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Part I

BACKGROUND
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FEDERATED LEARNING

Figure. The training process of federated learning.

Training Process
▶ Cloud distribute initialized global

model.
▶ Each client conducts training using

their local datasets.
▶ Each client uploads trained local

model to cloud for aggregation.
▶ Cloud distribute aggregated

model.
▶ Repeat step 2 – 4 until converge.
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CHALLENGE
CLIENT HETEROGENEITY

The clients in the FL system may differ significantly in terms of computational capability and
battery level.

Figure. Straggler effect.
Figure. Client dropout.
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CHALLENGE
DATA HETEROGENEITY

Data heterogeneity leads to poor convergence and may cause clients with important data to drop
out of training.

Figure. Non-IID data. Figure. Important data absence.
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CHALLENGE
PRIVACY LEAKAGE

Sensitive information can still be revealed from model parameters/gradients by a third-party entity
or the server.

Figure. MIT at 2019.a

aL. Zhu, Z. Liu, and S. Han (2019). “Deep leakage from gradients”. In: Advances in
neural information processing systems 32.

Figure. Nvidia at 2021.a

aH. Yin, A. Mallya, A. Vahdat, J.M. Alvarez, J. Kautz, and P. Molchanov (2021). “See
through gradients: Image batch recovery via gradinversion”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16337–16346.
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SPLIT LEARNING

Figure. The training process of split learning.

Advantages
▶ Lower client computation load.
▶ Improved security.

Limitations
▶ Encounter convergence issues in Non-IID

datasets.
▶ Cannot parallelize.
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Part II

RINGSFL: A RING-SHAPED SPLIT FEDERATED LEARNING
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ARCHITECTURE
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Figure. The architecture of RingSFL.

▶ The system consists of a server for model
aggregation and N clients for cooperative
training.

▶ The clients form a ring topology, where
adjacent clients can communicate with each
other through direct communication
technologies such as device-to-device (D2D)
communication.

▶ The clients can also communicate with the
server for model downloading and
uploading as in FL.
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TRAINING PROCESS
INITIALIZATION

The server distributes the initialized global model
with W layers and configuration parameters
(Li, ai).

Propagation Length

Li =
Ci∑N−1

j=0 Cj
W (1)

Ci: computational power of ui.

Aggregation Weight

ai =
Di∑N−1

j=0 Dj
(2)

Di: dataset size of ui.
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TRAINING PROCESS
FORWARD PROPAGATION

Forward propagation of client 0’s data.

Transmission of client 0’s feature map.

Forward propagation of client 1’s data.

Transmission of client 1’s feature map.

Forward propagation of client 2’s data.

Transmission of client 2’s feature map.
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Figure. Forward propagation processes for RingSFL
with 3 clients. A multilayer perceptron (MLP)
containing 6 fully connected layers is trained, and the
propagation length is set to: L0 : L1 : L2 = 2 : 1 : 3.

▶ Starting Phase: Clients sample a batch from
their respective datasets and enter it into the
local model to get the feature map for the
relay phase.

▶ Relay Phase: Clients receive the feature map
from the previous node, propagate it forward
in the local model and then send it to the next
node.

▶ Stop Phase: When the feature map traverses
all the clients, the clients receive their model
output. Clients calculate loss values based on
model output and local labels for back
propagation.
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TRAINING PROCESS
BACKWARD PROPAGATION

Backward propagation of client 0’s loss.

Transmission of client 0’s gradient.

Backward propagation of client 1’s loss.

Transmission of client 1’s gradient.

Backward propagation of client 2’s loss.

Transmission of client 2’s gradient.
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Figure. Backward propagation processes for RingSFL
with 3 clients. A multilayer perceptron (MLP)
containing 6 fully connected layers is trained, and the
propagation length is set to: L0 : L1 : L2 = 2 : 1 : 3.

▶ Starting Phase: Clients send the loss value to
the previous node and start back
propagation.

▶ Relay Phase: Clients receive the gradients
from the next node in the ring, back
propagate locally, and pass the gradients of
the smashed layer to the previous node in the
ring.

▶ Stop Phase: Clients use the locally cached
model gradient to update the local model.
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TRAINING PROCESS
MODEL AGGREGATION

▶ In each communication round, the trained
local model parameters W t+1

i are uploaded
to the server for aggregation.

