
Wireless Networking and Sensing Lab
Wang Lab

Learning Scheduling and Optimization in 
Federated Edge Learning

Yu Wang 
Temple University 
November 14, 2023

ComSoc TCCN Online Seminar



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Outline

• Introduction 
‣ Mobile edge computing and federated learning 
‣ Federated edge learning (FEL) 

• Learning Scheduling and Optimization in FEL 
‣ Problem and multi-stage solution 
‣ Consider learning topology 
‣ Quantum-assisted solution 

• Conclusion 

3



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Mobile Edge Computing

4

• Mobile Edge Computing (MEC) - a “new” computing paradigm 
‣ offers applications and content providers cloud-computing capabilities and a 

service environment at the edge of the mobile network 
‣ supports diverse services (e.g., data management, mobile computing, ML/AI 

services) for wide range of applications and IoT/smart/mobile devices 

• This environment is characterized by 
‣ proximity 
‣ location awareness 
‣ ultra-low latency 
‣ high bandwidth 
‣ real-time access to radio network  

and network resources



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Federated Learning

5

• Federated Learning (FL) - a “new” 
distributed ML paradigm  
‣ many clients (e.g. mobile devices) 

collaboratively train a shared ML model under 
the orchestration of a central server (PS), 
while keeping the training data decentralized 

• Advantage over traditional, centralized ML 
‣ embody the principles of focused data 

collection and minimization 
‣ mitigate many of the systemic privacy risks 

and costs

© 2019 OWKIN, INC.

Federated Approach 
Compute & Gather

Acquisition? 
Data stays on device 
Data is always fresh 
Limited user agreement

Maintenance? 
No user data storage 
No PII user data stored 
Data liability to device 

Restrictions?  
Limited agreement => Easy opt-out 
User controls data => PR Win 
No data reuse/resell debacles 

Big Compute? 
Model training on edge 
Orchestration Cost  
“Free” autoscaling over 
     data and users.

© 2019 OWKIN, INC.

Machine Learning Today 
Gather & Analyze

Acquisition 
Upload Costs 
Broad User Agreement 
Recurring for fresh data

Maintenance 
Security 
Legal Liabilities 
PII?  
GDPR Compliance 
Data storage costs

Restrictions  
PR blowback on data vacuuming 
“Hot” data denied to analytics 
Data regulation hurdles 

Big Compute 
Cloud ML @ Scale 
Cost Scales with Data 
Scale ML Hardware

*GPU Icon by Misha Petrishchev from the Noun Project.

© 2019 OWKIN, INC.

Acquisition 
Upload Costs 
Broad User Agreement 
Recurring for fresh data

Maintenance 
Security 
Legal Liabilities 
PII?  
GDPR Compliance 
Data storage costs

Restrictions  
PR blowback on data vacuuming 
“Hot” data denied to analytics 
Data regulation hurdles 

Big Compute 
Cloud ML @ Scale 
Cost Scales with Data 
Scale ML Hardware

Machine Learning Today 
Gather & Analyze

Src: https://qcon.ai/system/files/presentation-slides/qcon_-_federated_learning.pdf



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Federated Learning Meets Edge Computing

6

• MEC and FL share the same principles 
‣ keep data/computing closer to users 
‣ protect user privacy 
‣ leverage distributed resources 

• Federated Edge Learning (FEL) 
‣ widely studied and applied  

in many application scenarios  
recently  

‣ enables Edge AI & Edge  
Intelligence

https://doi.org/10.1002/dac.5367

https://arxiv.org/pdf/1911.05642.pdf
https://www.amazon.science/blog/personalized-federated-
learning-for-a-better-customer-experience



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Federated Edge Learning: Current & Challenges

7

• Current works in FEL focus on 
‣ learning convergence and learning control [1,2] 
‣ communication and energy efficiency [3,4,5] 

‣ edge association and resource management [5,6] 

‣ client selection/sampling to battle non-IID data [7,8,9] 

‣ model aggregation and learning topology [5,10,11] 
‣ Most of them on a single shared global ML model with 

fixed learning topology
[1] Client-edge-cloud hierarchical federated learning, ICC, 2020. 
[2] Adaptive federated learning in resource constrained edge computing systems, JSAC, 2019. 
[3] Energy efficient federated learning over wireless communication networks, TWC, 2020. 
[4] To talk or to work: flexible communication compression for energy efficient federated learning over heterogeneous 
mobile edge devices, INFOCOM, 2021. 
[5] SHARE: Shaping data distribution at edge for communication-efficient hierarchical federated learning, ICDCS 2021 
[6] HFEL: Joint edge association and resource allocation for cost-efficient hierarchical federated edge learning, TWC 2020 
[7] Sample-level data selection for federated learning, INFOCOM 2021 
[8] Power of redundancy: Surplus client scheduling for federated learning against user uncertainties, TMC 2022 
[9] Client selection for federated learning with heterogeneous resources in mobile edge, ICC 2019 
[10] Resource-efficient federated learning with hierarchical aggregation in edge computing, in INFOCOM 2021 
[11] Learning-driven decentralized machine learning in resource-constrained wireless edge computing, INFOCOM 2021

• Multi-model FEL 
‣ multiple FL models trained 

simultaneously (resource 
competition, affecting performance 
of each other) 

‣ different convergence 
performance with different learning 
rate settings or learning topologies



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Our Work on Federated Edge Learning

8

Perspective Description

Participant Selection How to select PS, workers to 
reduce total learning costs?

Learning Scheduling How to adjust training iteration, 
convergence speed, etc.?

Data Distribution How to handle different data 
distribution?

Learning Topology How to determine the optimal 
learning topology (CFL, DFL, HFL)?

Learning Cost Including communication cost, 
computing cost, rental cost, etc.?

… …
Hierarchical Federated Learning 

Group Formation and Group 
Sampling for Gourd-based 

Hierarchical FEL

Qutaum-Assistant Fed Learning
Joint Participant Selection and 

FL Scheduling in Distributed 
Networks

Centralized Federated Learning
Joint Participant Selection and 
Learning Scheduling for Multi-

Model FEL

Toloplogy-Aware Fed Learning
Joint Participant and Learning 
Topology Selection in Multi-

Model FEL



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Outline

10

Joint Participant Selection and 
Scheduling in FEL

Joint Participant Selection and Learning Scheduling
for Multi-Model Federated Edge Learning

Xinliang Wei, Jiyao Liu, Yu Wang
Department of Computer and Information Sciences, Temple University, Philadelphia, USA

{xinliang.wei,jiyao.liu,wangyu}@temple.edu

Abstract—As edge computing complements the cloud to enable
computational services right at the network edge, federated
learning (FL) can also benefit from close-by edge computing
infrastructure. However, most prior works on federated edge
learning (FEL) mainly focus on one shared global model during
the federated training in edge systems. In a real edge computing
scenario, there may co-exist multiple various FL models that are
owned by different entities and used by different applications.
Simultaneously training these models competes both computing
and networking resources in the shared edge system. Therefore,
in this work, we consider a multi-model federated edge learning
where multiple FEL models are being trained in the edge
network and edge servers can act as either parameter servers or
workers of these FEL models. We formulate a joint participant
selection and learning scheduling problem, which is a non-linear
mixed-integer program, aiming to minimize the total cost of all
FEL models while satisfying the desired convergence rate of
trained FEL models and the constrained edge resources. We then
design several algorithms by decoupling the original problem
into two or three sub-problems which can be solved respectively
and iteratively. Extensive simulations with real-world training
datasets and FEL models show that our proposed algorithms
can efficiently reduce the average total cost of all FEL models in
a multi-model FEL setting compared with existing algorithms.

I. INTRODUCTION

With the advances of Internet of Things, smart sensing and
artificial intelligence, there has been a tremendous trend that
data sources shift from the cloud center to the network edge.
Generally, in order to train a machine learning (ML) model,
one needs to upload the collected training data to the cloud
data center and train the model using the whole dataset there.
However, it is non-trivial to send a large amount of data to
the remote data center due to the limited network bandwidth
and data privacy concerns. Therefore, an alternative solution
is the distributed training of ML models at the network edge
or even on the user devices. However, there are still major
challenges to prevent users from performing efficient model
training at the edge. On one hand, the computing capacity
and network resource at the edge or user devices are limited
and heterogeneous. A single edge server or user device may
not be sufficient to perform high-quality training alone. On
the other hand, the resources at the edge network are shared
among multiple users and applications. Distributed learning
within the edge network has to be constrained by the shared

The work is partially supported by the US National Science Foundation
under Grant No. CCF-1908843 and CNS-2006604.

Edge Server

Model 1

Model 2

PS 1

Worker 1

Worker 2PS 2

Worker 1

Worker 2

Training Data
Worker 3 FEL of Model 2

FEL of Model 1

FEL Models

Fig. 1. Multi-model FEL example: two FEL models are trained with 3 and 4
participants (1 PS + 2 or 3 workers), respectively, in a shared edge network.

resources and the competition among various users, servers
and applications.

Recently, federated learning (FL) has been emerging as
a new distributed machine learning paradigm [1]–[3], which
enables multiple servers collaboratively learn a shared ML
model while keeping all training data on the local server. It is
very natural to deploy the FL framework in edge computing
to provide efficient distributed training at the network edge.
Therefore, federated edge learning (FEL) has been proposed
in various settings [4]–[12]. In FEL, edge servers can col-
laboratively train a shared global ML model by aggregating
local models trained at individual local servers, decoupling
the ability to do model training from the need to store data
in centralized server. More precisely, as shown in Fig. 1, in
each global iteration, edge severs, worked as workers, first
download the latest global model from the parameter server
(PS), and then perform a fixed number of local training based
on their local data. After that, edge servers will upload their
local model to the parameter server which is responsible for
aggregating parameters from different workers and sending the
aggregated global model back to each FEL worker. Previously,
the efforts of FEL/FL have been focused on the convergence
and adaptive control [4], [5], the resource allocation and model
aggregation [7], [9], [10], the communication and energy
efficiency [1], [13], [14].

In this paper, we study a joint participant selection and
learning scheduling problem in multi-model FEL. For each
FEL model, we aim to find one PS and multiple FEL workers
and decide the local convergence rate at FEL workers. Note

Qutaum-Assistant Federated 
Learning Scheduling

Quantum Assisted Scheduling Algorithm for
Federated Learning in Distributed Networks

Xinliang Wei⇤, Lei Fan†, Yuanxiong Guo‡, Yanming Gong§, Zhu Han¶, Yu Wang⇤
⇤Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA

†Department of Engineering Technology, University of Houston, Houston, TX, USA
‡Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX, USA
§Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA

¶Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
{xinliang.wei, wangyu}@temple.edu, lfan8@central.uh.edu, {yuanxiong.guo, yanmin.gong}@utsa.edu, zhan2@uh.edu.

Abstract—The scheduling problem for federated learning (FL)
with multiple models in a distributed network is challenging,
as it involves NP-hard mixed-integer nonlinear programming.
Moreover, it requires optimal participant selection and learning
rate determination among multiple FL models to avoid high
training costs and resource competition. To overcome those chal-
lenges, in literature the Benders’ decomposition algorithm (BD)
can deal with mixed integer problems, however, it still suffers
from limited scalability. To address this issue, in this paper, we
present the Hybrid Quantum-Classical Benders’ Decomposition
(HQCBD) algorithm, which combines the power of quantum
and classical computing to solve the joint participant selection
and learning scheduling problem in multi-model FL. HQCBD
decomposes the optimization problem into a master problem
with binary variables and small subproblems with continuous
variables. This collaboration maximizes the potential of both
quantum and classical computing, and optimizes the complex
joint optimization problem. Simulation on the commercial D-
Wave quantum annealing machine demonstrates the effectiveness
and robustness of the proposed method, with up to 18% improve-
ment of iterations and 81% improvement of computation time
over BD algorithm on classical CPUs even at small scales.

Index Terms—Federated learning, participant selection, learn-
ing scheduling, hybrid quantum-classical optimization

I. INTRODUCTION

With the use of quantum superposition and entanglement,
quantum computing (QC) has demonstrated a quantum ad-
vantage over classical computing in random quantum circuit
sampling [1], Gaussian boson sampling [2], and combinatorial
optimization [3]–[5]. In this paper, by leveraging the parallel
computing capability of quantum computing, we focus on de-
signing a new quantum-assisted scheduling algorithm to solve
a complex joint participant selection and learning scheduling
problem for federated learning (FL) in distributed networks.

Federated learning is emerging as an effective and privacy-
preserving machine learning (ML) paradigm [6]–[9], which

FL Models

Distributed Server Model broadcasting & global aggregating 

Local computation

PS 1Worker 1 Worker 2

Worker 3
PS 2

Worker 2

Worker 1

Worker 3

Fig. 1: The training process of multi-model federated learning.

the computing capability and network resources of servers
and their data distribution are heterogeneous. Some low-
performance servers may decelerate the convergence process
and diminish the training performance. Also, the dispersed
computing resources and large network latency may lead to
high training costs. Second, for the practical scenario, training
multiple different models in the shared distributed network
simultaneously leads to competition for computing and com-
munication resources. As shown in Fig. 1, two FL models
are trained concurrently and each FL model requires one PS
and three workers for model training. In this case, which FL
model is preferentially served at which server directly affects
the total training cost of all FL models. To this end, appropriate
participant selection and learning schedules are fairly crucial
for multi-model FL training.

Therefore, we mainly concentrate on the joint participant
selection and learning scheduling problem in multi-model FL
training scenarios. It should be emphasized that each server in

Joint Participant and Topology 
Selection in FEL

1

Joint Participant and Learning Topology
Selection in Federated Edge Learning

Xinliang Wei, Student Member, IEEE , Kejiang Ye, Member, IEEE , Xinghua Shi, Member, IEEE ,
Cheng-Zhong Xu, Fellow, IEEE and Yu Wang, Fellow, IEEE

Abstract—Deploying federated learning (FL) in edge clouds is a challenging task, particularly when multiple models are trained
concurrently in resource-constrained edge environments. Current research on federated edge learning primarily focuses on client
selection for training a single FL model with a fixed learning topology. Our experiments demonstrate that FL models with adaptable
topologies result in lower learning costs than those with fixed topologies. In this paper, we investigate the problem of jointly selecting
participants and learning topologies for multiple FL models being trained simultaneously in the edge cloud. We formulate this as an
integer programming problem, with the goal of minimizing total learning costs for all FL models, subject to edge resource constraints.
We propose a two-stage algorithm that decouples the original problem into two sub-problems and addresses them iteratively. By
allowing FL models to independently select participants and learning topologies, our method improves resource competition and load
balancing in edge clouds. Our extensive experiments with real-world networks and FL datasets confirm the superior performance of
our algorithm in terms of average total cost compared to prior methods for multi-model FL.

Index Terms—Edge Computing, Federated Learning, Participant Selection, Learning Topology

F

1 INTRODUCTION

Federated Learning (FL) [1]–[7] is an efficient approach for
improving machine learning (ML) performance and pro-
viding better privacy solutions for data owners. It enables
multiple devices to collaborate and train a shared global
ML model by aggregating local models trained on each
device. FL ensures that training data remains local to protect
users’ privacy, and only transmits essential model data
(e.g. gradients). With the growth of smart sensing, mobile
computing, and wireless networking, there is also a trend
of moving data sources and intelligent computation from
centralized clouds to edge clouds, to provide agile services
to mobile devices and users. Therefore, it is important to
deploy FL frameworks on edge clouds and provide efficient
distributed training for mobile devices at the network edge.
Such solutions have been studied [8]–[12] and can support
many emerging applications [13], such as mobile AI, AIoT
or AR/XR applications.

Current FL frameworks can be categorized into three
types based on the learning topology used for model ag-
gregation: centralized FL (CFL), hierarchical FL (HFL), and
decentralized FL (DFL). CFL is the classical FL [10] where
the parameter server (PS) and several workers form a star

train the model by using their local data. After each worker
performs several local updates, the local model will be
forwarded to the PS for global aggregation. The potential
bottleneck of CFL is the communication congestion at the
PS since all workers have to communicate with the PS
concurrently for multiple rounds. In addition, the PS in CFL
may cause a single point of failure. Therefore, DFL [11], [14]
has been proposed, where each worker only communicates
with its neighbors (with mutual trust) by exchanging their
local models and there is no centralized PS, as shown in
Fig. 1(b). While such distributed P2P learning topology
increases the robustness of FL, it might suffer from larger
communication costs or slower convergence. Recently, HFL
[15]–[17] has been proposed by introducing several middle-
layer PSs (or called group leaders) in a hierarchical topology
such that each of them only aggregates a group model from
workers inside its group and sends the group model to
the PS for global aggregation, as shown in Fig. 1(c). HFL
can effectively hide local updates submitted by individual
workers within a group, thereby enhancing privacy pro-
tection from malicious or honest-but-curious PS [15]. HFL
can also provide better scalability with larger workers but
may increase the total latency due to multiple exchanges



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant Selection and Scheduling in FEL

11

Motivation

• Multi-model FEL 
‣ multiple FL models trained 

simultaneously (resource 
competition, affecting 
performance of each other) 

‣ participant selection: certain 
workers and a parameter 
server (PS) for each model 

‣ learning scheduling: adjust 
local learning rate of each 
model



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant Selection and Scheduling in FEL

12

FL Model

• Each global iteration includes four steps 
‣ Selected parameter server (PS) initializes the global model; 

‣ Selected workers download the global model from PS; 

‣ Each worker runs the local updates using its holding raw 

dataset for certain local iterations ; 

‣ Workers upload the updated model to PS for global 

aggregation to update the global model.

!"

# of global iterations:

# of local updates:
[12] Learning for learning: predictive online control of 
federated learning with edge provisioning, InfoCom 21

local convergence rate



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant Selection and Scheduling in FEL

13

Problem Formulation

• Joint participant selection and learning scheduling ‣ Edge communication cost

‣ Local update cost

‣ Global aggregation cost

‣ Initialization cost

Total learning costmixed integer non-linear 
programming problem (MINLP)

Storage 
constraints

CPU frequency 
constraints

edge has dataset for model

One PS,  FL workers!"

Participant selection and learning schedule decision

One edge server can at  
most work as one of two roles

Goal: minimize the total cost of all models
Communication 
cost based on 
shortest path

CPU cycles to process 
the sample data #$

",%

Downloading cost



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant Selection and Scheduling in FEL

14

Methodology
• Solving P1 parameter server (PS) selection 

with fixed workers selection and local 

convergence rate

• Solving P2 worker selection with the latest 

PS and fixed local convergence rate

• Solving P3 local convergence rate with the 

latest PS and worker decision

Similarly, the global convergence of global model is defined
as

G
t
j(p

t,#t
j

j ) � G
t,⇤
j  &j [G

t
j(p

t,0
j ) � G

t,⇤
j ], (2)

where G
t,⇤
j is the global optimum of the training model.

Finally, from formula (1) and (2), in order to achieve the
desired local convergence rate %t

j and global convergence rate
&j , we need to calculate the number of local updates 't

j and the
number of global iterations #t

j . From the above observation,
we can find that the global convergence rate &j for each FEL
model can be predefined and we have to conduct the local
update and global iteration to achieve that. Then we have the
following relationship between the convergence rate and the
local update as well as global iterations [8], [15].

#
t
j �

2�
2

�2⇠1
ln(

1

&j
)

1

1 � %t
j

, #0ln(
1

&j
)

1

1 � %t
j

,

'
t
j �

2

(2 � ��)��
log2(

1

%t
j

) , '0log2(
1

%t
j

),

where ⇠1 is the constant variable defined in function L
t,↵
j,i (· ),

� is the �-Lipschitz parameter and � is the �-strongly convex
parameter. Both the value of � and � are determined by the
loss function. #0 and '0 are two constants where #0 =

2�2

�2⇠1
and '0 =

2
(2���)�� .

