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1. On Problem Solving

How to Solve It (Poyla, 1945)

If you can’t solve a problem, then there

is an easier problem you can solve: find it.

Is Computing An Experimental Science ? (Milner, 1986) 

A theory can only emerge through 

protracted exposure to application.

Ideas and applications developed side-by-side

Edge-computing + ML algorithms: traditional solutions
T
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2. Edge/Cloud Computing + AI

⚫ Edge/Cloud Computing

 Application-driven: AR/VR, video 
analytics using IoTs

 Better QoE: mobile/edge device

 Key indicators: latency, accuracy, 
energy, and privacy

 Latency-sensitive

⚫ How to bring rich computation 
resources to mobile users?

⚫ How IoTs contribute to the ML 
training and inference? 50 billion IoTs: connected intelligence  
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Convolution NNs

⚫ CNNs (image classification)

⚫ convolution (filtering), pooling (max/avg), fully-connected (neurons)
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Sample CNNs

AlexNet (Red: CONV, Gray: POOL, Blue: FC)
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Offloading

⚫ Three-stage collaborative computation offloading

 Local computation: processing on local devices

 Communication: transmitting intermediate DNN layers’ outputs

 Remote computation: completing the remote processing in cloud

⚫ Three models

 On-device optimization

 Cloud-only offloading

 Mixed-mode offloading
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DNN Inferencing

⚫ Deep Neural Networks (DNNs)

 Technologies:  GPU (graphic) and TPU (tensor)

⚫ AI applications

 Computer vision: AlexNet, VGG-16, Inception, GoogLeNet

Siamese, Multi-Stream, and RandWire

 Natural language processing: ChatGPT, GPT-4

⚫ Graph models of DNNs
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Offloading Samples

⚫ Given a partition (i.e., cut)

 Coarse-grained pipeline: local, communication, and remote

 Fine-grained pipeline: path-based (rather than phase-based)
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3. Optimal Scheduling

⚫ DNN Computation Offloading Optimization (DCOO)

 DCOO: minimum makespan for a given partition (i.e., cut)

⚫ Cases of DNN
 Line-structure: trivial 

 Multi-path: hard

 DAG: hard

Theorem 1: DCOO is NP-hard for a multi-path DNN.

Proof: Reduce 3-machine flow-shop to DCOO.

T
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Extended Johnson Algorithm (EJA)

Path p(i) in three stages

 P1(i), P2(i), P3(i)

Linear solution (EJA)

 Dividing paths into H and L

 E.g., H = {1}, L = {3, 4, 2}



Theorem 2*: If stage 2 is dominated by either stage 1 or 3,     

max{min p1(i), min p3(i)} ≥ max p2(i), EJA is optimal.

If Theorem 2 fails, EJA still achieves an approximation ratio of 5/3.

⚫ 4

Optimality



Simulation

⚫ Local and Cloud
 Local: Raspberry Pi (and Nexus 4), Cloud: Amazon EC2

 PyTorch: open-source ML framework

⚫ Algorithms
 LO: local only, EJA: Extended Johnson’s Algorithm,         

DSL: coarse-grained pipeline, RO: remote only

3G (1.1 Mbps) 4G (5.85 Mbps) WiFi (18.88 Mbps)
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Extensions: DAG

⚫ General structure: DAG

 Conversion to multi-path

 Replicated nodes at join and fork

⚫ Heuristic solution

 Scheduling: EJA on multi-path

 Execution: Replicated node executed once (the first time)

T
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Multiple DNNs Offloading

Internet of Vehicles: smart city

⚫ Autonomous driving systems: perception is a key

⚫ Multiple cameras/sensors: multiple (identical) DNNs

⚫ V2X: V (vehicle); X for I (infrastructure), N (network), or P (pedestrian)



4. Optimal Partition and Scheduling 

⚫ Multiple line-structure DNNs
 AlexNet and VGG-16

 Video analytics and AR/VR

⚫ Optimal partition and scheduling
 Brute force: O(kn)

n: # of copies, k: # of layers

⚫ Existence of a better solution?
 Exploring special application properties



Johnson Algorithm (JA)

⚫ Closer look at the optimality for EJA

 max{min p1(i), min p3(i)} ≥ max p2(i)

⚫ However, p3(i) ≈ 0, reduced to 2-stage pipeline

AlexNet

Johnson, Optimal Two- and Three-Stage Production Schedules With         

Set-up Time Included, Naval Research Logistics Quarter, 1954.
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JA in Illustration

⚫ Optimality is guaranteed: JA on 2-stage pipeline

⚫ First six layers of AlexNet

 One copy for each partition: 6 copies

 H = {1, 2, 3}, increasing order of blue 

(H: comm.-dominate)

 L = {4, 5, 6}, decreasing order of red

(L: comp.-dominate)
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Multiple Line-Structure Example

⚫ Two copies of line-structure DNN

⚫ Three possible partitions and scheduling 
 Gaps in the first and last pairs of comp. and comm.



