SMART Power Flow Controllers – A Necessity for Future Power Grid

Abstract: Power flow control techniques have been practiced, from using inductors, capacitors, transformers and load tap changers in the earlier days of electrical engineering to power electronics-based solutions in recent years. Even though the costs and complexities of the available solutions vary widely, the basic underlying theory of power flow control is still the same as it has always been. The question is which solution one should employ. The answer depends on knowing what the true need is. The power industry’s pressing need for the most economical ways to transfer bulk power along a desired path may be met by building new transmission lines, which is a long and costly process. Alternately, it may be quicker and cheaper to utilize the existing transmission lines more efficiently. The key is to identify the underutilized transmission lines and harness their dormant capacities to increase the power flows to the lines’ thermal limits using the most cost-effective and time-tested solutions.

The presentation is designed to provide the basic principles of power flow control theory, an overview of the most commonly used power flow controllers, and future trends.

About speaker: Kalyan Sen is the President & Chief Technology Officer of Sen Engineering Solutions, Inc. (www.sentransformer.com) that specializes in developing SMART power flow controllers—a functional requirements-based and cost-effective solution. Kalyan worked 33 years in academia and industry. He was a key member of the Flexible Alternating Current Transmission Systems (FACTS) development team at the Westinghouse Science & Technology Center for which he became a Westinghouse Fellow Engineer. He contributed to concept development,

*This is a joint invitation between CSULB IEEE Student Branch and IEEE Systems Council Chapter.
This is a joint invitation between CSULB IEEE Student Branch and IEEE Systems Council Chapter.

simulation, design, and commissioning of FACTS projects at Westinghouse. He conceived some of the basic concepts in power flow control technology for which he was elevated to the IEEE Fellow grade with the citation: for the development and application of power flow control technology. He is the Co-inventor of the Sen Transformer. Dr. Sen is a licensed Professional Engineer in Pennsylvania and New York.

For more information, please contact: Prof. Henry Yeh at henry.yeh@csulb.edu

Jointly with Power Electronics Society (PELS) in CLAS and co-sponsored by CSULB IEEE Student Branch.

*This is a joint invitation between CSULB IEEE Student Branch and IEEE Systems Council Chapter.*