III. PARTICIPANT SELECTION AND SCHEDULING

Now we first formulate the studied joint optimization prob-
lem and introduce the cost models used there, then propose
several algorithms to attack this challenging problem.

A. Problem Formulation

Under the previous introduced multi-model federated edge
learning scenario, we consider how to choose participants for
each of the model and how to schedule their local/global
updates. Particularly, at each time period t, we need make the
following participant selection and FEL scheduling decisions
for each model mj . We denote x

t
i,j or y

t
i,j as the decision

whether to select edge server vi as a parameter server or a
FEL worker for jth FEL model mj at time t, respectively.
Again, we assume that only one PS and j workers selected
for one model, i.e.,

PM
i=1 x

t
i,j = 1 and

PM
i=1 y

t
i,j = j . We

use %
t
j 2 [0, 1) to represent the maximal local convergence

rate of mj at t. We will use %t
j and &j to control the number

of global iterations and local updates for model mj at time
t. Recall that &j is given by the model mj as a requirement.
Overall, x

t
i,j , y

t
i,j and %

t
j are the decision variables of our

optimization in each time period t.
We now formulate our participant selection problem in FEL

where we need to select the parameter server and workers for
each model as well as achieving the desired local convergence

rate. The objective of our problem is to minimize the total cost
of all FEL models at time t under specific constraints.

min

WX

j=1

$
t
j (3)

s.t. x
t
i,jµjj  c

t
i, x

t
i,j�j  f

t
i 8i, j (4)

y
t
i,jµj  c

t
i, y

t
i,j�j  f

t
i 8i, j (5)

wj,ky
t
i,jzi,k = 1 8i, j, k (6)

X

i

x
t
i,j = 1,

X

i

y
t
i,j = j 8j (7)

X

j

(x
t
i,j + y

t
i,j)  1 8i (8)

x
t
i,j 2 {0, 1}, y

t
i,j 2 {0, 1}, %

t
j 2 [0, 1). (9)

Here, $t
j is the total FEL cost of jth FEL model in time

t, which will be defined in next subsection. Constraints (4)
and (5) make sure that the storage and CPU satisfy the FEL
model requirements. Constraint (6) ensures that the edge server
stores the dataset that matches the FEL model. Constraint
(7) guarantees the number of FEL parameter server and FEL
worker is 1 and j , respectively. Constraint (8) ensures that
each edge server only trains one FEL model and can only play
one role at one time. The decision variables and their ranges
are given in (9).

B. Cost Model

Our cost model considers four types of costs: global aggre-
gation cost, local update cost, edge communication cost, and
PS initialization cost, as defined following, respectively.

Edge Communication Cost: The edge communication cost
mainly consists of the FEL model downloading and uploading
costs. We denote by µj the uploaded and downloaded model
size for jth FEL model mj . When uploading FEL model to
the parameter server or downloading FEL model from the
parameter serer, we use the shortest path in the edge network
to calculate the communication cost. Let ⇢j(vi, vk) be the
communication cost of model mj from edge serer vi to vk at
time t, and it can be calculated by ⇢j(vi, vk) =

P
el2P t

i,k

µj

btl
,

where P
t
i,k is the shortest path connecting vi to vk at time t.

For model mj , the total edge communication cost is

C
comm,t
j = 2·#

t
j

NX

k=1

NX

i=1

x
t
k,j · y

t
i,j · ⇢j(vi, vk).

Here, vi and vj are a worker and the PS of mj , respectively.
Local Update Cost: Let  (· ) be the function to define CPU

cycles to process the sample data D
t
j,i used by jth FEL model

and stored in edge server vi. So the all local update cost for
jth FEL model in time period t is defined as

C
local,t
j = #

t
j ·'

t
j ·

NX

i=1

y
t
i,j ·

 (D
t
j,i)

f t
i

.

Similarly, the global convergence of global model is defined
as

G
t
j(p

t,#t
j

j ) � G
t,⇤
j  &j [G

t
j(p

t,0
j ) � G

t,⇤
j ], (2)

where G
t,⇤
j is the global optimum of the training model.

Finally, from formula (1) and (2), in order to achieve the
desired local convergence rate %t

j and global convergence rate
&j , we need to calculate the number of local updates 't

j and the
number of global iterations #t

j . From the above observation,
we can find that the global convergence rate &j for each FEL
model can be predefined and we have to conduct the local
update and global iteration to achieve that. Then we have the
following relationship between the convergence rate and the
local update as well as global iterations [8], [15].

#
t
j �

2�
2

�2⇠1
ln(

1

&j
)

1

1 � %t
j

, #0ln(
1

&j
)

1

1 � %t
j

,

'
t
j �

2

(2 � ��)��
log2(

1

%t
j

) , '0log2(
1

%t
j

),

where ⇠1 is the constant variable defined in function L
t,↵
j,i (· ),

� is the �-Lipschitz parameter and � is the �-strongly convex
parameter. Both the value of � and � are determined by the
loss function. #0 and '0 are two constants where #0 =

2�2

�2⇠1
and '0 =

2
(2���)�� .

III. PARTICIPANT SELECTION AND SCHEDULING

Now we first formulate the studied joint optimization prob-
lem and introduce the cost models used there, then propose
several algorithms to attack this challenging problem.

A. Problem Formulation

Under the previous introduced multi-model federated edge
learning scenario, we consider how to choose participants for
each of the model and how to schedule their local/global
updates. Particularly, at each time period t, we need make the
following participant selection and FEL scheduling decisions
for each model mj . We denote x

t
i,j or y

t
i,j as the decision

whether to select edge server vi as a parameter server or a
FEL worker for jth FEL model mj at time t, respectively.
Again, we assume that only one PS and j workers selected
for one model, i.e.,

PM
i=1 x

t
i,j = 1 and

PM
i=1 y

t
i,j = j . We

use %
t
j 2 [0, 1) to represent the maximal local convergence

rate of mj at t. We will use %t
j and &j to control the number

of global iterations and local updates for model mj at time
t. Recall that &j is given by the model mj as a requirement.
Overall, x

t
i,j , y

t
i,j and %

t
j are the decision variables of our

optimization in each time period t.
We now formulate our participant selection problem in FEL

where we need to select the parameter server and workers for
each model as well as achieving the desired local convergence

rate. The objective of our problem is to minimize the total cost
of all FEL models at time t under specific constraints.

min

WX

j=1

$
t
j (3)

s.t. x
t
i,jµjj  c

t
i, x

t
i,j�j  f

t
i 8i, j (4)

y
t
i,jµj  c

t
i, y

t
i,j�j  f

t
i 8i, j (5)

wj,ky
t
i,jzi,k = 1 8i, j, k (6)

X

i

x
t
i,j = 1,

X

i

y
t
i,j = j 8j (7)

X

j

(x
t
i,j + y

t
i,j)  1 8i (8)

x
t
i,j 2 {0, 1}, y

t
i,j 2 {0, 1}, %

t
j 2 [0, 1). (9)

Here, $t
j is the total FEL cost of jth FEL model in time

t, which will be defined in next subsection. Constraints (4)
and (5) make sure that the storage and CPU satisfy the FEL
model requirements. Constraint (6) ensures that the edge server
stores the dataset that matches the FEL model. Constraint
(7) guarantees the number of FEL parameter server and FEL
worker is 1 and j , respectively. Constraint (8) ensures that
each edge server only trains one FEL model and can only play
one role at one time. The decision variables and their ranges
are given in (9).

B. Cost Model

Our cost model considers four types of costs: global aggre-
gation cost, local update cost, edge communication cost, and
PS initialization cost, as defined following, respectively.

Edge Communication Cost: The edge communication cost
mainly consists of the FEL model downloading and uploading
costs. We denote by µj the uploaded and downloaded model
size for jth FEL model mj . When uploading FEL model to
the parameter server or downloading FEL model from the
parameter serer, we use the shortest path in the edge network
to calculate the communication cost. Let ⇢j(vi, vk) be the
communication cost of model mj from edge serer vi to vk at
time t, and it can be calculated by ⇢j(vi, vk) =

P
el2P t

i,k

µj

btl
,

where P
t
i,k is the shortest path connecting vi to vk at time t.

For model mj , the total edge communication cost is

C
comm,t
j = 2·#

t
j

NX

k=1

NX

i=1

x
t
k,j · y

t
i,j · ⇢j(vi, vk).

Here, vi and vj are a worker and the PS of mj , respectively.
Local Update Cost: Let  (· ) be the function to define CPU

cycles to process the sample data D
t
j,i used by jth FEL model

and stored in edge server vi. So the all local update cost for
jth FEL model in time period t is defined as

C
local,t
j = #

t
j ·'

t
j ·

NX

i=1

y
t
i,j ·

 (D
t
j,i)

f t
i

.

Similarly, the global convergence of global model is defined
as

G
t
j(p

t,#t
j

j ) � G
t,⇤
j  &j [G

t
j(p

t,0
j ) � G

t,⇤
j ], (2)

where G
t,⇤
j is the global optimum of the training model.

Finally, from formula (1) and (2), in order to achieve the
desired local convergence rate %t

j and global convergence rate
&j , we need to calculate the number of local updates 't

j and the
number of global iterations #t

j . From the above observation,
we can find that the global convergence rate &j for each FEL
model can be predefined and we have to conduct the local
update and global iteration to achieve that. Then we have the
following relationship between the convergence rate and the
local update as well as global iterations [8], [15].

#
t
j �

2�
2

�2⇠1
ln(

1

&j
)

1

1 � %t
j

, #0ln(
1

&j
)

1

1 � %t
j

,

'
t
j �

2

(2 � ��)��
log2(

1

%t
j

) , '0log2(
1

%t
j

),

where ⇠1 is the constant variable defined in function L
t,↵
j,i (· ),

� is the �-Lipschitz parameter and � is the �-strongly convex
parameter. Both the value of � and � are determined by the
loss function. #0 and '0 are two constants where #0 =

2�2

�2⇠1
and '0 =

2
(2���)�� .

III. PARTICIPANT SELECTION AND SCHEDULING

Now we first formulate the studied joint optimization prob-
lem and introduce the cost models used there, then propose
several algorithms to attack this challenging problem.

A. Problem Formulation

Under the previous introduced multi-model federated edge
learning scenario, we consider how to choose participants for
each of the model and how to schedule their local/global
updates. Particularly, at each time period t, we need make the
following participant selection and FEL scheduling decisions
for each model mj . We denote x

t
i,j or y

t
i,j as the decision

whether to select edge server vi as a parameter server or a
FEL worker for jth FEL model mj at time t, respectively.
Again, we assume that only one PS and j workers selected
for one model, i.e.,

PM
i=1 x

t
i,j = 1 and

PM
i=1 y

t
i,j = j . We

use %
t
j 2 [0, 1) to represent the maximal local convergence

rate of mj at t. We will use %t
j and &j to control the number

of global iterations and local updates for model mj at time
t. Recall that &j is given by the model mj as a requirement.
Overall, x

t
i,j , y

t
i,j and %

t
j are the decision variables of our

optimization in each time period t.
We now formulate our participant selection problem in FEL

where we need to select the parameter server and workers for
each model as well as achieving the desired local convergence

rate. The objective of our problem is to minimize the total cost
of all FEL models at time t under specific constraints.

min

WX

j=1

$
t
j (3)

s.t. x
t
i,jµjj  c

t
i, x

t
i,j�j  f

t
i 8i, j (4)

y
t
i,jµj  c

t
i, y

t
i,j�j  f

t
i 8i, j (5)

wj,ky
t
i,jzi,k = 1 8i, j, k (6)

X

i

x
t
i,j = 1,

X

i

y
t
i,j = j 8j (7)

X

j

(x
t
i,j + y

t
i,j)  1 8i (8)

x
t
i,j 2 {0, 1}, y

t
i,j 2 {0, 1}, %

t
j 2 [0, 1). (9)

Here, $t
j is the total FEL cost of jth FEL model in time

t, which will be defined in next subsection. Constraints (4)
and (5) make sure that the storage and CPU satisfy the FEL
model requirements. Constraint (6) ensures that the edge server
stores the dataset that matches the FEL model. Constraint
(7) guarantees the number of FEL parameter server and FEL
worker is 1 and j , respectively. Constraint (8) ensures that
each edge server only trains one FEL model and can only play
one role at one time. The decision variables and their ranges
are given in (9).

B. Cost Model

Our cost model considers four types of costs: global aggre-
gation cost, local update cost, edge communication cost, and
PS initialization cost, as defined following, respectively.

Edge Communication Cost: The edge communication cost
mainly consists of the FEL model downloading and uploading
costs. We denote by µj the uploaded and downloaded model
size for jth FEL model mj . When uploading FEL model to
the parameter server or downloading FEL model from the
parameter serer, we use the shortest path in the edge network
to calculate the communication cost. Let ⇢j(vi, vk) be the
communication cost of model mj from edge serer vi to vk at
time t, and it can be calculated by ⇢j(vi, vk) =

P
el2P t

i,k

µj

btl
,

where P
t
i,k is the shortest path connecting vi to vk at time t.

For model mj , the total edge communication cost is

C
comm,t
j = 2·#

t
j

NX

k=1

NX

i=1

x
t
k,j · y

t
i,j · ⇢j(vi, vk).

Here, vi and vj are a worker and the PS of mj , respectively.
Local Update Cost: Let  (· ) be the function to define CPU

cycles to process the sample data D
t
j,i used by jth FEL model

and stored in edge server vi. So the all local update cost for
jth FEL model in time period t is defined as

C
local,t
j = #

t
j ·'

t
j ·

NX

i=1

y
t
i,j ·

 (D
t
j,i)

f t
i

.



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant Selection and Scheduling in FEL

15

Methodology
➢ Solving P1 parameter server 

(PS) selection with fixed 

workers selection and local 

convergence rateStage 1

Similarly, the global convergence of global model is defined
as

G
t
j(p

t,#t
j

j ) � G
t,⇤
j  &j [G

t
j(p

t,0
j ) � G

t,⇤
j ], (2)

where G
t,⇤
j is the global optimum of the training model.

Finally, from formula (1) and (2), in order to achieve the
desired local convergence rate %t

j and global convergence rate
&j , we need to calculate the number of local updates 't

j and the
number of global iterations #t

j . From the above observation,
we can find that the global convergence rate &j for each FEL
model can be predefined and we have to conduct the local
update and global iteration to achieve that. Then we have the
following relationship between the convergence rate and the
local update as well as global iterations [8], [15].

#
t
j �

2�
2

�2⇠1
ln(

1

&j
)

1

1 � %t
j

, #0ln(
1

&j
)

1

1 � %t
j

,

'
t
j �

2

(2 � ��)��
log2(

1

%t
j

) , '0log2(
1

%t
j

),

where ⇠1 is the constant variable defined in function L
t,↵
j,i (· ),

� is the �-Lipschitz parameter and � is the �-strongly convex
parameter. Both the value of � and � are determined by the
loss function. #0 and '0 are two constants where #0 =

2�2

�2⇠1
and '0 =

2
(2���)�� .

III. PARTICIPANT SELECTION AND SCHEDULING

Now we first formulate the studied joint optimization prob-
lem and introduce the cost models used there, then propose
several algorithms to attack this challenging problem.

A. Problem Formulation

Under the previous introduced multi-model federated edge
learning scenario, we consider how to choose participants for
each of the model and how to schedule their local/global
updates. Particularly, at each time period t, we need make the
following participant selection and FEL scheduling decisions
for each model mj . We denote x

t
i,j or y

t
i,j as the decision

whether to select edge server vi as a parameter server or a
FEL worker for jth FEL model mj at time t, respectively.
Again, we assume that only one PS and j workers selected
for one model, i.e.,

PM
i=1 x

t
i,j = 1 and

PM
i=1 y

t
i,j = j . We

use %
t
j 2 [0, 1) to represent the maximal local convergence

rate of mj at t. We will use %t
j and &j to control the number

of global iterations and local updates for model mj at time
t. Recall that &j is given by the model mj as a requirement.
Overall, x

t
i,j , y

t
i,j and %

t
j are the decision variables of our

optimization in each time period t.
We now formulate our participant selection problem in FEL

where we need to select the parameter server and workers for
each model as well as achieving the desired local convergence

rate. The objective of our problem is to minimize the total cost
of all FEL models at time t under specific constraints.

min

WX

j=1

$
t
j (3)

s.t. x
t
i,jµjj  c

t
i, x

t
i,j�j  f

t
i 8i, j (4)

y
t
i,jµj  c

t
i, y

t
i,j�j  f

t
i 8i, j (5)

wj,ky
t
i,jzi,k = 1 8i, j, k (6)

X

i

x
t
i,j = 1,

X

i

y
t
i,j = j 8j (7)

X

j

(x
t
i,j + y

t
i,j)  1 8i (8)

x
t
i,j 2 {0, 1}, y

t
i,j 2 {0, 1}, %

t
j 2 [0, 1). (9)

Here, $t
j is the total FEL cost of jth FEL model in time

t, which will be defined in next subsection. Constraints (4)
and (5) make sure that the storage and CPU satisfy the FEL
model requirements. Constraint (6) ensures that the edge server
stores the dataset that matches the FEL model. Constraint
(7) guarantees the number of FEL parameter server and FEL
worker is 1 and j , respectively. Constraint (8) ensures that
each edge server only trains one FEL model and can only play
one role at one time. The decision variables and their ranges
are given in (9).

B. Cost Model

Our cost model considers four types of costs: global aggre-
gation cost, local update cost, edge communication cost, and
PS initialization cost, as defined following, respectively.

Edge Communication Cost: The edge communication cost
mainly consists of the FEL model downloading and uploading
costs. We denote by µj the uploaded and downloaded model
size for jth FEL model mj . When uploading FEL model to
the parameter server or downloading FEL model from the
parameter serer, we use the shortest path in the edge network
to calculate the communication cost. Let ⇢j(vi, vk) be the
communication cost of model mj from edge serer vi to vk at
time t, and it can be calculated by ⇢j(vi, vk) =

P
el2P t

i,k

µj

btl
,

where P
t
i,k is the shortest path connecting vi to vk at time t.

For model mj , the total edge communication cost is

C
comm,t
j = 2·#

t
j

NX

k=1

NX

i=1

x
t
k,j · y

t
i,j · ⇢j(vi, vk).

Here, vi and vj are a worker and the PS of mj , respectively.
Local Update Cost: Let  (· ) be the function to define CPU

cycles to process the sample data D
t
j,i used by jth FEL model

and stored in edge server vi. So the all local update cost for
jth FEL model in time period t is defined as

C
local,t
j = #

t
j ·'

t
j ·

NX

i=1

y
t
i,j ·

 (D
t
j,i)

f t
i

.



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant Selection and Scheduling in FEL

16

Methodology

➢ Solving P2 worker selection 

with the latest PS and fixed 

local convergence rate
Stage 2

Similarly, the global convergence of global model is defined
as

G
t
j(p

t,#t
j

j ) � G
t,⇤
j  &j [G

t
j(p

t,0
j ) � G

t,⇤
j ], (2)

where G
t,⇤
j is the global optimum of the training model.

Finally, from formula (1) and (2), in order to achieve the
desired local convergence rate %t

j and global convergence rate
&j , we need to calculate the number of local updates 't

j and the
number of global iterations #t

j . From the above observation,
we can find that the global convergence rate &j for each FEL
model can be predefined and we have to conduct the local
update and global iteration to achieve that. Then we have the
following relationship between the convergence rate and the
local update as well as global iterations [8], [15].

