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1. On Problem Solving

How to Solve It (Poyla 1945)

| f you candot sol ve
IS an easier problem you can solve: find it.

Is Computing An Experimental Science ? (Milner, 1986)

A theory can only emerge through
protracted exposure to application.

Ideas and applications developed side -by-side

Edge-computing + ML algorithms: traditional solutions



2. Edge/Cloud Computing + Al

Edge/Cloud Computing

Application -driven: AR/ VR, video
analytics using loTs

Better QoE: mobile/edge device

Key indicators: latency, accuracy,
energy, and privacy

Latency -sensitive

How to b ring rich computation
resources to mobile users?

How IoTs contribute to the ML
training and inference? 50 billion loTs:

connected intelligence
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CNNs (image classification)

convolution (filtering), pooling (max/avg), fully  -connected (neurons)




Sample CNNs

AlexNet (Red: CONV, Gray: POOL, Blue: FC)
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Offloading

Three -stage collaborative computation offloading
Local computation : processing on local devices
Communication. transmitting I nter medi

Remote computation : completing the remote processing in cloud
Three models

On-device optimization H_m offloading
Cloud-only offloading

Mixed -mode offloading




DNN Inferencing

Deep Neural Networks ( DNNs)
Technologies: GPU (graphic) and TPU (tensor)

Al applications
Computer vision: AlexNet , VGG 16, Inception, GooglLeNet
Siamese, Multi -Stream, and RandWire

Natural language processing : ChatGPT, GPT-4

Graph models of DNNs

Omm®
@ % D

(a) line (b) multi-path (c) DAG




Offloading Samples

Given a partition (i.e., cut)
Coarse-grained pipeline: local, communication, and remote

Fine-grained pipeline: path-based (rather than phase -based)
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3. Optimal Scheduling

DNN Computation Offloading Optimization (DCOO)

DCOO: minimum makespanfor a given partition (i.e., cut)

Cases of DNN
Line-structure: trivial
Multi - path: hard
DAG: hard

[Theorem 1: DCOO is NP-hard for a multi -path DNN. }

Proof. Reduce 3 -machine flow -shop to DCOO.



Extended Johnson Algorithm

Path p(i) in three stages

Py(1), P5(i), P5(i)

Linear solution (EJA)

Dividing paths into H and L

E.g,H={1},L={3, 4,2}

Path Pl(_i) p2(1) | pa(i)
i=1] 3
i=2] 3
i=3] 4
i=4| 4

(EJA)

Algorithm 1 Extended Johnson Algorithm (EJA)
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: H + L+ ¢

- for i = 1 to m do
H = H Up(i)
else
L =LUp(i)

if p1(i) + p2(i) < pa(i) + ps(i) then

. Sort H increasingly based on py (i) + p2 (i)
. Sort L decreasingly based on ps(i) + p3(i)
: Concatenate H and L to obtain o

p1(1) p1(3) p1(4) p: (2)
p2(1) p2(3) p2(4)| p2(2) :
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Optimality

Theorem 2 : If stage 2 is dominated by either stage 1 or 3,

max{min p,(i), min p;(i)} max p,(i), EJA is optimal .

If Theorem 2 fails, EJA still achieves an approximation ratio of 5/3 .

p2(i) | p3(i)

i=2]

i =

i=4




Simulation
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Local and Cloud

Local: Raspberry Pi (and Nexus 4), Cloud: Amazon EC2

PyTorch: open-source ML framework
Algorithms

LO: localonly, EJA: Ext ended
DSL: coarse-grained pipeline, RO: remote only
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Extensions: DAG

General structure: DAG
Conversion to multi - path
Replicated nodes at join and fork

Heuristic solution
Scheduling: EJA on multi -path

Execution: Replicated node executed once (the first time)

(a) Before Conversion, (& (b) After Conversion, GG’



Multiple DNNs Offloading

Internet of Vehicles: smart city

Autonomous driving systems : perception is a key
Multiple cameras/sensors: multiple (identical) DNNs
V2X: V (vehicle); X for | (infrastructure), N (network), or P (pedestrian)




4. Optimal Partition and Scheduling

Multiple line -structure DNNs

AlexNet and VGG 16
Video analytics and AR/VR

Optimal partition and scheduling
Brute force: O( k")
n: # of copies, k: # of layers

Existence of a better solution?
Exploring special application properties



Johnson Algorithm (JA)

Closer look at the optimality for EJA
max{min p,(i), min p5(i)}  max p,(i)

However, p,(i) 1 reduced to 2 -stage pipeline

Algorithm 2 Johnson Algorithm (JA) w0 B ot Cornp| |
L HeLed - B o o,
2: forz=1to m do %30' |
3: if pi(i) < po(i) then E 20}
4 H = H Up(i) 10l
5. else .
6: L = LUp(i) 1.2 3 4 5 6 7 8
7: Sort H increasingly based on p, (i) Layers
8: Sort L decreasingly based on ps(i) AlexNet
9: Concatenate ff and L to obtain &

Johnson, Optimal Two - and Three - Stage Production Schedules With

Set-up Time Included, Naval Research Logistics Quarter, 1954.



JA In lllustration

Optimality is guaranteed: JAon 2 -stage pipeline

First six layers of AlexNet
One copy for each partition: 6 copies
H={1, 2, 3}, increasing order of blue
(H: comm.-dominate) III
L = {4, 5, 6}, decreasing order of red

i1 2 3 4 5 6

(L: comp.-dominate)

2 3 3 4 5 6 5 nﬂ
1 2 3 4 56]|5



Multiple Line -Structure Example

Two copies of line -structure DNN

: by

comp.

COITIINL.

4

6
: 2

comp.

COIINIT.

Three possible partitions and scheduling
Gaps in the first and last pairs of comp. and comm.

Comp.

Comm.

Comp.

Comm.

Comp.

Comm.

4 4 :
DNMN1 DNN2 Cut-Point
6 6 (14, 14)
DMNMN1 DMNZ2 "
16
4 7 Cut-Point
6 2 (14,13)
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Special Application Property

Line-structure
Computation time: linear increasing (convex) function
Communication time: monotonic decreasing convex function

Computation vs. communication
Data size: 2 12 MB

Speed (uplink): 2 -5 Mpbs (4G) and 6-54 Mpbs (WiFi)

B Mobile Comp. | | I Mobile Comp.
N Comm. B Comm.

Il Cioud Comp. | |

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Layers Layer



Optimization Approximation

Two functions
Comp. and comm. are convex: one increasing, one decreasing

Theorem 3: A uniform partition of n line DNNs at the
Intersection will guarantee an approximationof p -.

Proof. convex optimization

Intersection has the  min {max {comp., comm.}}

Strong duality, then KKT condition, the uniform partition at the

intersection hasthe minmax { xcomp., Xcomm.

1/n is caused by the gaps in the first and last pairs

Duan and Wu, Joint Optimization of DNN Partition and Scheduling for Mobile
Cloud Computing, Proc. of ICPP, 2021.



Optimization

Informal proof
Pairr-wi se omergeo6o and reqpdimmced by

C C

Qw Qo) 0

The height of the Intersection
partition

Two gaps, first pair in comm and last pair in comp.: when
nO Hp p/n approaches 1



Insight

Comp. (blue) and comm. (orange)
max {blue sum, orange sumj}

However, there Is a delay gap



Sufficient Condition

A set of given partitions
Left/right most partition: comm and comp, / comm  and comp,

Intersection partition:  comm,, and comp,,

Theorem 4: The uniform partition beats the given set if

3comp,,, < comp +comp, + comm, and 3comm._ < comp +comm + com

compg < — compy,

commy, < — comins




