO)

s

¥ R i Three-State

= . .
e | Greedy Algorithm (GRDY) |
=, - N
= Two-Stage Optimization
L. Algorithm (TWSO)

[
|

1 Stage 1: Given y”, Q], solve XU,

\

|

|
JStage 2: Given xU, QJ, solve yU, i

|

| Stage 3: Given xU, yU, solve Q !

T - e e e e e - G e eSS s e WEe e e See S e e e e e e

F—————-——-———-————-———-——~

/mStage 1: Given Q], solve (xlj, Vi

ijh
«’Stage 2: Given (x| ;, ¥; ;), solve g} |

Solving P1 parameter server (PS) selection

with fixed workers selection and local

convergence rate

111111 E "_*

2311

s (4),(7),(9)

Solving P2 worker selection with the latest

PS and fixed local convergence rate

P2 : mm Zw

yzg =

.t ()) —(9)
Solving P3 local convergence rate with the

latest PS and worker decision

llllll E w

J 7=1

s... (9)
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Joint Participant Selection and Scheduling in FEL

Methodology

Algorithm 1 Three-Stage Optimization Method > Solving P1 parameter server

1: Initialize max ilr, max occur, bound val

2: Generale an random initial FEL worker selection decision (PS) selection with fixed

0

y;!; and local convergence rate 0,

¢ =1 and count_num = 0: workers selection and local

repeat
Stage 1: Calculate z;’; by solving P1 with fixed y;’

‘)

Al By

Loe—1

6:  Stage 2: Calculate y,f_:jl by solving P2 with fixed ;fj

t.0

[ —

j Stage 1 convergence rate

and Qi“’_l
7. Stage 3: Calculate Q',]j-"’ by solving P3 with fixed ;1:2:')1
and Urj et obj_val be the achicved objective value P1: min Z wt
(total cost of FEL models) .iIZ‘t | J
8: it obj_val > bound_wval then Y, | o
9: b()url'l.-d_’ual = Obj_’v(l-[ . (.‘.()us';'z,.[._"/'z_.u.v'n = | St ( 4) ( 7), (9)
;@ =arnyl =y o) =0
11: else if obj_val = bound_val then
12: count_num = count_num + 1
13:  end if
14 ¢ — ¢+ 1

15: until count_nwm — max_oceur or ¢ — max_itr

lo: return x; ., y! . and o'
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Joint Participant Selection and Scheduling in FEL
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Methodology

Algorithm 1 Three-Stage Optimization Method

1. Initialize max ilr, max_occur, bound_oval > SOlVin g P2 wo rker SElection
2. Generale an random initial FEL worker selection decision
?/f;) and local convergence rale (_)ﬁ.'(" with the latest PS and fixed

32 ¢ =1 and count_num = 0;
4: repeat
S

local convergence rate

Stage 1: Calculate ;" by solving P1 with fixed y;’>~
and f,',l,—‘l
v ol . . v a Sta ge 2
Stage 2: Calculate y; ; by solving P2 with fixed z;’;
and o'' 1
7. Stage 3: Calculate Q',];"’ by solving P3 with fixed ;[;2:’): W
t.L -~ I A . - ‘ - T AT 1A e : .“\
and y; i lA.[. ({b:;_z..u.l be \thc achicved objective valuc P2 - min 2 :wf
(total cost of FEL models) + T
g: if obj_wval > bound_wval then Yi, j  J=1
9: bownd_val = oby_val; counl_nwimn =1 , = |
Lt J_, b, |  tu S.L. (0) — (())
10: Tii = Tjas Yii = Yiir 05 = € | |
11: else if obj_val = bound_val then
12: count_num = count_num + 1
13:  end if
14 ¢ — ¢+ 1

15: until count_num — max_occur or ¢ — max_itr
B !
l6: return x; ;, vy; , and g,
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Joint Participant Selection and Scheduling in FEL

Methodology

Algorithm 1 Three-Stage Optimization Method

1: Initialize max idr, maxr_occur, bouwnd oal > SOlVin g P3 |Oca| convergence
2: Generale an random initial FEL worker selection decision
z/f;) and local convergence rate le'() rate with the latest PS and
3¢ =1 and count_num = ();
4. repeat .
5. Stage 1: Calculate .ll; by solving P1 with fixed -yij;f— worker decision
and o'
6:  Stage 2: Calculate y;; by solving P2 with fixed =,
and Qﬁ“_l
7: Stagé 3: Calculate QI;-" by solving P3 with fixed 1 Sta ge 3 W
and 7.5 Let obj_val be the achieved objective valuc . . ¢
(total u‘)\t of FELL models) ‘ P3 : 111 ltll Z wj
g: it obj_wval > bound_wval then & =1
]3 ?(’)uu:d_;t(tl ;1,0b J:_ “tz{ c..o,:u,i(._;z;:z.m = | ot ( 9)
' Lo = g Y = Yier €5 = &5
11: else if obj_val = bound_val then
12: count_num = count_num + 1
13:  end if
14 ¢ — ¢+ 1

15: until count_num = max_occur or . = max_itr
lo: return x; ., y! . and o'
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Joint Participant Selection and Scheduling in FEL
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Methodology

Algorithm 1 Three-Stage Optimization Method

1: Initialize max ilr, max occur, bound val

2. Generale an random initial FEL worker selection decision > Update decision variables and
?/f;) and local convergence rale .r_);‘("

3 ¢ =1 and couni_num = 0); iteratively repeat the process if

4: repeat

5. Stage 1: Calculate z;°; by solving P1 with fixed y;"-~ the condition is not satisfied

fo—1
and o

6:  Stage 2: Calculate y;; by solving P2 with fixed =, Either no further improvement
and Q_f-“_l L.
7. Stage 3: Calculate z_)"’ by solving P3 with fixed J:f:;:‘;,- of the objective value of the

t.t ' ‘ . . '
and y;".. let obj_val be the achicved objective value

(total cost of FEL models) optimization or reaching the

maximal iteration number

bound_val = oby_val;, counl_nwm =1 _
[ 2N S AN OV SSN AR, 2N 2
i = Vjar Yki = Yiir &5 = €5 Stopping
else if obj_val = bound_val then Condition

count_nuwm = count_nuwm + 1
end if
t— ¢+ 1
15: until count_num — max_oceur or ¢ — max_itr
o b N
l6: return a; ;. y,; . and g;
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Joint Participant Selection and Scheduling in FEL
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Evaluation