#
t
j �

2�
2

�2⇠1
ln(

1

&j
)

1

1 � %t
j

, #0ln(
1

&j
)

1

1 � %t
j

,

'
t
j �

2

(2 � ��)��
log2(

1

%t
j

) , '0log2(
1

%t
j

),

where ⇠1 is the constant variable defined in function L
t,↵
j,i (· ),

� is the �-Lipschitz parameter and � is the �-strongly convex
parameter. Both the value of � and � are determined by the
loss function. #0 and '0 are two constants where #0 =

2�2

�2⇠1
and '0 =

2
(2���)�� .

III. PARTICIPANT SELECTION AND SCHEDULING

Now we first formulate the studied joint optimization prob-
lem and introduce the cost models used there, then propose
several algorithms to attack this challenging problem.

A. Problem Formulation

Under the previous introduced multi-model federated edge
learning scenario, we consider how to choose participants for
each of the model and how to schedule their local/global
updates. Particularly, at each time period t, we need make the
following participant selection and FEL scheduling decisions
for each model mj . We denote x

t
i,j or y

t
i,j as the decision

whether to select edge server vi as a parameter server or a
FEL worker for jth FEL model mj at time t, respectively.
Again, we assume that only one PS and j workers selected
for one model, i.e.,

PM
i=1 x

t
i,j = 1 and

PM
i=1 y

t
i,j = j . We

use %
t
j 2 [0, 1) to represent the maximal local convergence

rate of mj at t. We will use %t
j and &j to control the number

of global iterations and local updates for model mj at time
t. Recall that &j is given by the model mj as a requirement.
Overall, x

t
i,j , y

t
i,j and %

t
j are the decision variables of our

optimization in each time period t.
We now formulate our participant selection problem in FEL

where we need to select the parameter server and workers for
each model as well as achieving the desired local convergence

rate. The objective of our problem is to minimize the total cost
of all FEL models at time t under specific constraints.

min

WX

j=1

$
t
j (3)

s.t. x
t
i,jµjj  c

t
i, x

t
i,j�j  f

t
i 8i, j (4)

y
t
i,jµj  c

t
i, y

t
i,j�j  f

t
i 8i, j (5)

wj,ky
t
i,jzi,k = 1 8i, j, k (6)

X

i

x
t
i,j = 1,

X

i

y
t
i,j = j 8j (7)

X

j

(x
t
i,j + y

t
i,j)  1 8i (8)

x
t
i,j 2 {0, 1}, y

t
i,j 2 {0, 1}, %

t
j 2 [0, 1). (9)

Here, $t
j is the total FEL cost of jth FEL model in time

t, which will be defined in next subsection. Constraints (4)
and (5) make sure that the storage and CPU satisfy the FEL
model requirements. Constraint (6) ensures that the edge server
stores the dataset that matches the FEL model. Constraint
(7) guarantees the number of FEL parameter server and FEL
worker is 1 and j , respectively. Constraint (8) ensures that
each edge server only trains one FEL model and can only play
one role at one time. The decision variables and their ranges
are given in (9).

B. Cost Model

Our cost model considers four types of costs: global aggre-
gation cost, local update cost, edge communication cost, and
PS initialization cost, as defined following, respectively.

Edge Communication Cost: The edge communication cost
mainly consists of the FEL model downloading and uploading
costs. We denote by µj the uploaded and downloaded model
size for jth FEL model mj . When uploading FEL model to
the parameter server or downloading FEL model from the
parameter serer, we use the shortest path in the edge network
to calculate the communication cost. Let ⇢j(vi, vk) be the
communication cost of model mj from edge serer vi to vk at
time t, and it can be calculated by ⇢j(vi, vk) =

P
el2P t

i,k

µj

btl
,

where P
t
i,k is the shortest path connecting vi to vk at time t.

For model mj , the total edge communication cost is

C
comm,t
j = 2·#

t
j

NX

k=1

NX

i=1

x
t
k,j · y

t
i,j · ⇢j(vi, vk).

Here, vi and vj are a worker and the PS of mj , respectively.
Local Update Cost: Let  (· ) be the function to define CPU

cycles to process the sample data D
t
j,i used by jth FEL model

and stored in edge server vi. So the all local update cost for
jth FEL model in time period t is defined as

C
local,t
j = #

t
j ·'

t
j ·

NX

i=1

y
t
i,j ·

 (D
t
j,i)

f t
i

.



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant Selection and Scheduling in FEL

17

Methodology

➢ Solving P3 local convergence 

rate with the latest PS and 

worker decision

Stage 3

Similarly, the global convergence of global model is defined
as

G
t
j(p

t,#t
j

j ) � G
t,⇤
j  &j [G

t
j(p

t,0
j ) � G

t,⇤
j ], (2)

where G
t,⇤
j is the global optimum of the training model.

Finally, from formula (1) and (2), in order to achieve the
desired local convergence rate %t

j and global convergence rate
&j , we need to calculate the number of local updates 't

j and the
number of global iterations #t

j . From the above observation,
we can find that the global convergence rate &j for each FEL
model can be predefined and we have to conduct the local
update and global iteration to achieve that. Then we have the
following relationship between the convergence rate and the
local update as well as global iterations [8], [15].

#
t
j �

2�
2

�2⇠1
ln(

1

&j
)

1

1 � %t
j

, #0ln(
1

&j
)

1

1 � %t
j

,

'
t
j �

2

(2 � ��)��
log2(

1

%t
j

) , '0log2(
1

%t
j

),

where ⇠1 is the constant variable defined in function L
t,↵
j,i (· ),

� is the �-Lipschitz parameter and � is the �-strongly convex
parameter. Both the value of � and � are determined by the
loss function. #0 and '0 are two constants where #0 =

2�2

�2⇠1
and '0 =

2
(2���)�� .

III. PARTICIPANT SELECTION AND SCHEDULING

Now we first formulate the studied joint optimization prob-
lem and introduce the cost models used there, then propose
several algorithms to attack this challenging problem.

A. Problem Formulation

Under the previous introduced multi-model federated edge
learning scenario, we consider how to choose participants for
each of the model and how to schedule their local/global
updates. Particularly, at each time period t, we need make the
following participant selection and FEL scheduling decisions
for each model mj . We denote x

t
i,j or y

t
i,j as the decision

whether to select edge server vi as a parameter server or a
FEL worker for jth FEL model mj at time t, respectively.
Again, we assume that only one PS and j workers selected
for one model, i.e.,

PM
i=1 x

t
i,j = 1 and

PM
i=1 y

t
i,j = j . We

use %
t
j 2 [0, 1) to represent the maximal local convergence

rate of mj at t. We will use %t
j and &j to control the number

of global iterations and local updates for model mj at time
t. Recall that &j is given by the model mj as a requirement.
Overall, x

t
i,j , y

t
i,j and %

t
j are the decision variables of our

optimization in each time period t.
We now formulate our participant selection problem in FEL

where we need to select the parameter server and workers for
each model as well as achieving the desired local convergence

rate. The objective of our problem is to minimize the total cost
of all FEL models at time t under specific constraints.

min

WX

j=1

$
t
j (3)

s.t. x
t
i,jµjj  c

t
i, x

t
i,j�j  f

t
i 8i, j (4)

y
t
i,jµj  c

t
i, y

t
i,j�j  f

t
i 8i, j (5)

wj,ky
t
i,jzi,k = 1 8i, j, k (6)

X

i

x
t
i,j = 1,

X

i

y
t
i,j = j 8j (7)

X

j

(x
t
i,j + y

t
i,j)  1 8i (8)

x
t
i,j 2 {0, 1}, y

t
i,j 2 {0, 1}, %

t
j 2 [0, 1). (9)

Here, $t
j is the total FEL cost of jth FEL model in time

t, which will be defined in next subsection. Constraints (4)
and (5) make sure that the storage and CPU satisfy the FEL
model requirements. Constraint (6) ensures that the edge server
stores the dataset that matches the FEL model. Constraint
(7) guarantees the number of FEL parameter server and FEL
worker is 1 and j , respectively. Constraint (8) ensures that
each edge server only trains one FEL model and can only play
one role at one time. The decision variables and their ranges
are given in (9).

B. Cost Model

Our cost model considers four types of costs: global aggre-
gation cost, local update cost, edge communication cost, and
PS initialization cost, as defined following, respectively.

Edge Communication Cost: The edge communication cost
mainly consists of the FEL model downloading and uploading
costs. We denote by µj the uploaded and downloaded model
size for jth FEL model mj . When uploading FEL model to
the parameter server or downloading FEL model from the
parameter serer, we use the shortest path in the edge network
to calculate the communication cost. Let ⇢j(vi, vk) be the
communication cost of model mj from edge serer vi to vk at
time t, and it can be calculated by ⇢j(vi, vk) =

P
el2P t

i,k

µj

btl
,

where P
t
i,k is the shortest path connecting vi to vk at time t.

For model mj , the total edge communication cost is

C
comm,t
j = 2·#

t
j

NX

k=1

NX

i=1

x
t
k,j · y

t
i,j · ⇢j(vi, vk).

Here, vi and vj are a worker and the PS of mj , respectively.
Local Update Cost: Let  (· ) be the function to define CPU

cycles to process the sample data D
t
j,i used by jth FEL model

and stored in edge server vi. So the all local update cost for
jth FEL model in time period t is defined as

C
local,t
j = #

t
j ·'

t
j ·

NX

i=1

y
t
i,j ·

 (D
t
j,i)

f t
i

.



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant Selection and Scheduling in FEL

18

Methodology

Stopping  
Condition

➢ Update decision variables and 

iteratively repeat the process if 

the condition is not satisfied 

➢ Either no further improvement 

of the objective value of the 

optimization or reaching the 

maximal iteration number



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant Selection and Scheduling in FEL

19

Evaluation Methods and Baselines 

• THSO: three-stage optimization method 

• TWSO: two-stage optimization method 

• GRDY: three-stage greedy method 

• RAND: randomly generates decisions 

• ROUND[12]: selects workers and local convergence 

rate with randomized rounding 

• DATA[13]: prefers edge servers with more data 

• LOCAL[14]: selects edge servers that complete the 
local training first

[12] Learning for learning: Predictive online control of federated learning with edge provisioning, 
IEEE INFOCOM, 2021. 
[13] Client selection in federated learning: Convergence analysis and power-of-choice selection 
strategies, arXiv:2010.01243,2020. 
[14] On the convergence of FedAvg on non-IID data, arXiv preprint arXiv:1907.02189, 2019.

Network and Datasets 

• Random edge networks with 20-40 edge servers from 
the real-world EUA-Dataset  

• ML Model datasets: Fashion-MNIST, Speech 
Commands, AG_NEWS



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant Selection and Scheduling in FEL

20

Evaluation

Proposed methods achieve best cost! FL converges as expected & more workers 
lead better accuracy



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant Selection and Scheduling in FEL

21

• Study joint participant selection and learning 
scheduling of multi-model FEL in the edge cloud: 
‣ select participants (both PS and workers) and local 

convergence rate for each FL model  
‣ aim to minimize the total learning cost of all FL models 

• Propose three algorithms: 
‣ three-stage optimization, solve one decision via 

optimization when fixing other two decisions at each stage 
‣ three-stage greedy, greedily make one decision when 

fixing other two decisions at each stage 
‣ two-stage optimization, consider participant selection in a 

single stage 
• Conduct simulations to evaluate proposed methods:  

‣ the proposed methods can effectively reduce the total cost 
compared with existing methods

Summary



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Outline

22

Joint Participant Selection and 
Scheduling in FEL

Joint Participant Selection and Learning Scheduling
for Multi-Model Federated Edge Learning

Xinliang Wei, Jiyao Liu, Yu Wang
Department of Computer and Information Sciences, Temple University, Philadelphia, USA

{xinliang.wei,jiyao.liu,wangyu}@temple.edu

Abstract—As edge computing complements the cloud to enable
computational services right at the network edge, federated
learning (FL) can also benefit from close-by edge computing
infrastructure. However, most prior works on federated edge
learning (FEL) mainly focus on one shared global model during
the federated training in edge systems. In a real edge computing
scenario, there may co-exist multiple various FL models that are
owned by different entities and used by different applications.
Simultaneously training these models competes both computing
and networking resources in the shared edge system. Therefore,
in this work, we consider a multi-model federated edge learning
where multiple FEL models are being trained in the edge
network and edge servers can act as either parameter servers or
workers of these FEL models. We formulate a joint participant
selection and learning scheduling problem, which is a non-linear
mixed-integer program, aiming to minimize the total cost of all
FEL models while satisfying the desired convergence rate of
trained FEL models and the constrained edge resources. We then
design several algorithms by decoupling the original problem
into two or three sub-problems which can be solved respectively
and iteratively. Extensive simulations with real-world training
datasets and FEL models show that our proposed algorithms
can efficiently reduce the average total cost of all FEL models in
a multi-model FEL setting compared with existing algorithms.

I. INTRODUCTION

With the advances of Internet of Things, smart sensing and
artificial intelligence, there has been a tremendous trend that
data sources shift from the cloud center to the network edge.
Generally, in order to train a machine learning (ML) model,
one needs to upload the collected training data to the cloud
data center and train the model using the whole dataset there.
However, it is non-trivial to send a large amount of data to
the remote data center due to the limited network bandwidth
and data privacy concerns. Therefore, an alternative solution
is the distributed training of ML models at the network edge
or even on the user devices. However, there are still major
challenges to prevent users from performing efficient model
training at the edge. On one hand, the computing capacity
and network resource at the edge or user devices are limited

Edge Server

Model 1

Model 2

PS 1

Worker 1

Worker 2PS 2

Worker 1

Worker 2

Training Data
Worker 3 FEL of Model 2

FEL of Model 1

FEL Models

Fig. 1. Multi-model FEL example: two FEL models are trained with 3 and 4
participants (1 PS + 2 or 3 workers), respectively, in a shared edge network.

resources and the competition among various users, servers
and applications.

Recently, federated learning (FL) has been emerging as
a new distributed machine learning paradigm [1]–[3], which
enables multiple servers collaboratively learn a shared ML
model while keeping all training data on the local server. It is
very natural to deploy the FL framework in edge computing
to provide efficient distributed training at the network edge.
Therefore, federated edge learning (FEL) has been proposed
in various settings [4]–[12]. In FEL, edge servers can col-
laboratively train a shared global ML model by aggregating
local models trained at individual local servers, decoupling
the ability to do model training from the need to store data
in centralized server. More precisely, as shown in Fig. 1, in
each global iteration, edge severs, worked as workers, first
download the latest global model from the parameter server
(PS), and then perform a fixed number of local training based
on their local data. After that, edge servers will upload their
local model to the parameter server which is responsible for
aggregating parameters from different workers and sending the
aggregated global model back to each FEL worker. Previously,

Qutaum-Assistant Federated 
Learning Scheduling

Quantum Assisted Scheduling Algorithm for
Federated Learning in Distributed Networks

Xinliang Wei⇤, Lei Fan†, Yuanxiong Guo‡, Yanming Gong§, Zhu Han¶, Yu Wang⇤
⇤Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA

†Department of Engineering Technology, University of Houston, Houston, TX, USA
‡Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX, USA
§Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA

¶Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
{xinliang.wei, wangyu}@temple.edu, lfan8@central.uh.edu, {yuanxiong.guo, yanmin.gong}@utsa.edu, zhan2@uh.edu.

Abstract—The scheduling problem for federated learning (FL)
with multiple models in a distributed network is challenging,
as it involves NP-hard mixed-integer nonlinear programming.
Moreover, it requires optimal participant selection and learning
rate determination among multiple FL models to avoid high
training costs and resource competition. To overcome those chal-
lenges, in literature the Benders’ decomposition algorithm (BD)
can deal with mixed integer problems, however, it still suffers
from limited scalability. To address this issue, in this paper, we
present the Hybrid Quantum-Classical Benders’ Decomposition
(HQCBD) algorithm, which combines the power of quantum
and classical computing to solve the joint participant selection
and learning scheduling problem in multi-model FL. HQCBD
decomposes the optimization problem into a master problem
with binary variables and small subproblems with continuous
variables. This collaboration maximizes the potential of both
quantum and classical computing, and optimizes the complex
joint optimization problem. Simulation on the commercial D-
Wave quantum annealing machine demonstrates the effectiveness
and robustness of the proposed method, with up to 18% improve-
ment of iterations and 81% improvement of computation time
over BD algorithm on classical CPUs even at small scales.

Index Terms—Federated learning, participant selection, learn-
ing scheduling, hybrid quantum-classical optimization

I. INTRODUCTION

With the use of quantum superposition and entanglement,
quantum computing (QC) has demonstrated a quantum ad-
vantage over classical computing in random quantum circuit
sampling [1], Gaussian boson sampling [2], and combinatorial
optimization [3]–[5]. In this paper, by leveraging the parallel
computing capability of quantum computing, we focus on de-
signing a new quantum-assisted scheduling algorithm to solve
a complex joint participant selection and learning scheduling
problem for federated learning (FL) in distributed networks.

Federated learning is emerging as an effective and privacy-
preserving machine learning (ML) paradigm [6]–[9], which

FL Models

Distributed Server Model broadcasting & global aggregating 

Local computation

PS 1Worker 1 Worker 2

Worker 3
PS 2

Worker 2

Worker 1

Worker 3

Fig. 1: The training process of multi-model federated learning.

the computing capability and network resources of servers
and their data distribution are heterogeneous. Some low-
performance servers may decelerate the convergence process
and diminish the training performance. Also, the dispersed
computing resources and large network latency may lead to
high training costs. Second, for the practical scenario, training
multiple different models in the shared distributed network
simultaneously leads to competition for computing and com-
munication resources. As shown in Fig. 1, two FL models
are trained concurrently and each FL model requires one PS
and three workers for model training. In this case, which FL
model is preferentially served at which server directly affects
the total training cost of all FL models. To this end, appropriate
participant selection and learning schedules are fairly crucial
for multi-model FL training.

Therefore, we mainly concentrate on the joint participant
selection and learning scheduling problem in multi-model FL
training scenarios. It should be emphasized that each server in

Joint Participant and Topology 
Selection in FEL

1

Joint Participant and Learning Topology
Selection in Federated Edge Learning

Xinliang Wei, Student Member, IEEE , Kejiang Ye, Member, IEEE , Xinghua Shi, Member, IEEE ,
Cheng-Zhong Xu, Fellow, IEEE and Yu Wang, Fellow, IEEE

Abstract—Deploying federated learning (FL) in edge clouds is a challenging task, particularly when multiple models are trained
concurrently in resource-constrained edge environments. Current research on federated edge learning primarily focuses on client
selection for training a single FL model with a fixed learning topology. Our experiments demonstrate that FL models with adaptable
topologies result in lower learning costs than those with fixed topologies. In this paper, we investigate the problem of jointly selecting
participants and learning topologies for multiple FL models being trained simultaneously in the edge cloud. We formulate this as an
integer programming problem, with the goal of minimizing total learning costs for all FL models, subject to edge resource constraints.
We propose a two-stage algorithm that decouples the original problem into two sub-problems and addresses them iteratively. By
allowing FL models to independently select participants and learning topologies, our method improves resource competition and load
balancing in edge clouds. Our extensive experiments with real-world networks and FL datasets confirm the superior performance of
our algorithm in terms of average total cost compared to prior methods for multi-model FL.