▶ Since the gradients are already weighted
during the training process, model
aggregation can be achieved by direct
averaging

W t+1
g =

1
N

N−1∑
i=0

W t+1
i (3)

N. CHENG RINGSFL 13 / 29



MODEL SPLIT SCHEME

The computation time of client ui can be denoted by
piMN

Ci
, where pi denotes the ratio of the training

load assigned to ui,
∑N−1

i=0 pi = 1, and M denotes the computation volume of a model to update once.

min
p0,··· ,pN−1

max

{
p0MN

C0
,

p1MN
C1

, · · · ,
pN−1MN

CN−1

}
(4)

s.t.
N−1∑
i=0

pi = 1, (4a)

0 ≤ pi ≤ 1, ∀i = 0, · · · ,N − 1. (4b)

⇒


p∗i =

Ci∑N−1
j=0 Cj

, ∀i = 0, · · · ,N − 1,

m∗ =
MN∑N−1
j=0 Cj

.

(5)

So we set the propagation length of ui to: Li = p∗i W =
Ci∑N−1

j=0 Cj
W
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OVERLAPPING LAYERS CAN IMPROVE MODEL PERFORMANCE

Figure. Forward propagation processes for RingSFL with 2 clients. A multilayer perceptron (MLP) containing
6 fully connected layers is trained,and the propagation length is set to: L0 : L1 = 2 : 4.

Higher aggregation frequency of overlapping layers, leading to more reliable gradient.

W t
i,(j) = W t

i,(j) − η|Ui,(j)|
∑

k∈Ui,(j)

akgt
k,(j), (6)
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PRIVACY ENHANCEMENT
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Figure. Impact of the number of clients and the
probability of communication links being
eavesdropped on the probability of privacy leakage.

Client 0

Client 1

Client 2

▶ Since clients upload blended models to the
server, an eavesdropper must reassemble
these blended models based on propagation
lengths to obtain the complete models
belonging to each client.

▶ Using ei to denote the probability that the
communication link between ui and the
server is eavesdropped, the probability of
privacy leakage can be expressed as

P =
∏

i=0,··· ,N−1

ei. (7)
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Part III

EXPERIMENTAL RESULTS
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SETUP

Simulation Environment
▶ Python 3.9.12
▶ Pytorch 1.11.0

Prototype System
▶ ARM Cortex-A72 @ 1.5GHz 6.4W
▶ 11th Gen Intel(R) Core(TM)

i7-11700 @ 2.50GHz 65W
▶ Central Frequency: 5440MHz
▶ Bandwidth: 40MHz
▶ D2D rate: 135 ± 5.83 Mbps

Figure. The prototype system of RingSFL.
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DATASETS AND MODELS

Datasets
▶ MNIST

▶ CIFAR10

Models
▶ ResNet18

▶ VGG16

▶ LeNet-5

▶ AlexNet
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EXPERIMENTAL RESULTS
CONVERGENCE PERFORMANCE OF RESNET18

Figure. Trained on IID CIFAR10 dataset. Figure. Trained on Non-IID CIFAR10 dataset.
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EXPERIMENTAL RESULTS
CONVERGENCE PERFORMANCE OF OTHER MODELS

Top-1 Accuracy (%) of Each Model under Different Algorithms. The best accuracy is marked in
bold, and the secondary is marked in underline.

ResNet18 (IID / Non-IID) VGG16 (IID / Non-IID) AlexNet (IID / Non-IID) LeNet-5 (IID / Non-IID)

RingSFLv1 82.35 ± 0.36 / 48.30 ± 0.57 79.30 ± 0.20 / 40.35 ± 0.99 98.83 ± 0.11 / 89.58 ± 0.55 98.82 ± 0.19 / 94.34 ± 0.56
RingSFLv2 84.57 ± 0.17 / 56.80 ± 0.78 84.33 ± 0.10 / 41.26 ± 1.29 99.13 ± 0.07 / 94.31 ± 0.88 99.10 ± 0.04 / 95.75 ± 0.73

SplitFed 75.92 ± 0.51 / 30.16 ± 4.49 72.86 ± 0.62 / 28.17 ± 2.15 98.76 ± 0.09 / 84.00 ± 4.39 98.74 ± 0.24 / 93.64 ± 0.70
vanilla FL 78.93 ± 0.27 / 48.02 ± 1.28 77.02 ± 0.34 / 39.52 ± 0.81 98.81 ± 0.07 / 91.60 ± 1.14 98.84 ± 0.08 / 94.77 ± 0.29
vanilla SL 83.41 ± 0.44 / 26.96 ± 3.58 78.50 ± 0.69 / 35.33 ± 1.29 98.69 ± 0.10 / 98.84 ± 0.08 98.80 ± 0.14 / 98.86 ± 0.09