Network and Datasets

« Random edge networks with 20-40 edge servers from

the real-world EUA-Dataset

« ML Model datasets: Fashion-MNIST, Speech

Commands, AG_NEWS

Parameter

Value or Range

Edge Network FParan
# of edge servers N

eter

v;'s storage capacity ¢;

512 ~ 1,021GDB

1;'s CPU frequency f;

2 ~ HGHz7

€; s link bandwidth b;
It of different dataset O

512 ~ 1. 024\ hps

<)
each dataset size |S; ;| | ~3CH
i+ of time period T 30

I'ederated Fldge Learning Porameter

# of 'EL models W 1 ~5
i of m;’s 'L workers | ~ 7
me;'s model size p 10 ~ 100MND
m;’s CPU requirement | ~ 3GHz
;s downloading cost 1), L ~5
m;’s global convergence reqs. g 0.001T ~ 0.1
constant FEL variables oy and ¢y 15, 1

Methods and Baselines

« THSO: three-stage optimization method

« TWSO: two-stage optimization method

« GRDY: three-stage greedy method

« RAND: randomly generates decisions

« ROUNDI?2]; selects workers and local convergence
rate with randomized rounding

« DATAI3]: prefers edge servers with more data

« LOCALI14L: selects edge servers that complete the
local training first
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Joint Participant Selection and Scheduling in FEL
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Joint Participant Selection and Scheduling in FEL

- Study joint participant selection and learning

: : : o 1
scheduling of multi-model FEL in the edge cloud: ] | Problem Decomposition

- select participants (both PS and workers) and local 0 . sut?.iizg]iﬁff(ff:fi . Psio:)vzc;gfg&r;:n;ﬂcﬁf-v ;r; ]7
convergence rate for each FL model S e St = e

> aim to minimize the total learning cost of all FL models 3 | Decompose to Two __[ Solve (x;, y;;) and gj in ],

P th I th na =3 . __sub-problems (P4, P3) P4 and P3, respectively

. ropose tnree algorl : 3
. . . . . . i
- three-stage optimization, solve one decision via  Alorih Do T
imizati hen fixing other two decisions at each stage e S
Optlmlzathn when g g E Three-Stage Optimization |_ ',_S:t""r-(;'"“-""-‘“-I"-"--\'

- three-stage greedy, greedily make one decision when 2 | | [{__Algorithm (THSO) ]| 1 ° 6% = 2 ¥ JVan 67, 0¥ 5050 4
r e = i :tUStagez.leen 5 (@ SR 3 T
fixing other two decisions at each stage dn Three-State | stage 3: Givenxt, ¥, solve @ |

. : . . o | Greedy Algorithm (GRDY) | Mo ___________ X Tl L. /

- two-stage optimization, consider participant selectionina [T — ) |

sinale staqge <7 [ Two-Stage Optimization | ~rsStage 1: Given o, solve CHS
J .g : s _ Algorithm (TWSO) ftEJStage 2: Given (;;j,y;;j), scj)lve é} E*
+ Conduct simulations to evaluate proposed methods: “— |~ eomomomomotieoeooo |

- the proposed methods can effectively reduce the total cost
compared with existing methods
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Joint Participant Selection and Learning Scheduling
for Multi-Model Federated Edge Learning

Xinliang Wei, Jiyao Liu, Yu Wang
Department of Computer and Information Sciences, Temple University, Philadelphia, USA
{xinliang.wei,jiyao.liu,wangyu } @temple.edu

Abstract—As edge computing complements the cloud to enable
computational services right at the network edge, federated
learning (FL) can also benefit from close-by edge computing
infrastructure. However, most prior works on federated edge
learning (FEL) mainly focus on one shared global model during
the federated training in edge systems. In a real edge computing
scenario, there may co-exist multiple various FL models that are
owned by different entities and used by different applications.
Simultaneously training these models competes both computing
and networking resources in the shared edge system. Therefore,
in this work, we consider a multi-model federated edge learning
where multiple FEL models are being trained in the edge
network and edge servers can act as either parameter servers or
workers of these FEL models. We formulate a joint participant
selection and learning scheduling problem, which is a non-linear
mixed-integer program, aiming to minimize the total cost of all
FEL models while satisfying the desired convergence rate of
trained FEL models and the constrained edge resources. We then
design several algorithms by decoupling the original problem
into two or three sub-problems which can be solved respectively
and iteratively. Extensive simulations with real-world training
datasets and FEL models show that our proposed algorithms
can efficiently reduce the average total cost of all FEL models in
a multi-model FEL setting compared with existing algorithms.

[. INTRODUCTION

With the advances of Internet of Things, smart sensing and
artificial intelligence, there has been a tremendous trend that
data sources shift from the cloud center to the network edge.
Generally, in order to train a machine learning (ML) model,
one needs to upload the collected training data to the cloud
data center and train the model using the whole dataset there.
However, it is non-trivial to send a large amount of data to
the remote data center due to the limited network bandwidth
and data privacy concerns. Therefore, an alternative solution
is the distributed training of ML models at the network edge
or even on the user devices. However, there are still major
challenges to prevent users from performing efficient model
training at the edge. On one hand, the computing capacity

" Model 1 -
FEL of Model 1™

O Edge Server

Training Data

% FEL Models

Fig. 1. Multi-model FEL example: two FEL models are trained with 3 and 4
participants (1 PS + 2 or 3 workers), respectively, in a shared edge network.

Worker 3 FEL of Model 2.~

resources and the competition among various users, servers
and applications.

Recently, federated learning (FL) has been emerging as
a new distributed machine learning paradigm [1]—[3], which
enables multiple servers collaboratively learn a shared ML
model while keeping all training data on the local server. It is
very natural to deploy the FL framework in edge computing
to provide efficient distributed training at the network edge.
Therefore, federated edge learning (FEL) has been proposed
in various settings [4]-[12]. In FEL, edge servers can col-
laboratively train a shared global ML model by aggregating
local models trained at individual local servers, decoupling
the ability to do model training from the need to store data
in centralized server. More precisely, as shown in Fig. 1, in
each global iteration, edge severs, worked as workers, first
download the latest global model from the parameter server
(PS), and then perform a fixed number of local training based
on their local data. After that, edge servers will upload their
local model to the parameter server which is responsible for
aggregating parameters from different workers and sending the

1 1 112 1 PR =t 1 n.