Index Terms—Edge Computing, Federated Learning, Participant Selection, Learning Topology

F

1 INTRODUCTION

Federated Learning (FL) [1]–[7] is an efficient approach for
improving machine learning (ML) performance and pro-
viding better privacy solutions for data owners. It enables
multiple devices to collaborate and train a shared global
ML model by aggregating local models trained on each
device. FL ensures that training data remains local to protect
users’ privacy, and only transmits essential model data
(e.g. gradients). With the growth of smart sensing, mobile
computing, and wireless networking, there is also a trend
of moving data sources and intelligent computation from
centralized clouds to edge clouds, to provide agile services
to mobile devices and users. Therefore, it is important to
deploy FL frameworks on edge clouds and provide efficient
distributed training for mobile devices at the network edge.
Such solutions have been studied [8]–[12] and can support
many emerging applications [13], such as mobile AI, AIoT
or AR/XR applications.

Current FL frameworks can be categorized into three
types based on the learning topology used for model ag-
gregation: centralized FL (CFL), hierarchical FL (HFL), and
decentralized FL (DFL). CFL is the classical FL [10] where
the parameter server (PS) and several workers form a star
architecture as shown in Fig. 1(a). The PS first dispatches the
global model to each worker and all workers cooperatively

• X. Wei and K. Ye are with Shenzhen Institute of Advanced Technol-
ogy, Chinese Academy of Sciences, Shenzhen, 518055, China. Email:
{xl.wei,kj.ye}@siat.ac.cn. C. Xu is with State Key Laboratory of IoTSC,
Faculty of Science and Technology, University of Macau, Macau, China.
Email: czxu@um.edu.mo. X. Shi and Y. Wang are with the Department
of Computer and Information Sciences, Temple University, Philadelphia,
Pennsylvania, 19112, USA. Email: {mindyshi,wangyu}@temple.edu. X.
Wei and Y. Wang are the co-corresponding authors. The work of Y. Wang
is partially supported by the US National Science Foundation under Grant
No. CNS-2006604.

train the model by using their local data. After each worker
performs several local updates, the local model will be
forwarded to the PS for global aggregation. The potential
bottleneck of CFL is the communication congestion at the
PS since all workers have to communicate with the PS
concurrently for multiple rounds. In addition, the PS in CFL
may cause a single point of failure. Therefore, DFL [11], [14]
has been proposed, where each worker only communicates
with its neighbors (with mutual trust) by exchanging their
local models and there is no centralized PS, as shown in
Fig. 1(b). While such distributed P2P learning topology
increases the robustness of FL, it might suffer from larger
communication costs or slower convergence. Recently, HFL
[15]–[17] has been proposed by introducing several middle-
layer PSs (or called group leaders) in a hierarchical topology
such that each of them only aggregates a group model from
workers inside its group and sends the group model to
the PS for global aggregation, as shown in Fig. 1(c). HFL
can effectively hide local updates submitted by individual
workers within a group, thereby enhancing privacy pro-
tection from malicious or honest-but-curious PS [15]. HFL
can also provide better scalability with larger workers but
may increase the total latency due to multiple exchanges
among different layers. All three learning topologies have
been applied and studied in edge environments [11], [12],
[18], [19]. In summary, each learning topology has its own
advantages and can lead to different performance, making
it suitable for specific situations. Therefore, the choice of
learning topology is crucial in FL when performed at the
edge. However, there is limited research in this area, and
most existing FL works only consider a specific learning
topology.

Participant selection (or client selection/sampling) of
FL has been well-studied, especially for CFL [19]–[26]. For
example, Chen et al. [22] considered client sampling in their



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant and Learning Topology Selection

23

• Existing FEL works use a specific learning 
topology for all models 

• However, different learning topology (CFL, 
DFL, and HFL) will lead to different learning 
costs and performances

Joint participant and  
learning topology selection

Motivation

LOSS: [13] Client selection in federated learning: Convergence analysis 
and power-of-choice selection strategies, arXiv:2010.01243,2020. 
Norm: [15] Client selection in federated learning based on gradients 
importance, arXiv:2111.11204, 2021



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant and Learning Topology Selection

24

FL Model

• Each FL model needs to 
‣ select learning topology from CFL, DFL, HFL 

‣ select FL participants, including PS (or mid-PS) and workers 

bj,1, bj,2, bj,3

ai,j, xi,j, yi,j, zi,j

FL Convergence Bound

[1] Client-edge-cloud hierarchical federated learning, ICC, 2020. 
[9] Client selection for federated learning with heterogeneous 
resources in mobile edge, ICC 2019 
[12] Learning for learning: Predictive online control of federated 
learning with edge provisioning, IEEE INFOCOM, 2021.

[1],  [9],  [12]  



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant and Learning Topology Selection

25

Problem Formulation • Joint participant and topology selection

Learning cost:  computation + communication
participant selection

learning topology 
selection

PS assignment

storage, CPU constraints

# of participants 
each participant only  
works for one model

# of PS/mid-PSs needed

PS & mid-PS are 
different for HFL 

each model needs a 
learning topology

participant &  
topology selection PS assignment

# of global aggregation

# of group aggregation

# of local updates

4

!
↵,�̂

i,j
with their neighbors in the learning topology after �̂

local training. The aggregation process at participant vi is

!
↵

i,j
=

Di,j

D
↵

j

!
↵�1,�̂
i,j

+
X

k2Si,j

Dk,j

D
↵

j

!
↵�1,�̂
k,j

, (5)

where !↵,�̂

k,j
is the model parameters from the set of neigh-

bors Si,j at ↵-th global round after �̂ local updates.
HFL is similar to CFL but adds several middle-layer

PSs (group leaders) between the PS (at the top layer) and
workers. After �̂ local training, workers send their local
model parameter !↵,�̂,�

i,j
to the middle-layer PSs and then

the middle-layer PSs will aggregate the local model using
averaging algorithms. After �̂ middle-layer aggregations,
the middle-layer PSs will send their group model param-
eters !

↵,�̂

i,j
to the top-layer PS for the final aggregation.

Assuming that Sj is the set of all selected middle-layer
PSs and Si,j is the set of all selected workers connected to
the middle-layer parameter server vi. Then the middle-layer
aggregation at vi is as follows.

!
↵,�

i,j
=

X

k2Si,j

Dk,j

D
�

i,j

!
↵,�̂,��1
k,j

, (6)

where D
�

i,j
=

S
k2Si,j

Dk,j is the total number of data
sample from the workers connected to the middle-layer PS
vi. The averaging aggregation at the top-layer PS is similar
as follows.

!
↵

j
=

X

i2Sj

D
�

i,j

D
↵

j

!
↵�1,�̂
i,j

, (7)

where D
↵

j
=

S
i2Sj

D
�

i,j
is the total number of data sample

from the set of all middle-layer PSs.

2.3 Cost Model
Our cost model mainly consists of two parts: computation
cost and communication cost. (1) Computation Cost: Since it
has been shown that model aggregation is a much easier
task compared with model training, we mainly consider the
cost of local training. Let  i be the number of CPU cycles to
process one sample data at edge server vi and |· | is the size
of dataset Di,j for jth model at server vi. Then, the total �̂
local training at vi is defined as

C
local

i,j
= �̂·

 i|Di,j |

fi
. (8)

(2) Communication Cost: The communication cost mainly
consists of the transmission cost between two edge servers.
Let µj be the size of jth model mj and Pi,k be the shortest
path between server vi and vk. Then, the communication
cost between two servers for model mj is defined by

C
comm

i,k
=

X

el2Pi,k

µj

bl
. (9)

3 PROBLEM FORMULATION

We now introduce the formulation of the joint optimization,
and the theoretical bounds on FL convergence with different
learning topologies.

3.1 Problem Formulation

Now we introduce our joint participant and learning topol-
ogy selection problem, starting from decision variables.

3.1.1 Decision Variables

We use ai,j 2 {0, 1} to denote whether edge server vi is
chosen as a participant of model mj . We use bj,k 2 {0, 1}
to denote whether selecting the kth learning topology for
model mj , here k = 1, 2, 3 represents CFL, DFL, and
HFL topology. If CFL is selected (i.e. bj,1 = 1), we use
xi,j 2 {0, 1} to select vi as the PS. If DFL is selected (i.e.,
bj,2 = 1), we do not need any PS. Here we assume that
DFL uses a simple nearest neighbor method to determine
the connection among j workers. e.g., we let each worker
connect to a fixed number of closest neighbors in the edge
cloud. Then the link between workers vi and vl in the
learning topology can be defined by a binary indicator ◆i,l.
This information will be used in our optimization1. If HFL
is selected (i.e. bj,3 = 1), we need to pick one top-layer
PS and  j middle-layer PSs. We denote yi,j 2 {0, 1} and
zi,j 2 {0, 1} as the indicators of top-layer and middle-layer
PSs. The connection between workers and their middle-
layer PS is decided by network distance. i.e., each worker
selects the nearest middle-layer PS as its aggregator. We
use ⇠i,l to denote the connection between worker vi and
its middle-layer PS vl. In summary, ai,j and bi,j are the
decisions on participants and learning topology, while xi,j ,
yi,j and zi,j are the roles of participants in their selected
learning topology.

3.1.2 Joint Optimization

Our joint problem aims to select the optimal participants
and learning topology so that the total learning cost of all
models is minimized, formulated as

min C
comp + C

comm (10)
s.t. ai,jµj  ci, ai,j�j  fi, 8i, j (11)

X

i

ai,j = j + bj,1 + (1 +  j)bj,3, 8j (12)

X

j

ai,j  1, 8i (13)

X

i

xi,jbj,1 + 1� bj,1 = 1, 8j (14)

X

i

yi,jbj,3 + 1� bj,3 = 1, 8j (15)

X

i

zi,jbj,3 + (1� bj,3) j =  j , 8j (16)

X

j

(yi,j + zi,j)bj,3  1, 8i (17)

X

k

bj,k = 1, 8j (18)

ai,j 2 {0, 1}, bj,k 2 {0, 1}, (19)
xi,j 2 {0, 1}, yi,j 2 {0, 1}, zi,j ,2 {0, 1}, (20)
i 2 [1, .., N ], j 2 [1, .., H], k 2 [1, .., 3] (21)

1. The study of learning topology formation is orthogonal to our
work, but other topology formation algorithms can be used in this
proposed framework.



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant and Learning Topology Selection

26

Methodology

26



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant and Learning Topology Selection

27

Methodology

27

FL workers 
selection

Algorithm 3 RandomSel() - Random Selection
Input: Candidates set client listj , learning topology bj,k,
and required number of workers j of model mj

Output: Participant list participant listj (including
worker list and PS lists ps, top ps, mid ps if needed)

1: worker list = random(client listj , j)
2: if bj,1 = 1 then
3: ps = the closest one to the selected workers among all

remaining edge servers outside worker list

4: else if bj,3 = 1 then
5: mid ps = the closest  j servers to the selected workers

among servers outside worker list

6: top ps = the ( j + 1)-th closest server to the selected
workers among servers outside worker list

7: return participant listj (i.e., worker list and PS lists)

Algorithm 4 GreedySel() - Greedy Selection
Input: Candidates set client listj , learning topology bj,k,
and required number of workers j of model mj

Output: Participant list participant listj

1: worker list = ?
2: ps = the closest server outside client listj to client listj

3: mid ps, top ps = the closest ( j+1) edge servers outside
client listj to client listj

4: for i = 1 to j do
5: for ci in client listj but not in worker list do
6: Calculate total cost(ci) if adding ci to worker list

based on the topology choice bj,k

7: Let c
⇤
i

be the one leading to minimal total cost(ci),
then add c

⇤
i

to worker list

8: return participant listj (i.e., worker list and PS lists)

based on the highest gradient norm or loss value while others
focus on the proportion of data size in each client or the
minimal completion time of each client. Here, we adopt the
idea of selecting edge servers with higher loss value as FL
worker candidates. For each model mj , we generate $j FL
worker candidates with the top $j high loss values to form
the client listj (Line 3 of Algorithm 1). In Line 5, we also
randomly select the initial learning topology.

B. Stage 1: Participant Selection

In the first stage, given the learning topology selection
bj,k of model mj , we would like to select the participants
for mj (including j workers and possible PSs if CFL or
HFL is used). We use Algorithm 2 to select participants
for each model mj . (1) It first selects j workers from the
candidates set client listj and decides PSs if needed from
the remaining edge servers (Line 2/5/9). (2) Then it determines
the specific topology for DFL/HFL (Line 6/10). For DFL, we
form a topology in that each participant connects to a fixed
number of closest neighbors. For HFL, after the PS decision,
each worker will connect to the closest middle-layer PS. (3)
Last, it generates the participant selection decision (both ai,j

and xi,j , yi,j , zi,j) and updates the related learning topology
variables (◆i,l, ⇠i,l) for DFL/HFL (Line 3/7/11).

Algorithm 5 Learning Topology Selection for Model mj

Input: Worker list worker list from ai,j , xi,j , yi,j , zi,j
Output: Learning topology selection bj,k, participant selec-
tion ai,j , xi,j , yi,j , zi,j and learning topology

1: ps = the closest one to workers in worker list among
remaining servers; calculate cfl cost with this topology

2: Determine the DFL topology for worker list and calcu-
late dfl cost for this DFL topology

3: mid ps, top ps = the closest ( j + 1) servers to
worker list outside worker list; determine the HFL
topology for worker list and calculate hfl cost

4: Choose the learning topology with the minimum learning
cost among cfl cost, dfl cost and hfl cost; update ai,j ,
bj,k, xi,j , yi,j , zi,j , ⇠i,l, ◆i,l with the selected topology

5: return ai,j , bj,k, xi,j , yi,j , zi,j and learning topology

When we select participant list participant listj (Line
2/3/9 in Algorithm 2), we provide two options: random selec-
tion or greedy selection. In the random method, we randomly
select j workers from the candidates set client listj (Line
1 of Algorithm 3). After that, for CFL we select a PS outside
worker list with the lowest communication cost to all work-
ers; for HFL, we select the top  j servers outside worker list

with the least communication cost to all workers as middle-
layer PS and take the ( j +1)th server as the top-layer PS. In
greedy method, we first pick PSs from outside client listj if
needed (Line 2-3 Algorithm 4). Then we iteratively select an
edge server that has the minimal total cost from the candidates
set client listj until we get j workers (Lines 4-7).

C. Stage 2: Learning Topology Selection

In the second stage, given the selected participants (mainly
the workers worker list) from stage 1, we aim to determine
the better learning topology for them. Thus, we choose the PSs
for CFL/HFL (from remaining servers outside worker list)
and determine the topology for DFL/HFL, then compare their
learning costs. The learning topology with the minimum cost
is selected and returned. Algorithm 5 shows the detail.

D. Complexity Analysis

We now provide the complexity analysis of our algorithm.
Theorem 2: The overall time complexity of our proposed

algorithm is O(
P

H

j=1 Z(N logN + j$j)), where N and H

are the numbers of edge servers and models, j and $j are
the numbers of required workers and candidate workers for
jth model, and Z is the maximal iteration max itr.
PROOF. In Algorithm 2, the participant selection is done in
one of two ways, either random selection or greedy selection
(Line 2/5/7). Random selection needs O(N logN) to find the
closest servers as PSs (Line 3 or Lines 5-6 in Algorithm 3).
Greedy selection (Algorithm 4) also needs O(N logN) for PS
selection (Lines 2-3), plus O(j$j) for iteratively selecting
j workers from client list (Lines 4-7). Thus, the worst case
of time complexity for selection is O(N logN +j$j). Then
Algorithm 2 also needs to determine the topology if DFL/HFL
with a computational complexity of O(2

j
) or O(j$j). Since

Algorithm 3 RandomSel() - Random Selection
Input: Candidates set client listj , learning topology bj,k,
and required number of workers j of model mj

Output: Participant list participant listj (including
worker list and PS lists ps, top ps, mid ps if needed)

1: worker list = random(client listj , j)
2: if bj,1 = 1 then
3: ps = the closest one to the selected workers among all

remaining edge servers outside worker list

4: else if bj,3 = 1 then
5: mid ps = the closest  j servers to the selected workers

among servers outside worker list

6: top ps = the ( j + 1)-th closest server to the selected
workers among servers outside worker list

7: return participant listj (i.e., worker list and PS lists)

Algorithm 4 GreedySel() - Greedy Selection
Input: Candidates set client listj , learning topology bj,k,
and required number of workers j of model mj

Output: Participant list participant listj

1: worker list = ?
2: ps = the closest server outside client listj to client listj

3: mid ps, top ps = the closest ( j+1) edge servers outside
client listj to client listj

4: for i = 1 to j do
5: for ci in client listj but not in worker list do
6: Calculate total cost(ci) if adding ci to worker list

based on the topology choice bj,k

7: Let c
⇤
i

be the one leading to minimal total cost(ci),
then add c

⇤
i

to worker list

8: return participant listj (i.e., worker list and PS lists)

based on the highest gradient norm or loss value while others
focus on the proportion of data size in each client or the
minimal completion time of each client. Here, we adopt the
idea of selecting edge servers with higher loss value as FL
worker candidates. For each model mj , we generate $j FL
worker candidates with the top $j high loss values to form
the client listj (Line 3 of Algorithm 1). In Line 5, we also
randomly select the initial learning topology.

B. Stage 1: Participant Selection

In the first stage, given the learning topology selection
bj,k of model mj , we would like to select the participants
for mj (including j workers and possible PSs if CFL or
HFL is used). We use Algorithm 2 to select participants
for each model mj . (1) It first selects j workers from the
candidates set client listj and decides PSs if needed from
the remaining edge servers (Line 2/5/9). (2) Then it determines
the specific topology for DFL/HFL (Line 6/10). For DFL, we
form a topology in that each participant connects to a fixed
number of closest neighbors. For HFL, after the PS decision,
each worker will connect to the closest middle-layer PS. (3)
Last, it generates the participant selection decision (both ai,j

and xi,j , yi,j , zi,j) and updates the related learning topology
variables (◆i,l, ⇠i,l) for DFL/HFL (Line 3/7/11).

Algorithm 5 Learning Topology Selection for Model mj

Input: Worker list worker list from ai,j , xi,j , yi,j , zi,j
Output: Learning topology selection bj,k, participant selec-
tion ai,j , xi,j , yi,j , zi,j and learning topology

1: ps = the closest one to workers in worker list among
remaining servers; calculate cfl cost with this topology

2: Determine the DFL topology for worker list and calcu-
late dfl cost for this DFL topology

3: mid ps, top ps = the closest ( j + 1) servers to
worker list outside worker list; determine the HFL
topology for worker list and calculate hfl cost

4: Choose the learning topology with the minimum learning
cost among cfl cost, dfl cost and hfl cost; update ai,j ,
bj,k, xi,j , yi,j , zi,j , ⇠i,l, ◆i,l with the selected topology

5: return ai,j , bj,k, xi,j , yi,j , zi,j and learning topology

When we select participant list participant listj (Line
2/3/9 in Algorithm 2), we provide two options: random selec-
tion or greedy selection. In the random method, we randomly
select j workers from the candidates set client listj (Line
1 of Algorithm 3). After that, for CFL we select a PS outside
worker list with the lowest communication cost to all work-
ers; for HFL, we select the top  j servers outside worker list

with the least communication cost to all workers as middle-
layer PS and take the ( j +1)th server as the top-layer PS. In
greedy method, we first pick PSs from outside client listj if
needed (Line 2-3 Algorithm 4). Then we iteratively select an
edge server that has the minimal total cost from the candidates
set client listj until we get j workers (Lines 4-7).