N. CHENG RINGSFL 21 / 29



EXPERIMENTAL RESULTS
EFFECT OF OVERLAPPING LAYERS

Figure. Trained on IID CIFAR10 dataset. Figure. Trained on Non-IID CIFAR10 dataset.
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EXPERIMENTAL RESULTS
EFFECT OF OVERLAPPING LAYERS

Top-1 Accuracy (%) of Each Model under Different Propagation Lengths. The best accuracy is
marked in bold, and the secondary is marked in underline.

Propagation
Lengths

ResNet18
(IID / Non-IID)

Propagation
Lengths

VGG16
(IID / Non-IID)

Propagation
Lengths

AlexNet
(IID / Non-IID)

Propagation
Lengths

LeNet-5
(IID / Non-IID)

6:1:1:1:1 84.66 ± 0.33 / 56.45 ± 1.10 12:1:1:1:1 84.29 ± 0.14 / 41.48 ± 1.08 13:1:1:1:1 99.00 ± 0.16 / 94.49 ± 0.67 8:1:1:1:1 99.10 ± 0.07 / 95.85 ± 0.32
5:2:1:1:1 83.90 ± 0.29 / 55.45 ± 0.47 11:2:1:1:1 83.98 ± 0.24 / 42.56 ± 0.69 11:3:1:1:1 99.05 ± 0.12 / 94.28 ± 0.59 7:2:1:1:1 99.04 ± 0.06 / 95.79 ± 0.30
4:3:1:1:1 83.00 ± 0.16 / 53.63 ± 0.62 10:3:1:1:1 83.78 ± 0.53 / 41.68 ± 0.69 9:5:1:1:1 99.11 ± 0.10 / 93.79 ± 0.30 6:3:1:1:1 99.02 ± 0.05 / 95.66 ± 0.19
3:3:2:1:1 82.24 ± 0.20 / 51.34 ± 0.74 8:3:3:1:1 82.81 ± 0.25 / 39.25 ± 0.62 7:5:3:1:1 99.00 ± 0.14 / 93.00 ± 0.11 5:3:2:1:1 99.00 ± 0.06 / 95.65 ± 0.18
3:2:2:2:1 80.90 ± 0.19 / 50.27 ± 0.53 6:3:3:3:1 80.53 ± 0.32 / 37.57 ± 0.94 5:5:3:3:1 98.91 ± 0.07 / 92.14 ± 0.61 4:3:2:2:1 98.96 ± 0.04 / 95.51 ± 0.16
2:2:2:2:2 79.00 ± 0.50 / 47.89 ± 0.64 4:3:3:3:3 77.58 ± 0.25 / 39.76 ± 0.96 4:4:3:3:3 98.84 ± 0.12 / 92.53 ± 1.03 3:3:2:2:2 98.97 ± 0.03 / 95.45 ± 0.16

N. CHENG RINGSFL 23 / 29



EXPERIMENTAL RESULTS
EFFECT OF D2D COMMUNICATION

Figure. Testing convergence of ResNet18 on Cifar10
under different D2D communication rates.

Figure. Time cost of ResNet18 in a communication
round under different D2D communication rates.
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EXPERIMENTAL RESULTS
CONVERGENCE TIME REDUCTION AND ENERGY EFFICIENCY

Figure. Time cost of ResNet18 in a communication
round under different algorithms. Figure. Energy consumption of different devices in a

communication round.
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EXPERIMENTAL RESULTS
EFFECT OF CLIENT DROPOUT
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Figure. Testing convergence of ResNet18 on CIFAR10
(IID) with randomly two clients dropping out in each
communication round.
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Figure. Testing convergence of ResNet18 on CIFAR10
(Non-IID) with randomly two clients dropping out in
each communication round.
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EXPERIMENTAL RESULTS
PRIVACY PRESERVATION
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Figure. Reconstructed data after attacking vanilla FL and RingSFL.2

2L. Zhu, Z. Liu, and S. Han (2019). “Deep leakage from gradients”. In: Advances in neural information processing systems 32.
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