Joint Participant and Learning Topology
Selection in Federated Edge Learning

Xinliang Wei, Student Member, IEEE, Kejiang Ye, Member, IEEE, Xinghua Shi, Member, IEEE,
Cheng-Zhong Xu, Fellow, IEEE and Yu Wang, Fellow, IEEE

Abstract—Deploying federated learning (FL) in edge clouds is a challenging task, particularly when multiple models are trained
concurrently in resource-constrained edge environments. Current research on federated edge learning primarily focuses on client
selection for training a single FL model with a fixed learning topology. Our experiments demonstrate that FL models with adaptable
topologies result in lower learning costs than those with fixed topologies. In this paper, we investigate the problem of jointly selecting
participants and learning topologies for multiple FL models being trained simultaneously in the edge cloud. We formulate this as an
integer programming problem, with the goal of minimizing total learning costs for all FL models, subject to edge resource constraints.
We propose a two-stage algorithm that decouples the original problem into two sub-problems and addresses them iteratively. By
allowing FL models to independently select participants and learning topologies, our method improves resource competition and load
balancing in edge clouds. Our extensive experiments with real-world networks and FL datasets confirm the superior performance of
our algorithm in terms of average total cost compared to prior methods for multi-model FL.

Index Terms—Edge Computing, Federated Learning, Participant Selection, Learning Topology

1 INTRODUCTION

Federated Learning (FL) [1]-[7] is an efficient approach for
improving machine learning (ML) performance and pro-
viding better privacy solutions for data owners. It enables
multiple devices to collaborate and train a shared global
ML model by aggregating local models trained on each
device. FL ensures that training data remains local to protect
users’ privacy, and only transmits essential model data
(e.g. gradients). With the growth of smart sensing, mobile
computing, and wireless networking, there is also a trend
of moving data sources and intelligent computation from
centralized clouds to edge clouds, to provide agile services
to mobile devices and users. Therefore, it is important to
deploy FL frameworks on edge clouds and provide efficient
distributed training for mobile devices at the network edge.
Such solutions have been studied [8]-[12] and can support
many emerging applications [13], such as mobile Al, AloT
or AR/XR applications.

Current FL frameworks can be categorized into three
types based on the learning topology used for model ag-
gregation: centralized FL (CFL), hierarchical FL (HFL), and
decentralized FL (DFL). CFL is the classical FL [10] where

train the model by using their local data. After each worker
performs several local updates, the local model will be
forwarded to the PS for global aggregation. The potential
bottleneck of CFL is the communication congestion at the
PS since all workers have to communicate with the PS
concurrently for multiple rounds. In addition, the PS in CFL
may cause a single point of failure. Therefore, DFL [11], [14]
has been proposed, where each worker only communicates
with its neighbors (with mutual trust) by exchanging their
local models and there is no centralized PS, as shown in
Fig. 1(b). While such distributed P2P learning topology
increases the robustness of FL, it might suffer from larger
communication costs or slower convergence. Recently, HFL
[15]-[17] has been proposed by introducing several middle-
layer PSs (or called group leaders) in a hierarchical topology
such that each of them only aggregates a group model from
workers inside its group and sends the group model to
the PS for global aggregation, as shown in Fig. 1(c). HFL
can effectively hide local updates submitted by individual
workers within a group, thereby enhancing privacy pro-
tection from malicious or honest-but-curious PS [15]. HFL
can also provide better scalability with larger workers but

mav increase the total latencv due to multiple exchanges

Quantum Assisted Scheduling Algorithm for
Federated Learning in Distributed Networks

Xinliang Wei*, Lei Fanf, Yuanxiong Guof, Yanming Gong®, Zhu Han¥, Yu Wang*
*Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA

TDepartment of Engineering Technology,

University of Houston, Houston, TX, USA
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Abstract—The scheduling problem for federated learning (FL)
with multiple models in a distributed network is challenging,
as it involves NP-hard mixed-integer nonlinear programming.
Moreover, it requires optimal participant selection and learning
rate determination among multiple FL. models to avoid high
training costs and resource competition. To overcome those chal-
lenges, in literature the Benders’ decomposition algorithm (BD)
can deal with mixed integer problems, however, it still suffers
from limited scalability. To address this issue, in this paper, we
present the Hybrid Quantum-Classical Benders’ Decomposition
(HQCBD) algorithm, which combines the power of quantum
and classical computing to solve the joint participant selection
and learning scheduling problem in multi-model FL. HQCBD
decomposes the optimization problem into a master problem
with binary variables and small subproblems with continuous
variables. This collaboration maximizes the potential of both
quantum and classical computing, and optimizes the complex
joint optimization problem. Simulation on the commercial D-
Wave quantum annealing machine demonstrates the effectiveness
and robustness of the proposed method, with up to 18 % improve-
ment of iterations and 81% improvement of computation time
over BD algorithm on classical CPUs even at small scales.

Index Terms—Federated learning, participant selection, learn-
ing scheduling, hybrid quantum-classical optimization

I. INTRODUCTION

With the use of quantum superposition and entanglement,
quantum computing (QC) has demonstrated a quantum ad-
vantage over classical computing in random quantum circuit
sampling [1], Gaussian boson sampling [2], and combinatorial
optimization [3]—[5]. In this paper, by leveraging the parallel
computing capability of quantum computing, we focus on de-
signing a new quantum-assisted scheduling algorithm to solve
a complex joint participant selection and learning scheduling
problem for federated learning (FL) in distributed networks.

Federated learning is emerging as an effective and privacy-

nreserving machine learnine (MT ) paradiom [61-[O0] which

Worker 1 PS1

R oistributed server > Model broadcasting & global aggregating

PBE rvodes T} Local computation
Fig. 1: The training process of multi-model federated learning.

the computing capability and network resources of servers
and their data distribution are heterogeneous. Some low-
performance servers may decelerate the convergence process
and diminish the training performance. Also, the dispersed
computing resources and large network latency may lead to
high training costs. Second, for the practical scenario, training
multiple different models in the shared distributed network
simultaneously leads to competition for computing and com-
munication resources. As shown in Fig. 1, two FL models
are trained concurrently and each FL model requires one PS
and three workers for model training. In this case, which FL
model is preferentially served at which server directly affects
the total training cost of all FL models. To this end, appropriate
participant selection and learning schedules are fairly crucial
for multi-model FL training.

