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1. On Problem Solving

How to Solve It (Poyla, 1945)

If you can't solve a problem, then there
is an easier problem you can solve: find it.

A theory can only emerge through
protracted exposure to application.

Ideas and applications developed side-by-side

Edge-computing + ML algorithms: fraditional solutions



2. Edge/Cloud Computing + AT
Edge/Cloud Computing

Application-driven: AR/VR, video
analytics using IoTs

Cloudlet

Better QoE: mobile/edge device

Key indicators: latency, accuracy,
energy, and privacy

Latency-sensitive

How to bring rich computation
resources to mobile users?
How IoTs contribute to the ML
training and inference? 50 billion IoTs: connected intelligence



—»Cat: 0.7
—>» Dog: 0.1

ConvolutionNNs =~~~

~0O0)

- (3> Tiger: 0.02

- -
-
-

convolution — pooling fully-connected
> >

CNNs (image classification)

convolution (filtering), pooling (max/avg), fully-connected (neurons)

| avg




Sample CNNs

AlexNet (Red: CONV, Gray: POOL, Blue: FC)
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Offloading

Three-stage collaborative computation offloading
Local computation: processing on local devices
Communication: transmitting intermediate DNN layers’ outputs
Remote computation: completing the remote processing in cloud

Three models

On-device optimization H_m offloading -
Cloud-only offloading

Mixed-mode offloading




DNN Inferencing

Deep Neural Networks (DNNs)
Technologies: GPU (graphic) and TPU (tensor)

AT applications
Computer vision: AlexNet, VG6-16, Inception, GooglLeNet
Siamese, Multi-Stream, and RandWire
Natural language processing: ChatGPT, GPT-4

Graph models of DNNs
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Offloading Samples

Given a partition (i.e., cut)
Coarse-grained pipeline: local, communication, and remote

Fine-grained pipeline: path-based (rather than phase-based)
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3. Optimal Scheduling

DNN Computation Offloading Optimization (DCOQ)

DCOO: minimum makespan for a given partition (i.e., cut)

Cases of DNN
Line-structure: trivial
Multi-path: hard
DAG: hard

[Theor'em 1: DCOO is NP-hard for a multi-path DNN. }

Proof: Reduce 3-machine flow-shop to DCOO.



Extended Johnson Algorithm (EJA)

Pa'rh p(l) In Thr'ee STGgeS Algorithm 1 Extended Johnson Algorithm (EJA)

I: H 4+ L+ ¢
P.(i), P,(i), P(i 2: for i = 1 to m do
1(1), Po(0). Ps(1) 32 i pi(i) + p2(i) < p2(i) + ps(i) then
. . 4 H = H Up(i)
Linear SO|LI'|'IOH (EJA) 5. else
6: L = LUp(i)
7: Sort H increasingly based on p; (i) + po(7)
8: Sort L decreasingly based on ps(i) + p3(i)
9: Concatenate ff and L to obtain o

Dividing paths info Hand L
Eg..H={1},L=(3,4,62}
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Optimality

Theorem 27: If stage 2 is dominated by either stage 1 or 3,
max{min p;(i), min p5(i)} = max p,(i), EJA is optimal.

If Theorem 2 fails, EJA still achieves an approximation ratio of 5/3.

Path | p1 (i) | p2(@) | p3(i)
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Simulation
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Local and Cloud

Local: Raspberry Pi (and Nexus 4), Cloud: Amazon EC2

PyTorch: open-source ML framework
Algorithms

LO: local only, EJA: Extended Johnson's Algorithm,
DSL: coarse-grained pipeline, RO: remote only
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Extensions: DAG

General structure: DAG
Conversion to multi-path
Replicated nodes at join and fork

Heuristic solution
Scheduling: EJA on multi-path

Execution: Replicated node executed once (the first time)

(a) Before Conversion, (& (b) After Conversion, GG’



Multiple DNNs Offloading

Internet of Vehicles: smart city
Autonomous driving systems: perception is a key
Multiple cameras/sensors: multiple (identical) DNNs
V2X: V (vehicle); X for I (infrastructure), N (network), or P (pedestrian)




4. Optimal Partition and Scheduling

Multiple line-structure DNNs
AlexNet and VGG-16
Video analytics and AR/VR

Optimal partition and scheduling
Brute force: O(k")
n: # of copies, k: # of layers

Existence of a better solution?
Exploring special application properties



Johnson Algorithm (JA)

Closer look at the optimality for EJA
max{min p;(i), min p5(i)} = max p,(i)
However, p5(i) = 0, reduced to 2-stage pipeline

Algorithm 2 Johnson Algorithm (JA) jz B ot Cornp| |
L HeLeo - — -
2: for i =1 to m do =307 -
3: if pi(i) < pa(i) then E 20}
4 H = H Up(i) 10l
5 else .
6: L = LUp(i) 1.2 3 4 5 6 7 8
7: Sort H increasingly based on p, (i) Layers
8: Sort L decreasingly based on ps(i) AlexNet
9: Concatenate H and L to obtain &

Johnson, Optimal Two- and Three-Stage Production Schedules With
Set-up Time Included, Naval Research Logistics Quarter, 1954.