C. Stage 2: Learning Topology Selection

In the second stage, given the selected participants (mainly
the workers worker list) from stage 1, we aim to determine
the better learning topology for them. Thus, we choose the PSs
for CFL/HFL (from remaining servers outside worker list)
and determine the topology for DFL/HFL, then compare their
learning costs. The learning topology with the minimum cost
is selected and returned. Algorithm 5 shows the detail.

D. Complexity Analysis

We now provide the complexity analysis of our algorithm.
Theorem 2: The overall time complexity of our proposed

algorithm is O(
P

H

j=1 Z(N logN + j$j)), where N and H

are the numbers of edge servers and models, j and $j are
the numbers of required workers and candidate workers for
jth model, and Z is the maximal iteration max itr.
PROOF. In Algorithm 2, the participant selection is done in
one of two ways, either random selection or greedy selection
(Line 2/5/7). Random selection needs O(N logN) to find the
closest servers as PSs (Line 3 or Lines 5-6 in Algorithm 3).
Greedy selection (Algorithm 4) also needs O(N logN) for PS
selection (Lines 2-3), plus O(j$j) for iteratively selecting
j workers from client list (Lines 4-7). Thus, the worst case
of time complexity for selection is O(N logN +j$j). Then
Algorithm 2 also needs to determine the topology if DFL/HFL
with a computational complexity of O(2

j
) or O(j$j). Since



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant and Learning Topology Selection

28

Methodology

28

Algorithm 3 RandomSel() - Random Selection
Input: Candidates set client listj , learning topology bj,k,
and required number of workers j of model mj

Output: Participant list participant listj (including
worker list and PS lists ps, top ps, mid ps if needed)

1: worker list = random(client listj , j)
2: if bj,1 = 1 then
3: ps = the closest one to the selected workers among all

remaining edge servers outside worker list

4: else if bj,3 = 1 then
5: mid ps = the closest  j servers to the selected workers

among servers outside worker list

6: top ps = the ( j + 1)-th closest server to the selected
workers among servers outside worker list

7: return participant listj (i.e., worker list and PS lists)

Algorithm 4 GreedySel() - Greedy Selection
Input: Candidates set client listj , learning topology bj,k,
and required number of workers j of model mj

Output: Participant list participant listj

1: worker list = ?
2: ps = the closest server outside client listj to client listj

3: mid ps, top ps = the closest ( j+1) edge servers outside
client listj to client listj

4: for i = 1 to j do
5: for ci in client listj but not in worker list do
6: Calculate total cost(ci) if adding ci to worker list

based on the topology choice bj,k

7: Let c
⇤
i

be the one leading to minimal total cost(ci),
then add c

⇤
i

to worker list

8: return participant listj (i.e., worker list and PS lists)

based on the highest gradient norm or loss value while others
focus on the proportion of data size in each client or the
minimal completion time of each client. Here, we adopt the
idea of selecting edge servers with higher loss value as FL
worker candidates. For each model mj , we generate $j FL
worker candidates with the top $j high loss values to form
the client listj (Line 3 of Algorithm 1). In Line 5, we also
randomly select the initial learning topology.

B. Stage 1: Participant Selection

In the first stage, given the learning topology selection
bj,k of model mj , we would like to select the participants
for mj (including j workers and possible PSs if CFL or
HFL is used). We use Algorithm 2 to select participants
for each model mj . (1) It first selects j workers from the
candidates set client listj and decides PSs if needed from
the remaining edge servers (Line 2/5/9). (2) Then it determines
the specific topology for DFL/HFL (Line 6/10). For DFL, we
form a topology in that each participant connects to a fixed
number of closest neighbors. For HFL, after the PS decision,
each worker will connect to the closest middle-layer PS. (3)
Last, it generates the participant selection decision (both ai,j

and xi,j , yi,j , zi,j) and updates the related learning topology
variables (◆i,l, ⇠i,l) for DFL/HFL (Line 3/7/11).

Algorithm 5 Learning Topology Selection for Model mj

Input: Worker list worker list from ai,j , xi,j , yi,j , zi,j
Output: Learning topology selection bj,k, participant selec-
tion ai,j , xi,j , yi,j , zi,j and learning topology

1: ps = the closest one to workers in worker list among
remaining servers; calculate cfl cost with this topology

2: Determine the DFL topology for worker list and calcu-
late dfl cost for this DFL topology

3: mid ps, top ps = the closest ( j + 1) servers to
worker list outside worker list; determine the HFL
topology for worker list and calculate hfl cost

4: Choose the learning topology with the minimum learning
cost among cfl cost, dfl cost and hfl cost; update ai,j ,
bj,k, xi,j , yi,j , zi,j , ⇠i,l, ◆i,l with the selected topology

5: return ai,j , bj,k, xi,j , yi,j , zi,j and learning topology

When we select participant list participant listj (Line
2/3/9 in Algorithm 2), we provide two options: random selec-
tion or greedy selection. In the random method, we randomly
select j workers from the candidates set client listj (Line
1 of Algorithm 3). After that, for CFL we select a PS outside
worker list with the lowest communication cost to all work-
ers; for HFL, we select the top  j servers outside worker list

with the least communication cost to all workers as middle-
layer PS and take the ( j +1)th server as the top-layer PS. In
greedy method, we first pick PSs from outside client listj if
needed (Line 2-3 Algorithm 4). Then we iteratively select an
edge server that has the minimal total cost from the candidates
set client listj until we get j workers (Lines 4-7).

C. Stage 2: Learning Topology Selection

In the second stage, given the selected participants (mainly
the workers worker list) from stage 1, we aim to determine
the better learning topology for them. Thus, we choose the PSs
for CFL/HFL (from remaining servers outside worker list)
and determine the topology for DFL/HFL, then compare their
learning costs. The learning topology with the minimum cost
is selected and returned. Algorithm 5 shows the detail.

D. Complexity Analysis

We now provide the complexity analysis of our algorithm.
Theorem 2: The overall time complexity of our proposed

algorithm is O(
P

H

j=1 Z(N logN + j$j)), where N and H

are the numbers of edge servers and models, j and $j are
the numbers of required workers and candidate workers for
jth model, and Z is the maximal iteration max itr.
PROOF. In Algorithm 2, the participant selection is done in
one of two ways, either random selection or greedy selection
(Line 2/5/7). Random selection needs O(N logN) to find the
closest servers as PSs (Line 3 or Lines 5-6 in Algorithm 3).
Greedy selection (Algorithm 4) also needs O(N logN) for PS
selection (Lines 2-3), plus O(j$j) for iteratively selecting
j workers from client list (Lines 4-7). Thus, the worst case
of time complexity for selection is O(N logN +j$j). Then
Algorithm 2 also needs to determine the topology if DFL/HFL
with a computational complexity of O(2

j
) or O(j$j). Since



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant and Learning Topology Selection

29

Evaluation

• RAND-LTS: randomly select participants 
• NORM-LTS: select workers with highest  

gradient norm values [15] 
• LOSS-LTS: select workers based on the  

fraction of data and highest loss values [13]

Methods and Baselines 
• PS-LTS: the proposed method 
• PS-CFL: adopt CFL learning topology 
• PS-DFL: adopt DFL learning topology 
• PS-HFL: adopt HFL learning topology

Fig. 6.  Impact of number of edge servers on costs

Proposed method achieve best cost!



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant and Learning Topology Selection

30

Evaluation More models -> higher cost       &          more workers -> higher cost, but better accuracy



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Joint Participant and Learning Topology Selection

31

• Study joint participant and learning topology 
selection of multi-model FEL in the edge cloud: 
‣ select participants (both PS/midPS and workers) and 

learning topology (CFL, DFL, HFL) for each FL model  
‣ aim to minimize the total learning cost of all FL models 

• Propose two-stage iterative algorithm: 
‣ Stage 1 – participant selection, two additional selection 

strategies (Random, Greedy) based on high loss value 
‣ Stage 2 – learning topology selection, pick the learning 

topology with the minimum cost for each model 
• Conduct simulations to evaluate proposed 

methods:  
‣ the proposed methods can effectively reduce the total 

cost compared with existing methods

Summary



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Outline

32

Joint Participant Selection and 
Scheduling in FEL

Joint Participant Selection and Learning Scheduling
for Multi-Model Federated Edge Learning

Xinliang Wei, Jiyao Liu, Yu Wang
Department of Computer and Information Sciences, Temple University, Philadelphia, USA

{xinliang.wei,jiyao.liu,wangyu}@temple.edu

Abstract—As edge computing complements the cloud to enable
computational services right at the network edge, federated
learning (FL) can also benefit from close-by edge computing
infrastructure. However, most prior works on federated edge
learning (FEL) mainly focus on one shared global model during
the federated training in edge systems. In a real edge computing
scenario, there may co-exist multiple various FL models that are
owned by different entities and used by different applications.
Simultaneously training these models competes both computing
and networking resources in the shared edge system. Therefore,
in this work, we consider a multi-model federated edge learning
where multiple FEL models are being trained in the edge
network and edge servers can act as either parameter servers or
workers of these FEL models. We formulate a joint participant
selection and learning scheduling problem, which is a non-linear
mixed-integer program, aiming to minimize the total cost of all
FEL models while satisfying the desired convergence rate of
trained FEL models and the constrained edge resources. We then
design several algorithms by decoupling the original problem
into two or three sub-problems which can be solved respectively
and iteratively. Extensive simulations with real-world training
datasets and FEL models show that our proposed algorithms
can efficiently reduce the average total cost of all FEL models in
a multi-model FEL setting compared with existing algorithms.

I. INTRODUCTION

With the advances of Internet of Things, smart sensing and
artificial intelligence, there has been a tremendous trend that
data sources shift from the cloud center to the network edge.
Generally, in order to train a machine learning (ML) model,
one needs to upload the collected training data to the cloud
data center and train the model using the whole dataset there.
However, it is non-trivial to send a large amount of data to
the remote data center due to the limited network bandwidth
and data privacy concerns. Therefore, an alternative solution
is the distributed training of ML models at the network edge
or even on the user devices. However, there are still major
challenges to prevent users from performing efficient model
training at the edge. On one hand, the computing capacity
and network resource at the edge or user devices are limited

Edge Server

Model 1

Model 2

PS 1

Worker 1

Worker 2PS 2

Worker 1

Worker 2

Training Data
Worker 3 FEL of Model 2

FEL of Model 1

FEL Models

Fig. 1. Multi-model FEL example: two FEL models are trained with 3 and 4
participants (1 PS + 2 or 3 workers), respectively, in a shared edge network.

resources and the competition among various users, servers
and applications.

Recently, federated learning (FL) has been emerging as
a new distributed machine learning paradigm [1]–[3], which
enables multiple servers collaboratively learn a shared ML
model while keeping all training data on the local server. It is
very natural to deploy the FL framework in edge computing
to provide efficient distributed training at the network edge.
Therefore, federated edge learning (FEL) has been proposed
in various settings [4]–[12]. In FEL, edge servers can col-
laboratively train a shared global ML model by aggregating
local models trained at individual local servers, decoupling
the ability to do model training from the need to store data
in centralized server. More precisely, as shown in Fig. 1, in
each global iteration, edge severs, worked as workers, first
download the latest global model from the parameter server
(PS), and then perform a fixed number of local training based
on their local data. After that, edge servers will upload their
local model to the parameter server which is responsible for
aggregating parameters from different workers and sending the
aggregated global model back to each FEL worker. Previously,

Qutaum-Assistant Federated 
Learning Scheduling

Quantum Assisted Scheduling Algorithm for
Federated Learning in Distributed Networks

Xinliang Wei⇤, Lei Fan†, Yuanxiong Guo‡, Yanming Gong§, Zhu Han¶, Yu Wang⇤
⇤Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA

†Department of Engineering Technology, University of Houston, Houston, TX, USA
‡Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX, USA
§Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA

¶Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
{xinliang.wei, wangyu}@temple.edu, lfan8@central.uh.edu, {yuanxiong.guo, yanmin.gong}@utsa.edu, zhan2@uh.edu.

Abstract—The scheduling problem for federated learning (FL)
with multiple models in a distributed network is challenging,
as it involves NP-hard mixed-integer nonlinear programming.
Moreover, it requires optimal participant selection and learning
rate determination among multiple FL models to avoid high
training costs and resource competition. To overcome those chal-
lenges, in literature the Benders’ decomposition algorithm (BD)
can deal with mixed integer problems, however, it still suffers
from limited scalability. To address this issue, in this paper, we
present the Hybrid Quantum-Classical Benders’ Decomposition
(HQCBD) algorithm, which combines the power of quantum
and classical computing to solve the joint participant selection
and learning scheduling problem in multi-model FL. HQCBD
decomposes the optimization problem into a master problem
with binary variables and small subproblems with continuous
variables. This collaboration maximizes the potential of both
quantum and classical computing, and optimizes the complex
joint optimization problem. Simulation on the commercial D-
Wave quantum annealing machine demonstrates the effectiveness
and robustness of the proposed method, with up to 18% improve-
ment of iterations and 81% improvement of computation time
over BD algorithm on classical CPUs even at small scales.

Index Terms—Federated learning, participant selection, learn-
ing scheduling, hybrid quantum-classical optimization

I. INTRODUCTION

With the use of quantum superposition and entanglement,
quantum computing (QC) has demonstrated a quantum ad-
vantage over classical computing in random quantum circuit
sampling [1], Gaussian boson sampling [2], and combinatorial
optimization [3]–[5]. In this paper, by leveraging the parallel
computing capability of quantum computing, we focus on de-
signing a new quantum-assisted scheduling algorithm to solve
a complex joint participant selection and learning scheduling
problem for federated learning (FL) in distributed networks.

Federated learning is emerging as an effective and privacy-
preserving machine learning (ML) paradigm [6]–[9], which
leverages both the computing capabilities and local datasets
available at the distributed clients to collaboratively train
an ML model and exchange model parameters periodically
among the parameter server (PS) and FL clients (or workers).
FL can not only prevent the leakage of personal privacy,
but also make full use of massive computing resources on
distributed clients. However, there are two obstacles when
deploying the FL framework in distributed networks. First,

FL Models

Distributed Server Model broadcasting & global aggregating 

Local computation

PS 1Worker 1 Worker 2

Worker 3
PS 2

Worker 2

Worker 1

Worker 3

Fig. 1: The training process of multi-model federated learning.

the computing capability and network resources of servers
and their data distribution are heterogeneous. Some low-
performance servers may decelerate the convergence process
and diminish the training performance. Also, the dispersed
computing resources and large network latency may lead to
high training costs. Second, for the practical scenario, training
multiple different models in the shared distributed network
simultaneously leads to competition for computing and com-
munication resources. As shown in Fig. 1, two FL models
are trained concurrently and each FL model requires one PS
and three workers for model training. In this case, which FL
model is preferentially served at which server directly affects
the total training cost of all FL models. To this end, appropriate
participant selection and learning schedules are fairly crucial
for multi-model FL training.

Therefore, we mainly concentrate on the joint participant
selection and learning scheduling problem in multi-model FL
training scenarios. It should be emphasized that each server in
distributed networks can serve as a PS or client and the partici-
pant selection includes the selection of both the PS and clients
for each FL model. We denote a client as an FL worker in our
work for simplicity. It is worth noting that both participant
(client) selection and learning scheduling problems have been
studied in FL using classical computers recently. For instance,
Nishio and Yonetani [10] studied a client selection problem in
the decentralized FL where a set of mobile clients are chosen

Joint Participant and Topology 
Selection in FEL

1

Joint Participant and Learning Topology
Selection in Federated Edge Learning

Xinliang Wei, Student Member, IEEE , Kejiang Ye, Member, IEEE , Xinghua Shi, Member, IEEE ,
Cheng-Zhong Xu, Fellow, IEEE and Yu Wang, Fellow, IEEE

Abstract—Deploying federated learning (FL) in edge clouds is a challenging task, particularly when multiple models are trained
concurrently in resource-constrained edge environments. Current research on federated edge learning primarily focuses on client
selection for training a single FL model with a fixed learning topology. Our experiments demonstrate that FL models with adaptable
topologies result in lower learning costs than those with fixed topologies. In this paper, we investigate the problem of jointly selecting
participants and learning topologies for multiple FL models being trained simultaneously in the edge cloud. We formulate this as an
integer programming problem, with the goal of minimizing total learning costs for all FL models, subject to edge resource constraints.
We propose a two-stage algorithm that decouples the original problem into two sub-problems and addresses them iteratively. By
allowing FL models to independently select participants and learning topologies, our method improves resource competition and load
balancing in edge clouds. Our extensive experiments with real-world networks and FL datasets confirm the superior performance of
our algorithm in terms of average total cost compared to prior methods for multi-model FL.

Index Terms—Edge Computing, Federated Learning, Participant Selection, Learning Topology

F

1 INTRODUCTION

Federated Learning (FL) [1]–[7] is an efficient approach for
improving machine learning (ML) performance and pro-
viding better privacy solutions for data owners. It enables
multiple devices to collaborate and train a shared global
ML model by aggregating local models trained on each
device. FL ensures that training data remains local to protect
users’ privacy, and only transmits essential model data
(e.g. gradients). With the growth of smart sensing, mobile
computing, and wireless networking, there is also a trend
of moving data sources and intelligent computation from
centralized clouds to edge clouds, to provide agile services
to mobile devices and users. Therefore, it is important to
deploy FL frameworks on edge clouds and provide efficient
distributed training for mobile devices at the network edge.
Such solutions have been studied [8]–[12] and can support
many emerging applications [13], such as mobile AI, AIoT
or AR/XR applications.

Current FL frameworks can be categorized into three
types based on the learning topology used for model ag-
gregation: centralized FL (CFL), hierarchical FL (HFL), and
decentralized FL (DFL). CFL is the classical FL [10] where
the parameter server (PS) and several workers form a star

train the model by using their local data. After each worker
performs several local updates, the local model will be
forwarded to the PS for global aggregation. The potential
bottleneck of CFL is the communication congestion at the
PS since all workers have to communicate with the PS
concurrently for multiple rounds. In addition, the PS in CFL
may cause a single point of failure. Therefore, DFL [11], [14]
has been proposed, where each worker only communicates
with its neighbors (with mutual trust) by exchanging their
local models and there is no centralized PS, as shown in
Fig. 1(b). While such distributed P2P learning topology
increases the robustness of FL, it might suffer from larger
communication costs or slower convergence. Recently, HFL
[15]–[17] has been proposed by introducing several middle-
layer PSs (or called group leaders) in a hierarchical topology
such that each of them only aggregates a group model from
workers inside its group and sends the group model to
the PS for global aggregation, as shown in Fig. 1(c). HFL
can effectively hide local updates submitted by individual
workers within a group, thereby enhancing privacy pro-
tection from malicious or honest-but-curious PS [15]. HFL
can also provide better scalability with larger workers but
may increase the total latency due to multiple exchanges



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Hybrid Quantum-Classical FL Optimization

33

Motivation

• Quantum Computing (QC) 
‣ has brought new computing capability 
‣ has been used as a powerful tool for 

optimization[16,17], especially, Quantum 
Annealing (QA) 

• Applying QC to our FL scheduling 
problem 
‣ aim to solve the MINLP faster 
‣ propose a Hybrid Quantum-Classical 

Bender’s Decomposition (HQCBD)
[16] Quantum computing based hybrid solution strategies for large-scale discrete-continuous 
optimization problems, Comp. & Chem. Eng., 2020. 
[17] Hybrid quantum benders’ decomposition for mixed-integer linear programming, IEEE WCNC, 2022

Joint participant selection and learning scheduling



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Hybrid Quantum-Classical FL Optimization

34

Methodology

34

Algorithm 1 Hybrid Quantum-Classical Benders’ Decompo-
sition (HQCBD) Method

Input: Distributed network with N servers V , W FL mod-
els M , Coefficient of the objective function and constraints
in master problem and subproblem
Output: PS selection x0, worker selection y0, and local
convergence rate %0

1: Initialize upper/lower bound of �, � = +1, � = �1
2: Initialize threshold ✏ = 0.001, max itr = 100, itr = 1
3: while |�� �| > ✏ and itr < max itr do
4: P  Appropriate penalty numbers or arrays
5: Q Reformulate both objective and constraints in (32)

and construct QUBO formulation as (41)
6: x0, y0, z0  Solve problem (41) by quantum computer
7: �  Extract w and replace � with �̂(w) as (40)
8: SUP (x, y, z) Solve problem (29) with fixed x0, y0, z0
9: Extract %0 from SUP (x, y, z)

10: �  SUP (x, y, z)
11: Add a new benders’ cut to the master problem as (38)
12: itr+ = 1
13: end while
14: return x0, y0, %0

quantum annealer to malfunction due to coefficient explosion.
In contrast, a small penalty can make the quantum annealer
ignore the constraints. A well-tuned penalty will lead to a
fairly high probability of the quantum solver giving the correct
answer.