Therefore, we mainly concentrate on the joint participant
selection and learning scheduling problem in multi-model FL

training scenarios It shonld he emnhasized that each server in
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Joint Participant and Learning Topology Selection
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Existing FEL works use a specific learning
topology for all models

However, different learning topology (CFL,
DFL, and HFL) will lead to different learning
costs and performances
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FL Model

Each FL model needs to

select learning topology from CFL, DFL, HFL  b; ;, b; >, b; 3
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Joint Participant and Learning Topology Selection
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FL Convergence Bound

Lemma [1: Analogous to previous works [1], [9], [12]
with Assumption | and the local convergence rate (Equ. (19)),
the number of local training to achieve a f-local convergence

ACCUTACY 1S
< 2 .l X
0> — —loy—, (20)
(2—=Cmne 70

Corollary 1: Let € be the global convergence accuracy and
given the Ieaming topology selection matrix b. to achieve
F(w ) — F(w?) = e the number of global iteration ¢ can
be approxnmated by

r ;o . _'. ‘ . LD N .
(1 + 3252 1 a? 4 (vt s)logt.  if by = 1.
4'*2}';:—:’ P ' 2 i -2 \ 5 .
o Ml—p (1—/p) - R '
o v
(—'*L—i—"cj—l—l-—;*m“-l-
V K 3%
S o AL BT TR 1 .. —
(&7 =7 - ),..7’1/ )I(_)_g( : if b, 5= 1.
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Joint Participant and Learning Topology Selection

Problem Formulation - Joint participant and topology selection

mln Ccomp _I_ Ccomm

: : . storage, CPU c68traints
Learning cost: computation + communication S.t.

vi,j (11)

vy (12)
# of participants

each participant only vi (13)
works for one model

# of global aggregation  participant selection

H N
1Comp 2 ' 2 : ~ local o o L N o B

j=1 i=1 -
| . learning topology b 1 —b:q — Vi (14
+ "‘,»""(aq‘..:j — Yi,g — fo-;i,j)° bj::?»))v selection ZL::E@,] S oh | ) 9
# of group aggregation ,
C’?loca.l i | /;) ;| D; ] Zyivjbja?) + 1= bj73 o \V/] (15)
Hocal 4 7 Z
# of local updates Z 2ijbj3 + (1 —bj3); =y, vy (16)
N N ' PS & mid-PS are
¢ = Z L L(‘ v O (i — | g)- 5 bja+ different for HF't (17)
j=lh=li=l \ each model needs a Vi (18)
@i tig-bjo + (7 (aiy —|yij|—|%i;) St + Yiy- 215)-b53)). learning topology
wcomm _ 5 PS assignment participan.t & a;; € {0,1},b; € {0, 1}, (19)
= 2.e1€P; & m topology selection x; ; € {0,1},v;.; € {0,1}, 2, 5, € {0, 1}, .. assigr(m)?nent
iel[l,.,N|,7€l,...H,ke[1,..,3] 1)
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Joint Participant and Learning Topology Selection
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P e e e ]
| Algorithm 1
| [ Initialization Algorithm 2 Participant Selection for Model m
| * Generate the candidate list client. Jpypyt: Candidates set client_list;, learning topology b ..
| o Randomly pick a topology choice dr - od h ¢ Ker . del 11 ;
| ] and required number ot workers x; of model m
~ | e Output: Participant selection a; ; and role assignments x; ;.
> | - Stage 1: Participant Selection yi j. 2i; in learning topology
:- | 50|Ve al““ x;,]; yl’]' ZL.]’ gl\’Cn b],"c .
————————— R e il p 1: if b; 1 = 1 then
o I : . .
: D |21 | 1] SR - 2. participant_list; = RandomSel() or GreedySel()
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! 5 | 3] : 3:  Update a; ;. x; ; with participant_list;
I — T . . . e b .
I = gl , I Random Selection Greedy ! T .
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N c| 1 . ' .. .
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=} SI [ ( - . . vl 0 720 : e -
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D ; _ 8: else if b; 3 = 1 then
3 | Algorithm 5 T
| Cromn o rkere in . - determine eare i participant_list; = RandomSel() or GreadySel()
- - ,jr UELE -6 : ' .o :
| | and undate the solution (topology & F 10:  Determine HFL topology for participant_list,
| \ +— 11:  Update a; j, i j. i, &g with participant_list; and
Py . . Jo St .
| < —>Reach ma the topology
I [teratively find better solution t\m{lﬂf(_/oi: 12- return Wiy Ti iy Yijr Zij
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' Algorithm 1
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Initialization
* Generate the candidate list client_list based loss values
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: Algorithm 3 Algorithm 4 I
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[
{Stage 1: Participant Selection J

/Klgorithm 2 )

Given b; ., select the participants from client_list

1
1
1
1
h ]

Solve bj i, given a; ;, X; j, Vij) Zi |
\,

/
Algorithm 5

\& _/

Stage 2: Learning Topology Selection

AN

Given workers in a; ;, determine learning topology
and update the solution (topology & PS assign |

Y

O,

- ~
> Reach max_Tte_

lteratively find better solution NSZ g-ar max_ occur?”

>

—
\/

;_

Final Decisions a; ;, b; 1., x; ;, Vij, Z; j

Algorithm 3 RandomSel() - Random Selection

Input: Candidates set client_list;, learning topology b; i,
and required number of workers x; of model m;

Output: Participant list participant_livst; (including
worker_list and PS lists ps, top_ps, mid _ps. if needed)

I "w'oFkZF list = random(client_list;, k;) |
2. "rb;;_ Tthen =~~~ ~~~~—~—=—==—== .

3:  ps = the closest one to the selected workers among all
remaining edge servers outside worker_list

4: else if b; 3 = 1 then

5. mad_ps = the closest 1; servers to the selected workers
among servers outside worker_list

6: top_ps = the (1; + 1)-th closest server to the selected
workers among servers outside worker_l[ist

7: return participant_list; (1.e., worker_list and PS lists)

Algorithm 4 GreedySel() - Greedy Selection

Input: Candidates set client_list;, learning topology b; &,
and required number of workers x; of model m;
Output: Participant list participant_list;

1: worker _list = &

2: ps = the closest server outside client_list; to client_list;

3: mz’d _ps, top PS = the closest (wj—l—l) edge servers outside
Mfori=1 to-li-j do

5.| for c; in client_list; but not in worker_list do

61 Calculate total_cost(c;) if adding ¢; to worker_list

based on the topology choice b;

71 Let ¢f be the one leading to minimal total_cost(c;),

then add c; to worker_list i

8: return partzczpant_lzstj (i.e., worker_list and PS lists)

FL workers
selection
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Joint Participant and Learning Topology Selection

' Algorithm 1

[ Initialization

*» Randomly pick a topology choice b},-Jk

.