JA in Illustration
Optimality is guaranteed: JA on 2-stage pipeline

First six layers of AlexNet
One copy for each partition: 6 copies
H={1, 2, 3}, increasing order of blue

(H: comm.-dominate)

L = {4, 5, 6}, decreasing order of red III

i1 2 3 4 5 6

(L: comp.-dominate)

2 3 3 4 5 6 5 nﬂ
1 2 3 4 56]|5



Multiple Line-Structure Example

Two copies of line-structure DNN
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Three possible partitions and scheduling
Gaps in the first and last pairs of comp. and comm.
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Special Application Property

Line-structure
Computation time: linear increasing (convex) function
Communication time: monotonic decreasing convex function
Computation vs. communication
Data size: 2 - 12 MB
Speed (uplink): 2-5 Mpbs (4G) and 6-54 Mpbs (WiFi)

B Mobile Comp. | | I Mobile Comp.
N Comm. B Comm.
Il Cioud Comp. | | I

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Layers Layer



Optimization Approximation

Two functions
Comp. and comm. are convex: one increasing, one decreasing

Theorem 3: A uniform partition of n line DNNs at the
intersection will guarantee an approximation of 1 + %

Proof: convex optimization

Intersection has the min {max {comp., comm.}}

Strong duality, then KKT condition, the uniform partition at the
intersection has the min max { > comp., > comm. }
1/n is caused by the gaps in the first and last pairs

Duan and Wu, Joint Optimization of DNN Partition and Scheduling for Mobile
Cloud Computing, Proc. of ICPP, 2021.



Optimization

Informal proof
Pair-wise "merge"” and replaced by the middle-point

FOO+fGD) _ x+x
2 = J( 2

)

The height of the intersection < any max {comp., comm.} of a
partition

Two gaps, first pair in comm and last pair in comp.: when
n— o,1+ 1/n approaches 1



Insight

Comp. (blue) and comm. (orange)
max {blue sum, orange sum}

However, there is a delay gap



Sufficient Condition

A set of given partitions
Left/right most partition: comm; and comp, / comm, and comp,

Intersection partition: comm,, and comp,,

Theorem 4: The uniform partition beats the given set if
3comp,, < comp, + comp, + comm, and 3comm,, < comp, + comm, + comm

| | |
CcOmpy < > | compy
1
comiyy <l —> comyy
| |
CcOMpg < — | compy,

commy, < — coming




Extended Sufficient Condition

- N
Theorem 5: The uniform partition beats the given set if

(k+2) comp,, < k-prefix.comp, + k-postfix.comp, + k-postfix.comm,

L (k+2) comm,, < k-prefix.comp, + k-prefix.comm,+ k-postfix.comm, y

K-prefix/k-postfix: summation of k left/right most partition

Duan and Wu, Optimizing Job Offloading Schedule for Collaborative DNN
inference, to appear in IEEE Transactions on Mobile Computing, 2023.



Simulation

Partition methods
Joint Partition and Scheduling: JPS, Brute Force: BF

Application
VGG-16, AlexNet, and AlexNet' (curve fitting) withn=1, .., 29
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Extension: Tree-structure DNNs

Merge schedules of subtrees bottom-up
(cut at leaves, i.e., p5(i)=0)
Multiway merge of child lists @)

One node at a time, based on Johnson's rule (o) (vy)

Aggregate computation (v3)

Root of a subtree and its first child

s N
Theorem 6: The schedule generated by the recursive

_merging approach is optimal for tree-structure DAGs. )

Duan and Wu, Computation Offloading Scheduling for Deep Neural Network
Inference in Mobile Computing, Proc. of ACM/IEEE IWQoS, 2021.



Extension: Inference/Training

Inference forward pass/training backward pass

* Reduce resource idle time by adjusting the ratio of resources

Stalelness Bubble Slots

Worker 1 I
Worker 2
Worker 3
Worker 4

Worker 1 Worker 2 Worker 3 Worker 4
Backward

Aligning Pipeline with Resource Allocation

« Combine forward/backward passes (insert 1' after 1 to fill up space)

Time
Duan and Wu, Optimizing Resource Allocation in Pipeline Parallelism for
Distributed DNN Training, Proc. of the IEEE ICPADS, 2022



An On-going Project
Extension fo DNN training

Data compression

Testbed implementation
Visual detection & tracking

Field test
KUSARA at Kettering University

NSF CNS Medium: Cooperative AL Inference in Vehicular Edge
Networks for Advanced Driver-Assistance Systems (PI, 2021-2024)

(with Stony Brook, Rowan, and Kettering)



Some Reflections

Back to the past: interconnection networks
Randomly wired NNs (random graphs): neuroscience
Erdos-Renyi (ER): random, Barabasi-Albert (BA): preferential
Watts-Strogatz (WS): small-world

(AR

WS(6, 0.0)

i

Wi 03 WS4029) ws 025! @ WS(4.00)

W5(2, 1.0) WS(2, 0.75)

Xie et al, Exploring Randomly Wired Neural Networks for Image Recognition,
Proc. of ICCV, 2019.



B. Conclusions and Future Work

Offloading as a service
Mobile Cloud Computing (MCC)

DNN: Single-path, multi-path, and DAG

Joint partition and scheduling
Johnson's rule and its extensions on pipelines
Unique properties of comp. and comm. of DNNs

Future work
Optimal partition and scheduling of DAG
Pipeline of transfer learning with freeze stage
Dynamic nature of offloading speed



Questions

Collaborators: Yubin Duan (Facebook)
Ning Wang (Rowan U.)