IV. PERFORMANCE EVALUATION

In this section, we simulated a distributed network environ-
ment and conducted experiments of realistic FL tasks using
publicly available datasets. To validate the feasibility of our
hybrid quantum-classical optimization algorithm, we run the
proposed algorithms on a hybrid D-Wave quantum processing
unit (QPU). We accessed the D-Wave system provided by
Leap quantum cloud service [28]. Based on the Pegasus
topology, the D-Wave system also has over 5, 000 qubits and
35, 000 couplers, which can solve complex problems of up to
1, 000, 000 variables and 100, 000 constraints. We performed
a number of test cases that can be resolved in under 100
iterations, but only due to the high cost of QPU utilization
and the developer’s time constraints.

A. Simulation Setup

Network Setting: Our distributed computing environment
consists of 100 servers where the topology depends on the
real-world EUA-Dataset [29] and the Internet topology zoo
[30]. EUA-Dataset is widely used in mobile computing and
contains the geographical locations of 125 cellular base sta-
tions in the Melbourne central business district area, while the
Internet topology zoo is a popular network topology dataset
that includes a number of historical network maps all over
the world. We randomly select a set of servers from these
topology datasets to conduct simulations. In each simulation,
each server has a maximal storage capacity ci, CPU frequency

fi and link bandwidth bj belonging to the ranges of 1, 024 ⇠
2, 048GB, 2 ⇠ 5GHz, and 512 ⇠ 1, 024Mbps, respectively.

Datasets and FL models: We conduct extensive experi-
ments on the following real-world datasets: California Housing
dataset [31], MNIST [32], Fashion-MNIST (FMNIST) [33],
and CIFAR-10 [34]. These are well-known ML datasets for
linear regression, logistic regression, or image classification
tasks. Two models with convex loss functions are implemented
on the above real-world datasets for performance evaluation,
which are (i) Linear Regression with MES loss on the Cali-
fornia Housing dataset and (ii) Logistic Regression with the
cross-entropy loss on MNIST. We are also interested in the
performance of our proposed methods on FL models with non-
convex loss functions. Thus, three datasets, MNIST, FMNIST,
and CIFAR-10, are used to train convolutional neural network
(CNN) models with different structures.

Benchmarks and Metrics: We compare our proposed
HQCBD with three baseline strategies: classical Benders’
decomposition (CBD), random algorithm (RAND), and two-
stage iterative optimization algorithm (TWSO) [15]. CBD uses
a classical LP solver (Gurobi [35] or Scipy [36]) to solve the
master problem and subproblems. RAND randomly generates
the random decisions on the model’s parameter server, FL
workers, and local convergence rate under certain constraints.
TWSO is a previous algorithm from [15] that decomposes the
original problem into two subproblems (participant selection
and learning scheduling) and solves them iteratively. Since
the optimization problem in [15] has a different learning cost
function, we adjust their method to our optimization problem
for fairness. The following metrics are adopted to compare the
performances of our proposed methods and the baselines: the
total cost of FL training, the loss or accuracy of FL models,
the number of iterations, and the solver accessing time.

TABLE I: Iteration of CBD and HQCBD over three different
cases. Here, the set up column shows {# of servers, # of
models, # of workers per model} used in each case.

Case Set up # of Variables Itr. of CBD Itr. of HQCBD
1 {7, 1, 3} 63 32 31
2 {7, 2, 2} 126 55 45
3 {9, 2, 3} 198 91 89

B. Performance of HQCBD

To demonstrate the feasibility and performance of our
proposed HQCBD, we conduct three sets of small-scale exper-
iments with different case settings (servers are selected from
100 servers). As shown in Table I, there are three cases. The
first case includes 7 servers, 1 FL model, and 3 workers per
model with a total of 63 binary variables. The second case has
7 servers, 2 FL models, and 2 workers per model with a total
of 126 binary variables. The third case consists of 9 servers,
2 FL models, and 3 workers per model with a total of 198
binary variables. For each case, we perform both CBD and
HQCBD. Fig. 3 and Table I show the related results of their
performances.

QUBO: Quadratic Unconstrained Binary Optimization



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Hybrid Quantum-Classical FL Optimization

35

Methodology

1. How to decompose this original 

problem? 

2. How to convert the problem into QUBO 

form as an input to the D-wave 

Quantum Annealing computer? 

3. How to design a novel hybrid quantum-

classical strategy that solves the 

corresponding problem in fewer 

iteration?

• Challenges in Quantum based solution

QUBO: Quadratic Unconstrained Binary Optimization



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Hybrid Quantum-Classical FL Optimization

36

Benders’ Decomposition

1. Reformulate the original problem

2. Linearize the objective function and constraints

1. The binary variables will be solved in the master problem. 

2. The continuous variables will be solved in the subproblem.

min
x,y,z,u,w

WX

j=1

[uj ·
NX

k=1

NX

i=1

a1,i,j,k· zk,i,j + wj ·
NX

i=1

a2,i,j · yi,j

+ uj ·
NX

i=1

a3,i,j ·xi,j +
NX

i=1

a4,i· (xi,j + yi,j)]

(13)
s.t. (6)� (11),

zk,i,j  yi,j , zk,i,j  xk,j , (14)
zk,i,j � xk,j + yi,j � 1, (15)
b1  uj  b2, b3  wj  b4, (16)

where uj = 1
1�%j

, wj = uj log2(
uj

uj�1 ), b1 = 1.01, b2 = 100,
b3 = 1.435 and b4 = 6.725.

Note that Problem (13) consists of several terms that
are the products of integer and continuous variables, e.g.
uj · zk,i,j , wj · yi,j . Hence, we further introduce variables ok,i,j ,
pi,j and qi,j to represent the product of an integer variable and
a continuous variable as below.

min
x,y,z,u,w,o,p,q

WX

j=1

[
NX

k=1

NX

i=1

a1,i,j,k· ok,i,j +
NX

i=1

a2,i,j · pi,j

+
NX

i=1

a3,i,j · qi,j +
NX

i=1

a4,i· (xi,j + yi,j)] (17)

s.t. (6)� (11), (14)� (16),

b1zk,i,j  ok,i,j  b2zk,i,j , (18)
uj � ok,i,j  b2(1� zk,i,j), (19)
uj � ok,i,j � b1(1� zk,i,j), (20)
b3yi,j  pi,j  b4yi,j , (21)
wj � pi,j  b4(1� yi,j), (22)
wj � pi,j � b3(1� yi,j), (23)
b1xi,j  qi,j  b2xi,j , (24)
uj � qi,j  b4(1� xi,j), (25)
uj � qi,j � b3(1� xi,j). (26)

So far, we have linearized the products of binary variables
(x, y, and z) as well as the products of binary and continu-
ous variables (u,w, o, p, q), and therefore can apply Benders’
decomposition. In problem (17), for each possible choice x̄,
ȳ and z̄, we find the best choices for u,w, o, p, q by solving
a linear program. So we regard u,w, o, p, q as a function of
x, y, z. Then we replace the contribution of u,w, o, p, q to
the objective with a scalar variable representing the value
of the best choice for a given x̄, ȳ and z̄. We start with a
crude approximation to the contribution of u,w, o, p, q and
then generate a sequence of dual solutions to tighten up the
approximation.

Next, we will detail the formulation of the corresponding
subproblem (LP problems) and master problem (an integer
programming (IP) problem) after the Benders’ decomposition.
B. Classical Optimization for Subproblem

For the subproblem, we consider a distributed optimization
where each server can solve its own optimal subproblem.

Based on the decomposition in Section III-A, the subproblem
for each server is defined as follows.

min
u,w,o,p,q

WX

j=1

(
NX

k=1

a1,i,j,k· ok,i,j + a2,i,j · pi,j + a3,i,j · qi,j)

(27)
s.t. (16), (18)� (26). (28)

Let fi(x, y, z) represent the subproblem value of i-th server,
then the overall subproblem is

SUP (x, y, z) =
NX

i=1

fi(x, y, z)

The subproblem for each server can be further represented
in a general form as follows.

fi(x, y, z) = min d|
i Yi

s.t. AYi � BXi + C,

where Yi = [ok,i,j , pi,j , qi,j , uj ,wj ]|, Xi = [xi,j , yi,j , zk,i,j ]|,
and A,B, C are coefficients in the constraints. In addition, the
dual problem of the subproblem is defined below and ⇡i is
the dual variable.

max (BXi + C)|⇡i (29)
s.t. AT⇡i  di, (30)

⇡i � 0, (31)

where di =
⇥
Ei Fi Gi 0 · · · 0

⇤|, Ei =⇥
a1,i,1,1 ... a1,i,1,N ... a1,i,W,1 ... a1,i,W,N

⇤
,

Fi =
⇥
a2,i,1 ... a2,i,W

⇤
, Gi =

⇥
a3,i,1 ... a3,i,W

⇤
.

This problem can be solved by a classical LP solver.

C. Quantum Formulation for Master Problem
Based on the dual problem of the subproblem, the master

problem can be defined as follows.

min
x,y,z

WX

j=1

[
NX

i=1

a4,i· (xi,j + yi,j) + �] (32)

s.t. (6)� (10),

xi,j 2 {0, 1}, yi,j 2 {0, 1}, 8i, j, (33)
zk,i,j  yi,j , 8i, j, k, (34)
zk,i,j  xk,j , 8i, j, k, (35)
zk,i,j � xk,j + yi,j � 1, 8i, j, k, (36)
� � �down, (37)
� � (BX + C)|⇡l, (38)

where � is the optimal value of the subproblem aggregated
from all servers at the current iteration. Constraints (37) and
(38) are the corresponding Benders’ cuts.

QUBO Formulation. Quantum annealers are able to solve
the optimization problem in a QUBO formulation. To leverage
the state-of-art quantum annealers provided by D-Wave, the
master problem has to be converted to the corresponding
QUBO formulation. Due to the rule of QUBO setup, we
have to reformulate our constrained master problem as the



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Hybrid Quantum-Classical FL Optimization

37

Subproblem Master Problem

This problem can be solved by a 
classical LP solver (e.g. Scipy, Gurobi).

The overall master problem (MILP)

Benders’ cuts

The general form

The dual problem

min
x,y,z,u,w

WX

j=1

[uj ·
NX

k=1

NX

i=1

a1,i,j,k· zk,i,j + wj ·
NX

i=1

a2,i,j · yi,j

+ uj ·
NX

i=1

a3,i,j ·xi,j +
NX

i=1

a4,i· (xi,j + yi,j)]

(13)
s.t. (6)� (11),

zk,i,j  yi,j , zk,i,j  xk,j , (14)
zk,i,j � xk,j + yi,j � 1, (15)
b1  uj  b2, b3  wj  b4, (16)

where uj = 1
1�%j

, wj = uj log2(
uj

uj�1 ), b1 = 1.01, b2 = 100,
b3 = 1.435 and b4 = 6.725.

Note that Problem (13) consists of several terms that
are the products of integer and continuous variables, e.g.
uj · zk,i,j , wj · yi,j . Hence, we further introduce variables ok,i,j ,
pi,j and qi,j to represent the product of an integer variable and
a continuous variable as below.

min
x,y,z,u,w,o,p,q

WX

j=1

[
NX

k=1

NX

i=1

a1,i,j,k· ok,i,j +
NX

i=1

a2,i,j · pi,j

+
NX

i=1

a3,i,j · qi,j +
NX

i=1

a4,i· (xi,j + yi,j)] (17)

s.t. (6)� (11), (14)� (16),

b1zk,i,j  ok,i,j  b2zk,i,j , (18)
uj � ok,i,j  b2(1� zk,i,j), (19)
uj � ok,i,j � b1(1� zk,i,j), (20)
b3yi,j  pi,j  b4yi,j , (21)
wj � pi,j  b4(1� yi,j), (22)
wj � pi,j � b3(1� yi,j), (23)
b1xi,j  qi,j  b2xi,j , (24)
uj � qi,j  b4(1� xi,j), (25)
uj � qi,j � b3(1� xi,j). (26)

So far, we have linearized the products of binary variables
(x, y, and z) as well as the products of binary and continu-
ous variables (u,w, o, p, q), and therefore can apply Benders’
decomposition. In problem (17), for each possible choice x̄,
ȳ and z̄, we find the best choices for u,w, o, p, q by solving
a linear program. So we regard u,w, o, p, q as a function of
x, y, z. Then we replace the contribution of u,w, o, p, q to
the objective with a scalar variable representing the value
of the best choice for a given x̄, ȳ and z̄. We start with a
crude approximation to the contribution of u,w, o, p, q and
then generate a sequence of dual solutions to tighten up the
approximation.

Next, we will detail the formulation of the corresponding
subproblem (LP problems) and master problem (an integer
programming (IP) problem) after the Benders’ decomposition.
B. Classical Optimization for Subproblem

For the subproblem, we consider a distributed optimization
where each server can solve its own optimal subproblem.

Based on the decomposition in Section III-A, the subproblem
for each server is defined as follows.

min
u,w,o,p,q

WX

j=1

(
NX

k=1

a1,i,j,k· ok,i,j + a2,i,j · pi,j + a3,i,j · qi,j)

(27)
s.t. (16), (18)� (26). (28)

Let fi(x, y, z) represent the subproblem value of i-th server,
then the overall subproblem is

SUP (x, y, z) =
NX

i=1

fi(x, y, z)

The subproblem for each server can be further represented
in a general form as follows.

fi(x, y, z) = min d|
i Yi

s.t. AYi � BXi + C,

where Yi = [ok,i,j , pi,j , qi,j , uj ,wj ]|, Xi = [xi,j , yi,j , zk,i,j ]|,
and A,B, C are coefficients in the constraints. In addition, the
dual problem of the subproblem is defined below and ⇡i is
the dual variable.

max (BXi + C)|⇡i (29)
s.t. AT⇡i  di, (30)

⇡i � 0, (31)

where di =
⇥
Ei Fi Gi 0 · · · 0

⇤|, Ei =⇥
a1,i,1,1 ... a1,i,1,N ... a1,i,W,1 ... a1,i,W,N

⇤
,

Fi =
⇥
a2,i,1 ... a2,i,W

⇤
, Gi =

⇥
a3,i,1 ... a3,i,W

⇤
.

This problem can be solved by a classical LP solver.

C. Quantum Formulation for Master Problem
Based on the dual problem of the subproblem, the master

problem can be defined as follows.

min
x,y,z

WX

j=1

[
NX

i=1

a4,i· (xi,j + yi,j) + �] (32)

s.t. (6)� (10),

xi,j 2 {0, 1}, yi,j 2 {0, 1}, 8i, j, (33)
zk,i,j  yi,j , 8i, j, k, (34)
zk,i,j  xk,j , 8i, j, k, (35)
zk,i,j � xk,j + yi,j � 1, 8i, j, k, (36)
� � �down, (37)
� � (BX + C)|⇡l, (38)

where � is the optimal value of the subproblem aggregated
from all servers at the current iteration. Constraints (37) and
(38) are the corresponding Benders’ cuts.

QUBO Formulation. Quantum annealers are able to solve
the optimization problem in a QUBO formulation. To leverage
the state-of-art quantum annealers provided by D-Wave, the
master problem has to be converted to the corresponding
QUBO formulation. Due to the rule of QUBO setup, we
have to reformulate our constrained master problem as the

min
x,y,z,u,w

WX

j=1

[uj ·
NX

k=1

NX

i=1

a1,i,j,k· zk,i,j + wj ·
NX

i=1

a2,i,j · yi,j

+ uj ·
NX

i=1

a3,i,j ·xi,j +
NX

i=1

a4,i· (xi,j + yi,j)]

(13)
s.t. (6)� (11),

zk,i,j  yi,j , zk,i,j  xk,j , (14)
zk,i,j � xk,j + yi,j � 1, (15)
b1  uj  b2, b3  wj  b4, (16)

where uj = 1
1�%j

, wj = uj log2(
uj

uj�1 ), b1 = 1.01, b2 = 100,
b3 = 1.435 and b4 = 6.725.

Note that Problem (13) consists of several terms that
are the products of integer and continuous variables, e.g.
uj · zk,i,j , wj · yi,j . Hence, we further introduce variables ok,i,j ,
pi,j and qi,j to represent the product of an integer variable and
a continuous variable as below.

min
x,y,z,u,w,o,p,q

WX

j=1

[
NX

k=1

NX

i=1

a1,i,j,k· ok,i,j +
NX

i=1

a2,i,j · pi,j

+
NX

i=1

a3,i,j · qi,j +
NX

i=1

a4,i· (xi,j + yi,j)] (17)

s.t. (6)� (11), (14)� (16),

b1zk,i,j  ok,i,j  b2zk,i,j , (18)
uj � ok,i,j  b2(1� zk,i,j), (19)
uj � ok,i,j � b1(1� zk,i,j), (20)
b3yi,j  pi,j  b4yi,j , (21)
wj � pi,j  b4(1� yi,j), (22)
wj � pi,j � b3(1� yi,j), (23)
b1xi,j  qi,j  b2xi,j , (24)
uj � qi,j  b4(1� xi,j), (25)
uj � qi,j � b3(1� xi,j). (26)

So far, we have linearized the products of binary variables
(x, y, and z) as well as the products of binary and continu-
ous variables (u,w, o, p, q), and therefore can apply Benders’
decomposition. In problem (17), for each possible choice x̄,
ȳ and z̄, we find the best choices for u,w, o, p, q by solving
a linear program. So we regard u,w, o, p, q as a function of
x, y, z. Then we replace the contribution of u,w, o, p, q to
the objective with a scalar variable representing the value
of the best choice for a given x̄, ȳ and z̄. We start with a
crude approximation to the contribution of u,w, o, p, q and
then generate a sequence of dual solutions to tighten up the
approximation.

Next, we will detail the formulation of the corresponding
subproblem (LP problems) and master problem (an integer
programming (IP) problem) after the Benders’ decomposition.
B. Classical Optimization for Subproblem

For the subproblem, we consider a distributed optimization
where each server can solve its own optimal subproblem.