* Generate the candidate list client_list based loss values

Algorithm 3 Learning Topology Selection for Model m;

»
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, T |
9 S ! - ~ )
- T| 1 |__|| Stage 2: Learning Topology Selection
= @ Solve b; , given a; j, X; j, Vij» Zi |
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™ ; <
3 Algorithm 5 :
Given workers in a; ;, determine learning topology :
and update the solution (topology & PS assign ) I 'E
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~

—
\/

l_

Final Decisions a; ;, b; 1., x; ;, Vij, Z; j

. mid_ps,top_ps =

Input: Worker list worker_list from a; ;, ©; ;, Vi i, 2i
Output: Learning topology selection b, j, participant selec-
tion a; j, T; i, Yi . %,; and learning topology

I:

ps = the closest one to workers in worker_list among
remaining servers; calculate cfl_cost with this topology
Determine the DFL topology for worker_list and calcu-
late dfl_cost for this DFL topology

the closest (¢; + 1) servers to
worker_list outside worker_list; determine the HFL
topology for worker_list and calculate hfl_cost
Choose the learning topology with the minimum learning
cost among cfl_cost, dfl_cost and hfl_cost; update a; ;,
bj k> Tij> Yij> Zij»> Sil» ti,) With the selected topology

. return a; ;, b; k., T; 4, Yi j, %i,; and learning topology
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- Study joint participant and learning topology
selection of multi-model FEL in the edge cloud:

- select participants (both PS/midPS and workers) and
learning topology (CFL, DFL, HFL) for each FL model

> aim to minimize the total learning cost of all FL models

- Propose two-stage iterative algorithm:

~ Stage 1 — participant selection, two additional selection
strategies (Random, Greedy) based on high loss value

- Stage 2 — learning topology selection, pick the learning
topology with the minimum cost for each model

- Conduct simulations to evaluate proposed
methods:

> the proposed methods can effectively reduce the total
cost compared with existing methods

wia|qoad uoneziwndQ julor [euiduQ ayy

1
I
: __|,| Stage 2: Learning Topology Selection
Solve b; i, given a; j, X; j, Vij» Zi | ) |
— \
Algorithm 5 :
Given workers in a; ;, determine learning topology . -ﬁ

; Algorithm 1

Initialization

* Generate the candidate list client_list based loss values
* Randomly pick a topology choice b),-Jk

='
s — : N N
|__,| Stage 1: Participant Selection
kSO'Ve @, Xy, 50 Vagr Zy 5 BIVED b]u" y, K}
/Algorithm 2 ) §
Given b}-'k, selecl the pzrticipants from client_list ‘\
Algorithm 3 Algorithm 4 ﬁ
Random Selection Greedy Selection
- J
(7 - S R

and update the solution (topology & PS assign.)
.

% J

v

// \\
~—>Reach max_\fts\>
lteratively find better solution \_g~ar max_occur?

~ —

\l/

y
Final Decisions a; ;, b; i, X; ;, Vij, Zi
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Joint Participant Selection and

Scheduling in FEL

Joint Participant and Topology
Selection in FEL

Abstract—As edge computing complements the cloud to enable
computational services right at the network edge, federated
learning (FL) can also benefit from close-by edge computing
infrastructure. However, most prior works on federated edge
learning (FEL) mainly focus on one shared global model during
the federated training in edge systems. In a real edge computing
scenario, there may co-exist multiple various FL models that are
owned by different entities and used by different applications.
Simultaneously training these models competes both computing
and networking resources in the shared edge system. Therefore,
in this work, we consider a multi-model federated edge learning
where multiple FEL models are being trained in the edge
network and edge servers can act as either parameter servers or
workers of these FEL models. We formulate a joint participant
selection and learning scheduling problem, which is a non-linear
mixed-integer program, aiming to minimize the total cost of all
FEL models while satisfying the desired convergence rate of
trained FEL models and the constrained edge resources. We then
design several algorithms by decoupling the original problem
into two or three sub-problems which can be solved respectively
and iteratively. Extensive simulations with real-world training
datasets and FEL models show that our proposed algorithms
can efficiently reduce the average total cost of all FEL models in
a multi-model FEL setting compared with existing algorithms.

[. INTRODUCTION

With the advances of Internet of Things, smart sensing and
artificial intelligence, there has been a tremendous trend that
data sources shift from the cloud center to the network edge.
Generally, in order to train a machine learning (ML) model,
one needs to upload the collected training data to the cloud
data center and train the model using the whole dataset there.
However, it is non-trivial to send a large amount of data to
the remote data center due to the limited network bandwidth
and data privacy concerns. Therefore, an alternative solution
is the distributed training of ML models at the network edge
or even on the user devices. However, there are still major
challenges to prevent users from performing efficient model
training at the edge. On one hand, the computing capacity

Joint Participant Selection and Learning Scheduling
for Multi-Model Federated Edge Learning

Xinliang Wei, Jiyao Liu, Yu Wang
Department of Computer and Information Sciences, Temple University, Philadelphia, USA
{xinliang.wei,jiyao.liu,wangyu } @temple.edu

~" Model 1

FEL of Model 1

O Edge Server

Training Data

% FEL Models

Fig. 1. Multi-model FEL example: two FEL models are trained with 3 and 4
participants (1 PS + 2 or 3 workers), respectively, in a shared edge network.

Worker 3 FEL of Model 2.~

resources and the competition among various users, servers
and applications.

Recently, federated learning (FL) has been emerging as
a new distributed machine learning paradigm [1]-[3], which
enables multiple servers collaboratively learn a shared ML
model while keeping all training data on the local server. It is
very natural to deploy the FL framework in edge computing
to provide efficient distributed training at the network edge.
Therefore, federated edge learning (FEL) has been proposed
in various settings [4]-[12]. In FEL, edge servers can col-
laboratively train a shared global ML model by aggregating
local models trained at individual local servers, decoupling
the ability to do model training from the need to store data
in centralized server. More precisely, as shown in Fig. 1, in
each global iteration, edge severs, worked as workers, first
download the latest global model from the parameter server
(PS), and then perform a fixed number of local training based
on their local data. After that, edge servers will upload their
local model to the parameter server which is responsible for
aggregating parameters from different workers and sending the

1 1 112 1 PR = =t 1 n.