Special Application Property

⚫ Line-structure 
 Computation time: linear increasing (convex) function

 Communication time: monotonic decreasing convex function

⚫ Computation vs. communication
 Data size: 2 – 12 MB

 Speed (uplink): 2-5 Mpbs (4G) and 6-54 Mpbs (WiFi)



Optimization Approximation

⚫ Two functions
 Comp. and comm. are convex: one increasing, one decreasing

Theorem 3: A uniform partition of n line DNNs at the 

intersection will guarantee an approximation of 1 +
1

𝑛
.

Proof: convex optimization

 Intersection has the min {max {comp., comm.}}

 Strong duality, then KKT condition, the uniform partition at the 

intersection has the min max { ∑comp., ∑comm. }

 1/n is caused by the gaps in the first and last pairs

Duan and Wu, Joint Optimization of DNN Partition and Scheduling for Mobile 

Cloud Computing, Proc. of ICPP,  2021.



Optimization

⚫ Informal proof
 Pair-wise “merge” and replaced by the middle-point

𝑓 𝑥 + 𝑓 𝑥′

2
≥ 𝑓(

𝑥 + 𝑥′

2
)

 The height of the intersection ≤ any max {comp., comm.} of a 
partition

 Two gaps, first pair in comm and last pair in comp.: when 

n → ∞, 1 + 1/n approaches 1

→



Insight

→

⚫ Comp. (blue) and comm. (orange)
 max {blue sum, orange sum}

 However, there is a delay gap



Sufficient Condition

⚫ A set of given partitions

 Left/right most partition:  comml and comps  / comms and compl

⚫ Intersection partition: commm and compm

Theorem 4: The uniform partition beats the given set if

3compm < comps + compl + comms  and 3commm < comps + comml + comms 



Extended Sufficient Condition

Theorem 5: The uniform partition beats the given set if

(k+2) compm < k-prefix.comps + k-postfix.compl + k-postfix.comms

(k+2) commm < k-prefix.comps + k-prefix.comml + k-postfix.comms

K-prefix/k-postfix: summation of k left/right most partition

→

Duan and Wu, Optimizing Job Offloading Schedule for Collaborative DNN 
inference, to appear in IEEE Transactions on Mobile Computing, 2023.



Simulation 

⚫ Partition methods
 Joint Partition and Scheduling: JPS, Brute Force: BF

⚫ Application
 VGG-16, AlexNet, and AlexNet’ (curve fitting) with n = 1, …, 29



Theorem 6: The schedule generated by the recursive 

merging approach is optimal for tree-structure DAGs.

⚫ Merge schedules of subtrees bottom-up 

(cut at leaves, i.e., p3(i) = 0 )

 Multiway merge of child lists

⚫ One node at a time, based on Johnson’s rule

 Aggregate computation 

⚫ Root of a subtree and its first child

Duan and Wu, Computation Offloading Scheduling for Deep Neural Network 

Inference in Mobile Computing, Proc. of ACM/IEEE IWQoS, 2021. 

Extension: Tree-structure DNNs



Extension: Inference/Training

T
X

Inference forward pass/training backward pass 

• Reduce resource idle time by adjusting the ratio of resources

Aligning Pipeline with Resource Allocation

• Combine forward/backward passes  (insert 1’ after 1 to fill up space)

Duan and Wu, Optimizing Resource Allocation in Pipeline Parallelism for 

Distributed DNN Training, Proc. of the IEEE  ICPADS, 2022

Idle Time (Bubble)
Bubble Slots 



An On-going Project

⚫ Extension to DNN training 

 Data compression

⚫ Testbed implementation 

 Visual detection & tracking

⚫ Field test

 KUSARA at Kettering University

NSF CNS Medium: Cooperative AI Inference in Vehicular Edge 
Networks for Advanced Driver-Assistance Systems (PI, 2021-2024)

(with Stony Brook, Rowan, and Kettering)

ہ



Some Reflections
Back to the past: interconnection networks
 Randomly wired NNs (random graphs): neuroscience

 Erdos-Renyi (ER): random, Barabasi-Albert (BA): preferential

 Watts-Strogatz (WS): small-world

ہ

Xie et al, Exploring Randomly Wired Neural Networks for Image Recognition, 
Proc. of ICCV, 2019.



5. Conclusions and Future Work

⚫ Offloading as a service
 Mobile Cloud Computing (MCC)

 DNN: Single-path, multi-path, and DAG

⚫ Joint partition and scheduling
 Johnson’s rule and its extensions on pipelines

 Unique properties of comp. and comm. of DNNs

⚫ Future work 
 Optimal partition and scheduling of DAG

 Pipeline of transfer learning with freeze stage

 Dynamic nature of offloading speed

ہ
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