Based on the decomposition in Section III-A, the subproblem
for each server is defined as follows.

min
u,w,o,p,q

WX

j=1

(
NX

k=1

a1,i,j,k· ok,i,j + a2,i,j · pi,j + a3,i,j · qi,j)

(27)
s.t. (16), (18)� (26). (28)

Let fi(x, y, z) represent the subproblem value of i-th server,
then the overall subproblem is

SUP (x, y, z) =
NX

i=1

fi(x, y, z)

The subproblem for each server can be further represented
in a general form as follows.

fi(x, y, z) = min d|
i Yi

s.t. AYi � BXi + C,

where Yi = [ok,i,j , pi,j , qi,j , uj ,wj ]|, Xi = [xi,j , yi,j , zk,i,j ]|,
and A,B, C are coefficients in the constraints. In addition, the
dual problem of the subproblem is defined below and ⇡i is
the dual variable.

max (BXi + C)|⇡i (29)
s.t. AT⇡i  di, (30)

⇡i � 0, (31)

where di =
⇥
Ei Fi Gi 0 · · · 0

⇤|, Ei =⇥
a1,i,1,1 ... a1,i,1,N ... a1,i,W,1 ... a1,i,W,N

⇤
,

Fi =
⇥
a2,i,1 ... a2,i,W

⇤
, Gi =

⇥
a3,i,1 ... a3,i,W

⇤
.

This problem can be solved by a classical LP solver.

C. Quantum Formulation for Master Problem
Based on the dual problem of the subproblem, the master

problem can be defined as follows.

min
x,y,z

WX

j=1

[
NX

i=1

a4,i· (xi,j + yi,j) + �] (32)

s.t. (6)� (10),

xi,j 2 {0, 1}, yi,j 2 {0, 1}, 8i, j, (33)
zk,i,j  yi,j , 8i, j, k, (34)
zk,i,j  xk,j , 8i, j, k, (35)
zk,i,j � xk,j + yi,j � 1, 8i, j, k, (36)
� � �down, (37)
� � (BX + C)|⇡l, (38)

where � is the optimal value of the subproblem aggregated
from all servers at the current iteration. Constraints (37) and
(38) are the corresponding Benders’ cuts.

QUBO Formulation. Quantum annealers are able to solve
the optimization problem in a QUBO formulation. To leverage
the state-of-art quantum annealers provided by D-Wave, the
master problem has to be converted to the corresponding
QUBO formulation. Due to the rule of QUBO setup, we
have to reformulate our constrained master problem as the

min
x,y,z,u,w

WX

j=1

[uj ·
NX

k=1

NX

i=1

a1,i,j,k· zk,i,j + wj ·
NX

i=1

a2,i,j · yi,j

+ uj ·
NX

i=1

a3,i,j ·xi,j +
NX

i=1

a4,i· (xi,j + yi,j)]

(13)
s.t. (6)� (11),

zk,i,j  yi,j , zk,i,j  xk,j , (14)
zk,i,j � xk,j + yi,j � 1, (15)
b1  uj  b2, b3  wj  b4, (16)

where uj = 1
1�%j

, wj = uj log2(
uj

uj�1 ), b1 = 1.01, b2 = 100,
b3 = 1.435 and b4 = 6.725.

Note that Problem (13) consists of several terms that
are the products of integer and continuous variables, e.g.
uj · zk,i,j , wj · yi,j . Hence, we further introduce variables ok,i,j ,
pi,j and qi,j to represent the product of an integer variable and
a continuous variable as below.

min
x,y,z,u,w,o,p,q

WX

j=1

[
NX

k=1

NX

i=1

a1,i,j,k· ok,i,j +
NX

i=1

a2,i,j · pi,j

+
NX

i=1

a3,i,j · qi,j +
NX

i=1

a4,i· (xi,j + yi,j)] (17)

s.t. (6)� (11), (14)� (16),

b1zk,i,j  ok,i,j  b2zk,i,j , (18)
uj � ok,i,j  b2(1� zk,i,j), (19)
uj � ok,i,j � b1(1� zk,i,j), (20)
b3yi,j  pi,j  b4yi,j , (21)
wj � pi,j  b4(1� yi,j), (22)
wj � pi,j � b3(1� yi,j), (23)
b1xi,j  qi,j  b2xi,j , (24)
uj � qi,j  b4(1� xi,j), (25)
uj � qi,j � b3(1� xi,j). (26)

So far, we have linearized the products of binary variables
(x, y, and z) as well as the products of binary and continu-
ous variables (u,w, o, p, q), and therefore can apply Benders’
decomposition. In problem (17), for each possible choice x̄,
ȳ and z̄, we find the best choices for u,w, o, p, q by solving
a linear program. So we regard u,w, o, p, q as a function of
x, y, z. Then we replace the contribution of u,w, o, p, q to
the objective with a scalar variable representing the value
of the best choice for a given x̄, ȳ and z̄. We start with a
crude approximation to the contribution of u,w, o, p, q and
then generate a sequence of dual solutions to tighten up the
approximation.

Next, we will detail the formulation of the corresponding
subproblem (LP problems) and master problem (an integer
programming (IP) problem) after the Benders’ decomposition.
B. Classical Optimization for Subproblem

For the subproblem, we consider a distributed optimization
where each server can solve its own optimal subproblem.

Based on the decomposition in Section III-A, the subproblem
for each server is defined as follows.

min
u,w,o,p,q

WX

j=1

(
NX

k=1

a1,i,j,k· ok,i,j + a2,i,j · pi,j + a3,i,j · qi,j)

(27)
s.t. (16), (18)� (26). (28)

Let fi(x, y, z) represent the subproblem value of i-th server,
then the overall subproblem is

SUP (x, y, z) =
NX

i=1

fi(x, y, z)

The subproblem for each server can be further represented
in a general form as follows.

fi(x, y, z) = min d|
i Yi

s.t. AYi � BXi + C,

where Yi = [ok,i,j , pi,j , qi,j , uj ,wj ]|, Xi = [xi,j , yi,j , zk,i,j ]|,
and A,B, C are coefficients in the constraints. In addition, the
dual problem of the subproblem is defined below and ⇡i is
the dual variable.

max (BXi + C)|⇡i (29)
s.t. AT⇡i  di, (30)

⇡i � 0, (31)

where di =
⇥
Ei Fi Gi 0 · · · 0

⇤|, Ei =⇥
a1,i,1,1 ... a1,i,1,N ... a1,i,W,1 ... a1,i,W,N

⇤
,

Fi =
⇥
a2,i,1 ... a2,i,W

⇤
, Gi =

⇥
a3,i,1 ... a3,i,W

⇤
.

This problem can be solved by a classical LP solver.

C. Quantum Formulation for Master Problem
Based on the dual problem of the subproblem, the master

problem can be defined as follows.

min
x,y,z

WX

j=1

[
NX

i=1

a4,i· (xi,j + yi,j) + �] (32)

s.t. (6)� (10),

xi,j 2 {0, 1}, yi,j 2 {0, 1}, 8i, j, (33)
zk,i,j  yi,j , 8i, j, k, (34)
zk,i,j  xk,j , 8i, j, k, (35)
zk,i,j � xk,j + yi,j � 1, 8i, j, k, (36)
� � �down, (37)
� � (BX + C)|⇡l, (38)

where � is the optimal value of the subproblem aggregated
from all servers at the current iteration. Constraints (37) and
(38) are the corresponding Benders’ cuts.

QUBO Formulation. Quantum annealers are able to solve
the optimization problem in a QUBO formulation. To leverage
the state-of-art quantum annealers provided by D-Wave, the
master problem has to be converted to the corresponding
QUBO formulation. Due to the rule of QUBO setup, we
have to reformulate our constrained master problem as the



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Hybrid Quantum-Classical FL Optimization

38

QUBO Formulation

Master problem need to be reformulated as a pure ILP

1. Find the best penalty coefficients of the 
constraints.

2. Use a binary vector  to replace the continuous 
variable 

#
&

3. The final QUBO formulation of the master problem

QUBO (Quadratic Unconstrained Binary Optimization) can be applied now.
[18] Quantum bridge analytics i: a tutorial on formulating and using qubo models, J Oper Res, vol. 17, pp. 335–371, Nov. 2019

…

unconstrained QUBO by using penalties. The basic idea is to
find the best penalty coefficients of the constraints. Following
the principle of constraint-penalty pairs in [27], the constraints
are converted as follows:

(6) ) ⇠1 : P 1
i,j(xi,jµjj � ci +

l̄1X

l=0

2ls1l )
2,

where l̄1 = dlog2[ci �min
x

(xi,jµjj)]e.

(6) ) ⇠2 : P 2
i,j(xi,j�j � fi +

l̄2X

l=0

2ls2l )
2,

where l̄2 = dlog2[fi �min
x

(xi,j�j)]e.

(7) ) ⇠3 : P 3
i,j(yi,jµj � ci +

l̄3X

l=0

2ls3l )
2,

where l̄3 = dlog2[ci �min
y

(yi,jµj)]e.

(7) ) ⇠4 : P 4
i,j(yi,j�j � fi +

l̄4X

l=0

2ls4l )
2,

where l̄4 = dlog2[fi �min
y

(yi,j�j)]e.

(8) ) ⇠5 : P 5
i,j(

NX

i=1

xi,j � 1)2,

(8) ) ⇠6 : P 6
i,j(

NX

i=1

yi,j � j)
2,

(9) ) ⇠7 : P 7
i,j [

WX

j=1

(xi,j + yi,j)� 1 +
l̄7X

l=0

2ls7l ]
2,

where l̄10 = dlog2[1�min
x,y

WX

j=1

(xi,j + yi,j)]e.

(34) ) ⇠8 : P 8
i,j(zk,i,j � yi,jzk,i,j).

(35) ) ⇠9 : P 9
i,j(zk,i,j � xk,jzk,i,j).

(36) ) ⇠10 : P 10
k,i,j(xk,j + yi,j � 1� zk,i,j +

l̄10X

l=0

2ls10l )2,

where l̄10 = dlog2[min
x,y,z

(zk,i,j � xk,j � yi,j + 1)]e.

(37) ) ⇠11 : P 11(�down � �+
l̄11X

l=0

2ls11l )2,

where l̄11 = dlog2(�� �down)e.

(38) ) ⇠12 : P 12((BX + C)T⇡l � �+
l̄12X

l=0

2ls12l )2,

where l̄12 = dlog2[�� min
x,y,z,⇡

(BX + C)T⇡l]e.

Here, P ⇤, P ⇤
i,j and P ⇤

k,i,j are the predefined penalty coeffi-
cients when the corresponding constraint is violated. s⇤l is a
binary slack variable and l̄⇤ is the upper bound of the num-
ber of slack variables. Then, the reformulated unconstrained
master problem is defined below.

min
x,y,z

WX

j=1

[
NX

i=1

a4,i· (xi,j + yi,j) + �

+ ⇠1 + ⇠2 + ⇠3 + ⇠4 + ⇠5 + ⇠6 + ⇠7

+ ⇠8 + ⇠9 + ⇠10 + ⇠11 + ⇠12] (39)

Variable Representation. Now consider the problem in
(39), it is still not in the QUBO formation due to the existence
of the continuous variable �. Thus, we need to represent the
continuous variable � using binary bits. We use a binary vector
w with the length of M bits to replace continuous variable �
and denote it as a new discrete variable �̂ 2 Q. In general, �̂
requires the binary numeric system assigning M bits to replace
continuous variable �. Then we can recover the �̂ by

� =

m̄+X

ii=�m

2iiwii+m �
m̄�X

jj=0

2jjwjj+1+m+m̄+ = �̂(w) (40)

In (40), m̄+ + 1 is the number of bits for the positive integer
part Z+, m is the number of bits for the positive decimal part
and m̄�+1 is the number of bits for the negative integer part
Z�. Then, the final QUBO formulation of the master problem
is defined as follows.

min
x,y,z,w

WX

j=1

[
NX

i=1

a4,i· (xi,j + yi,j) + �̂(w)

+ ⇠1 + ⇠2 + ⇠3 + ⇠4 + ⇠5 + ⇠6 + ⇠7

+ ⇠8 + ⇠9 + ⇠10 + ⇠11 + ⇠12] (41)

D. HQCBD Algorithm

Our proposed HQCBD is described by Algorithm 1. Fig. 2
shows the overall flow of HQCBD and the detailed interaction
between the master problem and subproblem. The master prob-
lem is solved by a quantum computer and generates a binary
solution (x0, y0, z0), and then sends it to general devices for
distributed computation of subproblems by a classical solver
(e.g. Scipy). After subproblems are solved, an optimality or
feasibility cut is sent to the master problem and it continues
to the next round.

Specifically, as shown in Algorithm 1, we first initialize
the upper and lower bound of the problem as well as other
parameters, e.g. convergence threshold ✏ and the number of
maximal iterations max itr (Lines 1-2). Then appropriate
penalty numbers or arrays will be generated (Line 4). After
that, we reformulate the master problem in (32) in the QUBO
format and solve the QUBO problem with a quantum computer
and update the lower bound of the problem � (Lines 5-
7). Given x0, y0, z0 from the master problem, we solve the
subproblem (29) and extract %0 as well as update the upper
bound of the problem � (Lines 8-10). We finally add the
Benders’ cut to the master problem and continue the next
iteration (Lines 11-12) until it converges (Line 3).

We leverage the D-Wave solver to implement our proposed
algorithm to solve the QUBO master problem. In addition,
the penalties also need to be carefully tuned for a decent
QUBO model. In general, a large penalty can cause the

unconstrained QUBO by using penalties. The basic idea is to
find the best penalty coefficients of the constraints. Following
the principle of constraint-penalty pairs in [27], the constraints
are converted as follows:

(6) ) ⇠1 : P 1
i,j(xi,jµjj � ci +

l̄1X

l=0

2ls1l )
2,

where l̄1 = dlog2[ci �min
x

(xi,jµjj)]e.

(6) ) ⇠2 : P 2
i,j(xi,j�j � fi +

l̄2X

l=0

2ls2l )
2,

where l̄2 = dlog2[fi �min
x

(xi,j�j)]e.

(7) ) ⇠3 : P 3
i,j(yi,jµj � ci +

l̄3X

l=0

2ls3l )
2,

where l̄3 = dlog2[ci �min
y

(yi,jµj)]e.

(7) ) ⇠4 : P 4
i,j(yi,j�j � fi +

l̄4X

l=0

2ls4l )
2,

where l̄4 = dlog2[fi �min
y

(yi,j�j)]e.

(8) ) ⇠5 : P 5
i,j(

NX

i=1

xi,j � 1)2,

(8) ) ⇠6 : P 6
i,j(

NX

i=1

yi,j � j)
2,

(9) ) ⇠7 : P 7
i,j [

WX

j=1

(xi,j + yi,j)� 1 +
l̄7X

l=0

2ls7l ]
2,

where l̄10 = dlog2[1�min
x,y

WX

j=1

(xi,j + yi,j)]e.

(34) ) ⇠8 : P 8
i,j(zk,i,j � yi,jzk,i,j).

(35) ) ⇠9 : P 9
i,j(zk,i,j � xk,jzk,i,j).

(36) ) ⇠10 : P 10
k,i,j(xk,j + yi,j � 1� zk,i,j +

l̄10X

l=0

2ls10l )2,

where l̄10 = dlog2[min
x,y,z

(zk,i,j � xk,j � yi,j + 1)]e.

(37) ) ⇠11 : P 11(�down � �+
l̄11X

l=0

2ls11l )2,

where l̄11 = dlog2(�� �down)e.

(38) ) ⇠12 : P 12((BX + C)T⇡l � �+
l̄12X

l=0

2ls12l )2,

where l̄12 = dlog2[�� min
x,y,z,⇡

(BX + C)T⇡l]e.

Here, P ⇤, P ⇤
i,j and P ⇤

k,i,j are the predefined penalty coeffi-
cients when the corresponding constraint is violated. s⇤l is a
binary slack variable and l̄⇤ is the upper bound of the num-
ber of slack variables. Then, the reformulated unconstrained
master problem is defined below.

min
x,y,z

WX

j=1

[
NX

i=1

a4,i· (xi,j + yi,j) + �

+ ⇠1 + ⇠2 + ⇠3 + ⇠4 + ⇠5 + ⇠6 + ⇠7

+ ⇠8 + ⇠9 + ⇠10 + ⇠11 + ⇠12] (39)

Variable Representation. Now consider the problem in
(39), it is still not in the QUBO formation due to the existence
of the continuous variable �. Thus, we need to represent the
continuous variable � using binary bits. We use a binary vector
w with the length of M bits to replace continuous variable �
and denote it as a new discrete variable �̂ 2 Q. In general, �̂
requires the binary numeric system assigning M bits to replace
continuous variable �. Then we can recover the �̂ by

� =

m̄+X

ii=�m

2iiwii+m �
m̄�X

jj=0

2jjwjj+1+m+m̄+ = �̂(w) (40)

In (40), m̄+ + 1 is the number of bits for the positive integer
part Z+, m is the number of bits for the positive decimal part
and m̄�+1 is the number of bits for the negative integer part
Z�. Then, the final QUBO formulation of the master problem
is defined as follows.

min
x,y,z,w

WX

j=1

[
NX

i=1

a4,i· (xi,j + yi,j) + �̂(w)

+ ⇠1 + ⇠2 + ⇠3 + ⇠4 + ⇠5 + ⇠6 + ⇠7

+ ⇠8 + ⇠9 + ⇠10 + ⇠11 + ⇠12] (41)

D. HQCBD Algorithm

Our proposed HQCBD is described by Algorithm 1. Fig. 2
shows the overall flow of HQCBD and the detailed interaction
between the master problem and subproblem. The master prob-
lem is solved by a quantum computer and generates a binary
solution (x0, y0, z0), and then sends it to general devices for
distributed computation of subproblems by a classical solver
(e.g. Scipy). After subproblems are solved, an optimality or
feasibility cut is sent to the master problem and it continues
to the next round.

Specifically, as shown in Algorithm 1, we first initialize
the upper and lower bound of the problem as well as other
parameters, e.g. convergence threshold ✏ and the number of
maximal iterations max itr (Lines 1-2). Then appropriate
penalty numbers or arrays will be generated (Line 4). After
that, we reformulate the master problem in (32) in the QUBO
format and solve the QUBO problem with a quantum computer
and update the lower bound of the problem � (Lines 5-
7). Given x0, y0, z0 from the master problem, we solve the
subproblem (29) and extract %0 as well as update the upper
bound of the problem � (Lines 8-10). We finally add the
Benders’ cut to the master problem and continue the next
iteration (Lines 11-12) until it converges (Line 3).

We leverage the D-Wave solver to implement our proposed
algorithm to solve the QUBO master problem. In addition,
the penalties also need to be carefully tuned for a decent
QUBO model. In general, a large penalty can cause the

unconstrained QUBO by using penalties. The basic idea is to
find the best penalty coefficients of the constraints. Following
the principle of constraint-penalty pairs in [27], the constraints
are converted as follows:

(6) ) ⇠1 : P 1
i,j(xi,jµjj � ci +

l̄1X

l=0

2ls1l )
2,

where l̄1 = dlog2[ci �min
x

(xi,jµjj)]e.

(6) ) ⇠2 : P 2
i,j(xi,j�j � fi +

l̄2X

l=0

2ls2l )
2,

where l̄2 = dlog2[fi �min
x

(xi,j�j)]e.

(7) ) ⇠3 : P 3
i,j(yi,jµj � ci +

l̄3X

l=0

2ls3l )
2,

where l̄3 = dlog2[ci �min
y

(yi,jµj)]e.

(7) ) ⇠4 : P 4
i,j(yi,j�j � fi +

l̄4X

l=0

2ls4l )
2,

where l̄4 = dlog2[fi �min
y

(yi,j�j)]e.