Joint Participant and Learning Topology
Selection in Federated Edge Learning

Xinliang Wei, Student Member, IEEE, Kejiang Ye, Member, IEEE, Xinghua Shi, Member, IEEE,
Cheng-Zhong Xu, Fellow, IEEE and Yu Wang, Fellow, IEEE

Abstract—Deploying federated learning (FL) in edge clouds is a challenging task, particularly when multiple models are trained
concurrently in resource-constrained edge environments. Current research on federated edge learning primarily focuses on client
selection for training a single FL model with a fixed learning topology. Our experiments demonstrate that FL models with adaptable
topologies result in lower learning costs than those with fixed topologies. In this paper, we investigate the problem of jointly selecting
participants and learning topologies for multiple FL models being trained simultaneously in the edge cloud. We formulate this as an
integer programming problem, with the goal of minimizing total learning costs for all FL models, subject to edge resource constraints.
We propose a two-stage algorithm that decouples the original problem into two sub-problems and addresses them iteratively. By
allowing FL models to independently select participants and learning topologies, our method improves resource competition and load
balancing in edge clouds. Our extensive experiments with real-world networks and FL datasets confirm the superior performance of
our algorithm in terms of average total cost compared to prior methods for multi-model FL.

Index Terms—Edge Computing, Federated Learning, Participant Selection, Learning Topology
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1 INTRODUCTION train the model by using their local data. After each worker

Federated Learning (FL) [1]-[7] is an efficient approach for performs several local updates, the local model will be

utaum-Assistant Federated

Learning Scheduling

Quantum Assisted Scheduling Algorithm for
Federated Learning in Distributed Networks

Xinliang Wei*, Lei Fan', Yuanxiong Guof, Yanming Gong§, Zhu Han'¥, Yu Wang*
*Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
TDepanment of Engineering Technology, University of Houston, Houston, TX, USA
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i -E Worker 2

Abstract—The scheduling problem for federated learning (FL) Worker 1
with multiple models in a distributed network is challenging, %
as it involves NP-hard mixed-integer nonlinear programming.
Moreover, it requires optimal participant selection and learning
rate determination among multiple FL. models to avoid high
training costs and resource competition. To overcome those chal-
lenges, in literature the Benders’ decomposition algorithm (BD)
can deal with mixed integer problems, however, it still suffers
from limited scalability. To address this issue, in this paper, we
present the Hybrid Quantum-Classical Benders’ Decomposition
(HQCBD) algorithm, which combines the power of quantum e
and classical computing to solve the joint participant selection Worker 3 3555
and learning scheduling problem in multi-model FL. HQCBD
decomposes the optimization problem into a master problem .
with binary variables and small subprobl with conti ?ﬁ@?% % FL Models

% Distributed Server '-:__:: Model broadcasting & global aggregating

1 | Local computation
U R |

improving machine learning (ML) performance and pro-
viding better privacy solutions for data owners. It enables
multiple devices to collaborate and train a shared global
ML model by aggregating local models trained on each
device. FL ensures that training data remains local to protect
users’ privacy, and only transmits essential model data
(e.g. gradients). With the growth of smart sensing, mobile
computing, and wireless networking, there is also a trend
of moving data sources and intelligent computation from
centralized clouds to edge clouds, to provide agile services
to mobile devices and users. Therefore, it is important to
deploy FL frameworks on edge clouds and provide efficient
distributed training for mobile devices at the network edge.
Such solutions have been studied [8]-[12] and can support
many emerging applications [13], such as mobile Al, AloT
or AR/XR applications.

Current FL frameworks can be categorized into three
types based on the learning topology used for model ag-
gregation: centralized FL (CFL), hierarchical FL (HFL), and
decentralized FL (DFL). CFL is the classical FL [10] where

forwarded to the PS for global aggregation. The potential
bottleneck of CFL is the communication congestion at the
PS since all workers have to communicate with the PS
concurrently for multiple rounds. In addition, the PS in CFL
may cause a single point of failure. Therefore, DFL [11], [14]
has been proposed, where each worker only communicates
with its neighbors (with mutual trust) by exchanging their
local models and there is no centralized PS, as shown in
Fig. 1(b). While such distributed P2P learning topology
increases the robustness of FL, it might suffer from larger
communication costs or slower convergence. Recently, HFL
[15]-[17] has been proposed by introducing several middle-
layer PSs (or called group leaders) in a hierarchical topology
such that each of them only aggregates a group model from
workers inside its group and sends the group model to
the PS for global aggregation, as shown in Fig. 1(c). HFL
can effectively hide local updates submitted by individual
workers within a group, thereby enhancing privacy pro-
tection from malicious or honest-but-curious PS [15]. HFL
can also provide better scalability with larger workers but
mav increase the total latencv due to multiple exchanges

variables. This collaboration maximizes the potential of both
quantum and classical computing, and optimizes the complex
joint optimization problem. Simulation on the commercial D-
Wave quantum annealing machine demonstrates the effectiveness
and robustness of the proposed method, with up to 18% improve-
ment of iterations and 81% improvement of computation time
over BD algorithm on classical CPUs even at small scales.

Index Terms—Federated learning, participant selection, learn-
ing scheduling, hybrid quantum-classical optimization

I. INTRODUCTION

With the use of quantum superposition and entanglement,
quantum computing (QC) has demonstrated a quantum ad-
vantage over classical computing in random quantum circuit
sampling [1], Gaussian boson sampling [2], and combinatorial
optimization [3]-[5]. In this paper, by leveraging the parallel
computing capability of quantum computing, we focus on de-
signing a new quantum-assisted scheduling algorithm to solve
a complex joint participant selection and learning scheduling
problem for federated learning (FL) in distributed networks.
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Federated learning is emerging as an effective and privacy-

ervanoe _machin arning N\ paradiom 0l A0 D

Fig. 1: The training process of multi-model federated learning.

the computing capability and network resources of servers
and their data distribution are heterogeneous. Some low-
performance servers may decelerate the convergence process
and diminish the training performance. Also, the dispersed
computing resources and large network latency may lead to
high training costs. Second, for the practical scenario, training
multiple different models in the shared distributed network
simultaneously leads to competition for computing and com-
munication resources. As shown in Fig. 1, two FL models
are trained concurrently and each FL model requires one PS
and three workers for model training. In this case, which FL
model is preferentially served at which server directly affects
the total training cost of all FL. models. To this end, appropriate
participant selection and learning schedules are fairly crucial
for multi-model FL training.