(8) ) ⇠5 : P 5
i,j(

NX

i=1

xi,j � 1)2,

(8) ) ⇠6 : P 6
i,j(

NX

i=1

yi,j � j)
2,

(9) ) ⇠7 : P 7
i,j [

WX

j=1

(xi,j + yi,j)� 1 +
l̄7X

l=0

2ls7l ]
2,

where l̄10 = dlog2[1�min
x,y

WX

j=1

(xi,j + yi,j)]e.

(34) ) ⇠8 : P 8
i,j(zk,i,j � yi,jzk,i,j).

(35) ) ⇠9 : P 9
i,j(zk,i,j � xk,jzk,i,j).

(36) ) ⇠10 : P 10
k,i,j(xk,j + yi,j � 1� zk,i,j +

l̄10X

l=0

2ls10l )2,

where l̄10 = dlog2[min
x,y,z

(zk,i,j � xk,j � yi,j + 1)]e.

(37) ) ⇠11 : P 11(�down � �+
l̄11X

l=0

2ls11l )2,

where l̄11 = dlog2(�� �down)e.

(38) ) ⇠12 : P 12((BX + C)T⇡l � �+
l̄12X

l=0

2ls12l )2,

where l̄12 = dlog2[�� min
x,y,z,⇡

(BX + C)T⇡l]e.

Here, P ⇤, P ⇤
i,j and P ⇤

k,i,j are the predefined penalty coeffi-
cients when the corresponding constraint is violated. s⇤l is a
binary slack variable and l̄⇤ is the upper bound of the num-
ber of slack variables. Then, the reformulated unconstrained
master problem is defined below.

min
x,y,z

WX

j=1

[
NX

i=1

a4,i· (xi,j + yi,j) + �

+ ⇠1 + ⇠2 + ⇠3 + ⇠4 + ⇠5 + ⇠6 + ⇠7

+ ⇠8 + ⇠9 + ⇠10 + ⇠11 + ⇠12] (39)

Variable Representation. Now consider the problem in
(39), it is still not in the QUBO formation due to the existence
of the continuous variable �. Thus, we need to represent the
continuous variable � using binary bits. We use a binary vector
w with the length of M bits to replace continuous variable �
and denote it as a new discrete variable �̂ 2 Q. In general, �̂
requires the binary numeric system assigning M bits to replace
continuous variable �. Then we can recover the �̂ by

� =

m̄+X

ii=�m

2iiwii+m �
m̄�X

jj=0

2jjwjj+1+m+m̄+ = �̂(w) (40)

In (40), m̄+ + 1 is the number of bits for the positive integer
part Z+, m is the number of bits for the positive decimal part
and m̄�+1 is the number of bits for the negative integer part
Z�. Then, the final QUBO formulation of the master problem
is defined as follows.

min
x,y,z,w

WX

j=1

[
NX

i=1

a4,i· (xi,j + yi,j) + �̂(w)

+ ⇠1 + ⇠2 + ⇠3 + ⇠4 + ⇠5 + ⇠6 + ⇠7

+ ⇠8 + ⇠9 + ⇠10 + ⇠11 + ⇠12] (41)

D. HQCBD Algorithm

Our proposed HQCBD is described by Algorithm 1. Fig. 2
shows the overall flow of HQCBD and the detailed interaction
between the master problem and subproblem. The master prob-
lem is solved by a quantum computer and generates a binary
solution (x0, y0, z0), and then sends it to general devices for
distributed computation of subproblems by a classical solver
(e.g. Scipy). After subproblems are solved, an optimality or
feasibility cut is sent to the master problem and it continues
to the next round.

Specifically, as shown in Algorithm 1, we first initialize
the upper and lower bound of the problem as well as other
parameters, e.g. convergence threshold ✏ and the number of
maximal iterations max itr (Lines 1-2). Then appropriate
penalty numbers or arrays will be generated (Line 4). After
that, we reformulate the master problem in (32) in the QUBO
format and solve the QUBO problem with a quantum computer
and update the lower bound of the problem � (Lines 5-
7). Given x0, y0, z0 from the master problem, we solve the
subproblem (29) and extract %0 as well as update the upper
bound of the problem � (Lines 8-10). We finally add the
Benders’ cut to the master problem and continue the next
iteration (Lines 11-12) until it converges (Line 3).

We leverage the D-Wave solver to implement our proposed
algorithm to solve the QUBO master problem. In addition,
the penalties also need to be carefully tuned for a decent
QUBO model. In general, a large penalty can cause the

unconstrained QUBO by using penalties. The basic idea is to
find the best penalty coefficients of the constraints. Following
the principle of constraint-penalty pairs in [27], the constraints
are converted as follows:

(6) ) ⇠1 : P 1
i,j(xi,jµjj � ci +

l̄1X

l=0

2ls1l )
2,

where l̄1 = dlog2[ci �min
x

(xi,jµjj)]e.

(6) ) ⇠2 : P 2
i,j(xi,j�j � fi +

l̄2X

l=0

2ls2l )
2,

where l̄2 = dlog2[fi �min
x

(xi,j�j)]e.

(7) ) ⇠3 : P 3
i,j(yi,jµj � ci +

l̄3X

l=0

2ls3l )
2,

where l̄3 = dlog2[ci �min
y

(yi,jµj)]e.

(7) ) ⇠4 : P 4
i,j(yi,j�j � fi +

l̄4X

l=0

2ls4l )
2,

where l̄4 = dlog2[fi �min
y

(yi,j�j)]e.

(8) ) ⇠5 : P 5
i,j(

NX

i=1

xi,j � 1)2,

(8) ) ⇠6 : P 6
i,j(

NX

i=1

yi,j � j)
2,

(9) ) ⇠7 : P 7
i,j [

WX

j=1

(xi,j + yi,j)� 1 +
l̄7X

l=0

2ls7l ]
2,

where l̄10 = dlog2[1�min
x,y

WX

j=1

(xi,j + yi,j)]e.

(34) ) ⇠8 : P 8
i,j(zk,i,j � yi,jzk,i,j).

(35) ) ⇠9 : P 9
i,j(zk,i,j � xk,jzk,i,j).

(36) ) ⇠10 : P 10
k,i,j(xk,j + yi,j � 1� zk,i,j +

l̄10X

l=0

2ls10l )2,

where l̄10 = dlog2[min
x,y,z

(zk,i,j � xk,j � yi,j + 1)]e.

(37) ) ⇠11 : P 11(�down � �+
l̄11X

l=0

2ls11l )2,

where l̄11 = dlog2(�� �down)e.

(38) ) ⇠12 : P 12((BX + C)T⇡l � �+
l̄12X

l=0

2ls12l )2,

where l̄12 = dlog2[�� min
x,y,z,⇡

(BX + C)T⇡l]e.

Here, P ⇤, P ⇤
i,j and P ⇤

k,i,j are the predefined penalty coeffi-
cients when the corresponding constraint is violated. s⇤l is a
binary slack variable and l̄⇤ is the upper bound of the num-
ber of slack variables. Then, the reformulated unconstrained
master problem is defined below.

min
x,y,z

WX

j=1

[
NX

i=1

a4,i· (xi,j + yi,j) + �

+ ⇠1 + ⇠2 + ⇠3 + ⇠4 + ⇠5 + ⇠6 + ⇠7

+ ⇠8 + ⇠9 + ⇠10 + ⇠11 + ⇠12] (39)

Variable Representation. Now consider the problem in
(39), it is still not in the QUBO formation due to the existence
of the continuous variable �. Thus, we need to represent the
continuous variable � using binary bits. We use a binary vector
w with the length of M bits to replace continuous variable �
and denote it as a new discrete variable �̂ 2 Q. In general, �̂
requires the binary numeric system assigning M bits to replace
continuous variable �. Then we can recover the �̂ by

� =

m̄+X

ii=�m

2iiwii+m �
m̄�X

jj=0

2jjwjj+1+m+m̄+ = �̂(w) (40)

In (40), m̄+ + 1 is the number of bits for the positive integer
part Z+, m is the number of bits for the positive decimal part
and m̄�+1 is the number of bits for the negative integer part
Z�. Then, the final QUBO formulation of the master problem
is defined as follows.

min
x,y,z,w

WX

j=1

[
NX

i=1

a4,i· (xi,j + yi,j) + �̂(w)

+ ⇠1 + ⇠2 + ⇠3 + ⇠4 + ⇠5 + ⇠6 + ⇠7

+ ⇠8 + ⇠9 + ⇠10 + ⇠11 + ⇠12] (41)

D. HQCBD Algorithm

Our proposed HQCBD is described by Algorithm 1. Fig. 2
shows the overall flow of HQCBD and the detailed interaction
between the master problem and subproblem. The master prob-
lem is solved by a quantum computer and generates a binary
solution (x0, y0, z0), and then sends it to general devices for
distributed computation of subproblems by a classical solver
(e.g. Scipy). After subproblems are solved, an optimality or
feasibility cut is sent to the master problem and it continues
to the next round.

Specifically, as shown in Algorithm 1, we first initialize
the upper and lower bound of the problem as well as other
parameters, e.g. convergence threshold ✏ and the number of
maximal iterations max itr (Lines 1-2). Then appropriate
penalty numbers or arrays will be generated (Line 4). After
that, we reformulate the master problem in (32) in the QUBO
format and solve the QUBO problem with a quantum computer
and update the lower bound of the problem � (Lines 5-
7). Given x0, y0, z0 from the master problem, we solve the
subproblem (29) and extract %0 as well as update the upper
bound of the problem � (Lines 8-10). We finally add the
Benders’ cut to the master problem and continue the next
iteration (Lines 11-12) until it converges (Line 3).

We leverage the D-Wave solver to implement our proposed
algorithm to solve the QUBO master problem. In addition,
the penalties also need to be carefully tuned for a decent
QUBO model. In general, a large penalty can cause the



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Hybrid Quantum-Classical FL Optimization

39

Methodology

39

(41)
(41)

(38)

(40)

Algorithm 1 Hybrid Quantum-Classical Benders’ Decompo-
sition (HQCBD) Method

Input: Distributed network with N servers V , W FL mod-
els M , Coefficient of the objective function and constraints
in master problem and subproblem
Output: PS selection x0, worker selection y0, and local
convergence rate %0

1: Initialize upper/lower bound of �, � = +1, � = �1
2: Initialize threshold ✏ = 0.001, max itr = 100, itr = 1
3: while |�� �| > ✏ and itr < max itr do
4: P  Appropriate penalty numbers or arrays
5: Q Reformulate both objective and constraints in (32)

and construct QUBO formulation as (41)
6: x0, y0, z0  Solve problem (41) by quantum computer
7: �  Extract w and replace � with �̂(w) as (40)
8: SUP (x, y, z) Solve problem (29) with fixed x0, y0, z0
9: Extract %0 from SUP (x, y, z)

10: �  SUP (x, y, z)
11: Add a new benders’ cut to the master problem as (38)
12: itr+ = 1
13: end while
14: return x0, y0, %0

quantum annealer to malfunction due to coefficient explosion.
In contrast, a small penalty can make the quantum annealer
ignore the constraints. A well-tuned penalty will lead to a
fairly high probability of the quantum solver giving the correct
answer.

IV. PERFORMANCE EVALUATION

In this section, we simulated a distributed network environ-
ment and conducted experiments of realistic FL tasks using
publicly available datasets. To validate the feasibility of our
hybrid quantum-classical optimization algorithm, we run the
proposed algorithms on a hybrid D-Wave quantum processing
unit (QPU). We accessed the D-Wave system provided by
Leap quantum cloud service [28]. Based on the Pegasus
topology, the D-Wave system also has over 5, 000 qubits and
35, 000 couplers, which can solve complex problems of up to
1, 000, 000 variables and 100, 000 constraints. We performed
a number of test cases that can be resolved in under 100
iterations, but only due to the high cost of QPU utilization
and the developer’s time constraints.

A. Simulation Setup

Network Setting: Our distributed computing environment
consists of 100 servers where the topology depends on the
real-world EUA-Dataset [29] and the Internet topology zoo
[30]. EUA-Dataset is widely used in mobile computing and
contains the geographical locations of 125 cellular base sta-
tions in the Melbourne central business district area, while the
Internet topology zoo is a popular network topology dataset
that includes a number of historical network maps all over
the world. We randomly select a set of servers from these
topology datasets to conduct simulations. In each simulation,
each server has a maximal storage capacity ci, CPU frequency

fi and link bandwidth bj belonging to the ranges of 1, 024 ⇠
2, 048GB, 2 ⇠ 5GHz, and 512 ⇠ 1, 024Mbps, respectively.

Datasets and FL models: We conduct extensive experi-
ments on the following real-world datasets: California Housing
dataset [31], MNIST [32], Fashion-MNIST (FMNIST) [33],
and CIFAR-10 [34]. These are well-known ML datasets for
linear regression, logistic regression, or image classification
tasks. Two models with convex loss functions are implemented
on the above real-world datasets for performance evaluation,
which are (i) Linear Regression with MES loss on the Cali-
fornia Housing dataset and (ii) Logistic Regression with the
cross-entropy loss on MNIST. We are also interested in the
performance of our proposed methods on FL models with non-
convex loss functions. Thus, three datasets, MNIST, FMNIST,
and CIFAR-10, are used to train convolutional neural network
(CNN) models with different structures.

Benchmarks and Metrics: We compare our proposed
HQCBD with three baseline strategies: classical Benders’
decomposition (CBD), random algorithm (RAND), and two-
stage iterative optimization algorithm (TWSO) [15]. CBD uses
a classical LP solver (Gurobi [35] or Scipy [36]) to solve the
master problem and subproblems. RAND randomly generates
the random decisions on the model’s parameter server, FL
workers, and local convergence rate under certain constraints.
TWSO is a previous algorithm from [15] that decomposes the
original problem into two subproblems (participant selection
and learning scheduling) and solves them iteratively. Since
the optimization problem in [15] has a different learning cost
function, we adjust their method to our optimization problem
for fairness. The following metrics are adopted to compare the
performances of our proposed methods and the baselines: the
total cost of FL training, the loss or accuracy of FL models,
the number of iterations, and the solver accessing time.

TABLE I: Iteration of CBD and HQCBD over three different
cases. Here, the set up column shows {# of servers, # of
models, # of workers per model} used in each case.

Case Set up # of Variables Itr. of CBD Itr. of HQCBD
1 {7, 1, 3} 63 32 31
2 {7, 2, 2} 126 55 45
3 {9, 2, 3} 198 91 89

B. Performance of HQCBD

To demonstrate the feasibility and performance of our
proposed HQCBD, we conduct three sets of small-scale exper-
iments with different case settings (servers are selected from
100 servers). As shown in Table I, there are three cases. The
first case includes 7 servers, 1 FL model, and 3 workers per
model with a total of 63 binary variables. The second case has
7 servers, 2 FL models, and 2 workers per model with a total
of 126 binary variables. The third case consists of 9 servers,
2 FL models, and 3 workers per model with a total of 198
binary variables. For each case, we perform both CBD and
HQCBD. Fig. 3 and Table I show the related results of their
performances.

CPU

' optimality/feasibility cuts

{) !
" , * !

" , + !" }

Master 
problem 
solved by
quantum 
computer

CPU

CPU

…

{)#", *#", +#"}

…

"QPU QPU

an optimality/feasibility cut

{)", *", +"}

Subproblem 
solved by
classical 

computer

Master 
problem 
solved by
quantum 
computer Subproblems 

solved by
' classical 
computers(a) (b)

CPU

' optimality/feasibility cuts

{) !
" , * !

" , + !" }

Master 
problem 
solved by
quantum 
computer

CPU

CPU

…

{)#", *#", +#"}

…

"QPU QPU

an optimality/feasibility cut

{)", *", +"}

Subproblem 
solved by
classical 

computer

Master 
problem 
solved by
quantum 
computer Subproblems 

solved by
' classical 
computers(a) (b)

Initialize parameters



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Hybrid Quantum-Classical FL Optimization

40

Evaluation

HQCBD takes few iterations to converge.

QPU take less time to solve the problem compared with CPU.
CBD: classical Benders’ decomposition 



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Hybrid Quantum-Classical FL Optimization

41

Evaluation

CPU

' optimality/feasibility cuts

{) !
" , * !

" , + !" }

Master 
problem 
solved by
quantum 
computer

CPU

CPU

…

{)#", *#", +#"}

…

"QPU QPU

an optimality/feasibility cut

{)", *", +"}

Subproblem 
solved by
classical 

computer

Master 
problem 
solved by
quantum 
computer Subproblems 

solved by
' classical 
computers(a) (b)

MBD takes further few iterations to converge.CPU

' optimality/feasibility cuts

{) !
" , * !

" , + !" }

Master 
problem 
solved by
quantum 
computer

CPU

CPU

…

{)#", *#", +#"}

…

"QPU QPU

an optimality/feasibility cut

{)", *", +"}

Subproblem 
solved by
classical 

computer

Master 
problem 
solved by
quantum 
computer Subproblems 

solved by
' classical 
computers(a) (b)

Performance comparison with existing methods

HQCBD gets further improvements 
compared with TWSO.



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Hybrid Quantum-Classical FL Optimization

42

• Study joint participant selection and learning 
scheduling of multi-model FEL in the edge cloud: 
‣ select participants (both PS and workers) and local 

convergence rate for each FL model  
‣ aim to minimize the total learning cost of all FL models 

• Propose a hybrid quantum-classical method: 
‣ Hybrid Quantum-Classical Bender’s Decomposition 

(HQCBD), using benders’ decomposition, solving master 
problem via quantum annealing while solving 
subproblem via classical solver 

‣ Multiple-cuts version, return multiple cuts from QC 
• Conduct simulations to evaluate proposed 

methods:  
‣ the proposed methods can solving the problem faster 

even at small scales.

Summary



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

Recap and Take Away
• FEL combines edge computing and federated learning, and leads to 

both new applications and challenges 
• We have studied joint optimization of participant selection and 

learning scheduling in FEL  
‣ participant (PS/worker) selection + learning rate 
‣ participant selection + learning topology 
‣ hybrid quantum and classical BD method 

• There are many other topics and aspects of FEL which are not 
covered by our study, such as 
‣ data distributions, dynamic environment, privacy and security 

• There are always trade-offs between quality and cost in optimization 

43



Yu Wang, Dept. of Computer & Information Sciences, Temple University Wang Lab

        Students: Xinliang Wei, Jiyao Liu 
Collaborators: Xinghua Shi (Temple) 
                          Zhu Han, Wei Fan (U Houston) 
                          Yanming Gong, Yuanxiong Guo (UTSA) 
                          Kejiang Ye (SIAT CAS), Cheng-Zhong Xu (U Macau)

Joint works with:

Acknowledgement

44

Wireless Networking and Sensing Lab
Wang Lab

1. X. Wei, J. Liu, Y. Wang, “Joint Participant Selection and Learning Scheduling for 
Multi-Model Federated Edge Learning”, in 19th IEEE Int’l Conf. on Mobile Ad-Hoc 
and Smart Systems (MASS), 2022. Extended journal version appeared in JCST 2023. 

2. X. Wei, K. Ye, X. Shi, C.-Z. Xu, Y. Wang. “Joint Participant and Learning Topology 
Selection in Federated Edge Learning”, under review. 

3. X. Wei, L. Fan, Y. Guo, Y. Gong, Z. Han, Y. Wang. “Quantum Assisted Scheduling 
Algorithm for Federated Learning in Distributed Networks”,in 32nd Int’l Conf. on 
Computer Communications and Networks (ICCCN), 2023.



Wang Lab

Yu Wang 
Temple University 

Department of Computer and 
Information Sciences 

https://cis.temple.edu/~yu/ 
wangyu@temple.edu

Questions? Comments?

https://cis.temple.edu/~yu/