Therefore, we mainly concentrate on the joint participant
selection and learning scheduling problem in multi-model FL

32
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Joint participant selection and learning scheduling

W
. . min :(Cﬁra7zs+céocal _‘_C.{ﬂofml _C.re-nt) (5)
Quantum Computing (QC) JZ_:l ) J ) -’
> has brought new computing capability st wigpik; < i, TigXs < i Vi, j, (6)
~ has been used as a powerful tool for Jratts = G Vi < Ji Ve, (1)
optimizationl16.171. especially, Quantum Sry=1 Yy =k i, (8)
) 1,7 , 41,7 YE Jr A
Annealing (QA) = =
W
Z(IU +yi5) < 1, Vi, (9)
! ! j=1
Applying QC to our FL scheduling e (1 NG el W), 10)
problem 2i s,y € 10,1}, 0; € [0.01,0.99). (11)

- aim to solve the MINLP faster

> propose a Hybrid Quantum-Classical
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Algorithm 1 Hybrid Quantum-Classical Benders’ Decompo-
sition (HQCBD) Method

Input: Distributed network with N servers V', W FL mod-

els M, Coefficient of the objective function and constraints
¥ in master problem and subproblem

Output: PS selection ', worker selection ', and local

convergence rate o’

Master Problem — IP Problem
Solve, x; j, y;jj and z;; ; via format & solve QUBO problem

“~ujtialize upper/lower bound of A\, A = 400, A = —
. Initia ' threshold € = 0.001, max_tr = 100, tr = 1

/
P>

uolysodwodaq ,siapuag |
]

_|
-
@ 1
Q ! 2
?) ?<4__| B /—N gé 3:- while A= and 2 nNax. 1 ¢
o | - 53 4: | P < Appropriate penalty numbers or arrays
= I - 53 5: | Q < Reformulate both objective and constraints in (32)
= ! and construct QUBO formulation as (41)
| 6: | «', 1y, 2/ < Solve problem (41) by quantum computer
gl ol ~ Worker 2 I . C C
E '\iﬁ.at | T 7: ] ] :
\ o 8: SUP(x Y, 2 2) Solve problem (29) with ﬁxed ',y 2
------ l\ B |__| Subproblem — LP Problem . | Extract o' f P
Solve oy ; j, Pij 4, 4; and w; via classical solver < : CAtac rom (:13, Y,z )
Wor 10: | A+ SUP(m,y,z)
L et Proposed HQCBD Method 11: | Add a niw benders’ cut to the master problem as (38)
‘ 12: itr+ =

13: end while
14: return x’, v’, o
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Methodology

- Challenges in Quantum based solution

B . | Master Problem 1P Problem 1. How to decompose this original
/§\ ~ / . Solve, x; ;, yij and z.; ; via format & solve QUBO problem
~ /? 15 J problem?
1o % .

= ; 1 i 2. How to convert the problem into QUBO
o Ig yes - :
= F"" |§ s~ = form as an input to the D-wave
2 o < S 3
S = b () g2 Quantum Annealing computer?
=2 S5 =
D
3 N

l 3. How to design a novel hybrid quantum-

1 classical strategy that solves the
_{Subproblem — LP Problem J

Solve oy ; j, Pij 4, 4; and w; via classical solver

— —_— —_— —_— - - — —_— *

corresponding problem in fewer

L Worker3 | Proposed HQCBD Method Iteratlon?
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Benders’ Decomposition

1. Reformulate the original problem

W N N

Z[I—g > >‘a1’b7k Lk, Yij

k=1 :1=1

1 N
| 1_@ 5092 Z 2.4,5 " Yi,j

s.t.  (6) —(11),

=)

(12)

min
x,Y,2,U,W,0,P,q

S.t.

w N N

> > >Ja'1z3k Okzg+za213 Pi.j

jlklzl

+ Z ag,ij* qi,j T Z asi (i +vi5)] (A7)
— —

(6) — (1), (14) — (16),

b12k,i5 < Ok < b2zkij,

Uj — Ok,ij < ba(l — 2k 5),

b3yi,; < Dij < bayi j,
wi — i < ba(l—yij),
w; — Pij = ba(l —yi5),
bixi; < q;5 < bax; j,
uj = Gi,j < ba(l —a45),
uj = Gij = b3(1 — i 5).

(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)

2. Linearize the objective function and constraints

Y

1. The binary variables will be solved in the master problem.

2. The continuous variables will be solved in the subproblem.
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Subproblem

w N

min > > ai,i,5,k" 0]{;1,]_|_a/22j ng+a37,j qz])

u,w,0,p,q
1=1 k=1

st (16), (18) — (26).

B g

SUP(z,y, z Zf,:ry

The general form  f;(z,y,2) =min d]);

S.1. ,Ayl > BXL ‘|‘C,

The dual problem (BX, 1+ C)Tr,

S.t. ATT('Z' < d;,
Uy Z 07

This problem can be solved by a
classical LP solver (e.g. Scipy, Gurobi).

(27)
(23)

(29)
(30)
€2y

min
x7y7z

S.L.

Benders’ cuts

N

—1 1=1

(6) — (10),

Ti g € {O 1} Yi i € {O, 1},

Zk,’b,] — yzv.]’

“k,i,j < Lk, 79

2k = Thy + Yij

A\ Z )\down
A> (BX +C)Tr!

%%
D 1D asi (Tig+yig) + A
=1

_]_,

Vi, 7,
Vi, 7, k,
Vi, 7, k,
Vi, 7, k,

Master Problem

The overall master problem (MILP)

(32)

(33)
(34)
(35)
(36)
(37)
(33)
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QUBO Formulation

Master problem need to be reformulated as a pure ILP

1. Find the best penalty coefficients of the

constraints.
(6) =

(37) =

(38) =

§1 (37% GHjR; — €+ Z 2l ;

[=0
where ' = [log,[c; — min(a:ijujﬁ;j)ﬂ.

a ijX] fz+22l 7

where 1% = [log,[f; — mln(:cz’JX])H.

711
511 : Pll(}\down A+ ZQlS}l)Qy
[=0
where ' = [log, (A — A9°%"™)].
712
512 . P12((BX + C)T’]Tl — A+ Z 2l8112)2,
[=0

where 1'? = [log,[A\ — min (BX +C)*'7']].

x?yVZ?Tr

2. Use a binary vector w to replace the continuous

variable A
T _
Z 2”wm+m Z 2jjwjj+1+m+m+ = B\(w) (40)
ii=—m jj=0
my : # of bits of positive integer part Z.. .
m : # of bits of the positive decimal part.

m_ + 1 :# of bits of negative integer part Z_.

3. The final QUBO formulation of the master problem

W N A
in D D s (i +yij) + Aw)
R j=1 i=1
+&1 + 86 +8+86a+E+ &+ &7
+ &8+ &o + &0 + &1 + &2 (41)

QUBO (Quadratic Unconstrained Binary Optimization) can be applied now.
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Methodology

Algorithm 1 Hybrid Quantum-Classical Benders’ Decompo-
sition (HQCBD) Method

Input: Distributed network with NV servers V', W FL mod-
els M, Coefficient of the objective function and constraints
in master problem and subproblem

Output: PS selection z’, worker selection g, and local
convergence rate o’

1: Initialize upper/lower bound of A\, A = +o00, A = —o0
2: Initialize threshold ¢ = 0.001, max_1tr = 100, tr = 1

3: while |\ — \| > € and itr < maz_itr do

4. P < Appropriate penalty numbers or arrays

5:  Q < Reformulate both objective and constraints in (32)
and construct QUBO formulation as (41
x', y', 2/ + Solve problem (41) by quantum computer
A < Extract w and replace A with X(w) as (40)

SUP(x,y, z) < Solve problem (29) with fixed 2/, v/, 2’

Extract o’ from SUP(x,y, )

A < SUP(z,y, 2)
. Add a new benders’ cut to the master problem as (39) ’
12:  tr+ =1
13: end while
14: return x’, v, o

Initialize parameters

an optimality/feasibility cut

{xl' yl, ZI}
_—— CPU

Master Subproblem
problem solved by
solved by classical

quantum
computer

computer

o optimality/feasibility cuts

Master
problem
solved by
quantum
computer

1‘);\8
, N8
&
: : o
(Q‘/
oi}@/
9
CPU

Subproblems
solved by
o classical
(b) computers

Algorithm 2 Multiple-cuts Benders” Decomposition (MBD)

1

2

3

4.
h:

12:

Input: Distributed network with N servers V', W FL. mod-
els M, Coefticient of the objective fupction and constrain
in master problem and subproblem
Output: PS sclection 2/, worker sclection 3, and loca
convergence rate ¢’

. Initialize upper/lower bound of A, A = +00, A = —¢
+ Initialize threshold ¢ — 0.001, max_itr — 100, 2tr — 1
. while |\ — )| > c and itr < max_itr do

P < Appropriate penalty numbers or arrays

Q ¢ Reformulate both objective and constraints in
32) and construct QUBO formulation as (41)
{x",9'}+ < Solve problem (41) by quantum computer

and return ¢ feasible solutions

A < Extract w with highest value and replace A with

~

\(w) as (40)

{SUP(x,y)}s < Solve o subproblems (29) with fixed
x’, ¢ in parallel

Extract o' from {SUP(x,vy)}, with lowest value

A {SUP(x,y)}, with lowest value

Add all o benders’ cut to the master problem as (38
wr+ =1

13: end while
14: return ', 1/, o
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Evaluation
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TABLE I: Iteration of CBD and HQCBD over three different
cases. Here, the set up column shows {# of servers, # of
models, # of workers per model} used in each case.

Case # Set up # of Variables [Itr. of CBD | Itr. of HQCBD

1 {7,1,3} 63 32 31
5 {7,2,2} 126 55 5
3 19,2, 3} 193 o1 89

HQCBD takes few iterations to converge.

TABLE 2: Solver accessing time (ims) comparison of CBID and HQCBD. E ..... Local - CBD ! },
— Iy H ,
w 200 «-- QPU - HQCBD }; 2 r;:. :;‘ :'t‘,T
Case & CBp HQCBP £ T AN AR HIEE
- Max Min. Mean Std. Max. Min. Mean Std. o 150 4 % — " 'a;,fi:ixi X
1 190.47 6706 |117.14  50.12 | 32,104 15932 BLASG 2794 E A o BRI Rt
2 23529 9105 [12956  A0.04 | 32705 15922 PAIST 7984 ﬁ 100 e Jam X B %
3 30548 1445 12025 63.10 | 32.107 16.003 P5.028  7.853 U ho N
g Rt
< Y
E 50' : 'u.
= tiap finnes seme e pemer e
8 0 r&m.bm. e (b6 0 ¥ a

0 10 20 30 40 50
Rounds

QPU take less time to solve the problem compared with CPU.
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Evaluation

TABLE 3: Iteration comparison of CBD and MBD with different cut numbers.

an optimality/feasibility cut

CPU
Master Subproblem
problem solved by
solved by classical
quantum computer
computer

o optimality/feasibility cuts

CPU
(4
Master qéo;)
problem CPU
solved by
guantum
computer Subproblems
solved by
o classical
computers

Performance comparison with existing methods

il

Number of Servers

(a) Impact of dift. servers

Total Costs

{1 MWW RAND

| === HQCBD

2 3 4

e TWSO

3

Number of Workers

(b) Impact of diff. workers

HQCBD gets further improvements
compared with TWSO.

|
Case# Setup  #of Binary Var. Ttr.of CBD  Ttrnof MBD (p — 1) Ttr.of MBD (7 — 3) Ttr. of MBD (o |~ h)
1 (7.1,3) 63 32 31 29 24
2 17.2,2} 126 55 15 44 29
3 {9.2, 3} 198 91 89 36 27
MBD takes further few iterations to converge.
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Hybrid Quantum-Classical FL Optimization

- Study joint participant selection and learning
scheduling of multi-model FEL in the edge cloud:

- select participants (both PS and workers) and local
convergence rate for each FL model ~

> aim to minimize the total learning cost of all FL models

- Propose a hybrid quantum-classical method:

- Hybrid Quantum-Classical Bender’'s Decomposition
(HQCBD), using benders’ decomposition, solving master
problem via quantum annealing while solving
subproblem via classical solver

- Multiple-cuts version, return multiple cuts from QC
- Conduct simulations to evaluate proposed :
methods:

- the proposed methods can solving the problem faster
even at small scales.

Master Problem — IP Problem
Solve, x; j, yjj and z;; ; via format & solve QUBO problem
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_{Subproblem — LP Problem J

Solve oy ; ;, Dij q;,j 4; and w; via classical solver
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Proposed HQCBD Method
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Recap and Take Away
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- FEL combines edge computing and federated learning, and leads to
both new applications and challenges

- We have studied joint optimization of participant selection and
learning scheduling in FEL
participant (PS/worker) selection + learning rate
participant selection + learning topology
hybrid qguantum and classical BD method

- There are many other topics and aspects of FEL which are not
covered by our study, such as

data distributions, dynamic environment, privacy and security
- There are always trade-offs between quality and cost in optimization
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