VFD Installations and Applications

Rick Hoadley, ABB
Rick.L.Hoadley@us.abb.com
26 May 2021
Chicago IEEE Chapter

Agenda

Part 1:

- Harmonic Mitigation
- Methods to reduce Ithd, Vthd
- Line reactors and DC link chokes
- Active Rectifier Applications
- Downhill conveyors
- Centrifuges
- Fans
- Dynamometers
- Fibers
- Paper mills
- Cranes
- Active Rectifier Operation
- What about Power Factor?

Part 2:

- Motor speed vs max load / cooling, use of motor RTDs
- Overspeed with fans / pumps and increase in torque and power
- Min speed with pumps
- SCCR for drives
- HRG vs solid ground
- Shaft grounding brushes / bearing currents
- Load reactors on the output
- Wiring on input / output
- Insulation types
- Conduit, tray
- Type (VFD, individual wires)
- Control wiring management

Part 1

Harmonic Mitigation

Harmonics - What can be done?

Solutions typically used

LV Drives

- Line Reactors or isolation transformers
- DC Link Chokes
- Passive Harmonic Filters
- Active Harmonic Filters
- Multi-Pulse (parallel bridges)
- 12P, 18P
- AFE (ULH)

MV Drives

- Multi-Pulse (series or series/parallel bridges)
- 12P, 18P, 24P, 36P, 72P
- AFE (ULH)

General Block Diagram of an AC Drive

General Block Diagram of an Industrial AC Drive

6-Pulse Drive, no mitigation

80-120\% Ithd

Basic Converter

6-Pulse Drive with Line Reactor and/or Link Choke

6-Pulse Drive with Passive Harmonic Filter

5-10\% Ithd

Passive Harmonic Filter

(supplies harmonics)

How is Multi-Pulse accomplished?

Input Current Pulses / Cycle	Number of 6- Pulse Bridges (secondaries)	Number of Phases (wires)	Phase Shift Between Bridges	Harmonic Pairs
6	1	3	--	$6 \mathrm{k} \pm 1$
12	2	6	30	$12 \mathrm{k} \pm 1$
18	3	9	20	$18 \mathrm{k} \pm 1$
24	4	12	15	$24 \mathrm{k} \pm 1$
36	6	18	10	$36 \mathrm{k} \pm 1$
48	8	24	7.5	$48 \mathrm{k} \pm 1$
72	12	36	5	$72 \mathrm{k} \pm 1$
= multiple of 6	$=$ Pulses /6	$=$ Pulses /2	$=360 /$ Pulses	$\mathrm{k}=1,2,3, \ldots$

12-Pulse Drive: Series or Parallel Bridges

Parallel Bridges

*Series Bridges
(cancels harmonics)

12-Pulse Drive: Pseudo 12-Pulse

$10-15 \%$ Ithd \quad Split the drive load into two, somewhat equal parts.

Or use two zig-zag transformers: One zigs $+15^{\circ}$, the other zags -15° One spare can be used either way.

Or use one Dy transformer and a line reactor. Match the impedances.

18-Pulse Drive: Series or Parallel Bridges

Parallel Bridges

* used for MV drives
*Series Bridges

24-Pulse Drive: Series / Parallel Bridges

*Series / Parallel Bridges, 24P
(cancels harmonics)

* used for MV drives

36-Pulse Drive: Series / Parallel Bridges

3-4\% Ithd

*Series / Parallel Bridges, 36P
(cancels harmonics)

* used for MV drives

How does it help?

6-Pulse with Active Harmonic Filter

Active Harmonic Filter

3-Phase Drive with Active Front End

* used for MV drives

Line Reactors and DC Link Chokes

Line Reactors on the Input to a Drive

Let's look at some voltages and current.

Rectifier w/o DC Link Choke

Rectifier w/o DC Link Choke

Rectifier w/o DC Link Choke

First Current Pulse

Second Current Pulse

Addition of DC Link Choke

-or- an Addition of AC Line Reactor

Rectifier with DC Link Choke

Rectifier with DC Link Choke

6-Pulse Drive, no mitigation

80-120\% Ithd

Basic Converter

6-Pulse Drive with Line Reactor and/or Link Choke

$30-40 \%$ Ithd

AC Line Reactor

Link Choke and Reactor

How else does a line reactor help?

Recovery from a sag or interruption

Less likely to blow a fuse or trip a CB.

How else does a line reactor help?

PFCC energization

Less likely to blow a fuse or trip a CB or trip on OV.

Low Impedance Source (a very big transformer)

No LR or LC

Less stress on diode bridge - longer life.
Less bus ripple - longer cap life.
Less likely to trip on excessive bus ripple.

Rule of thumb: if $x f m r$ is $>20 x$ kVA rating of drive, add a line reactor!

Open Delta Source - Unbalanced Impedances

No LR or LC

Less stress on diode bridge - longer life. Less bus ripple - longer cap life. Less likely to trip on excessive bus ripple.

Unbalanced Line Voltages

No LR or LC

Less stress on diode bridge - longer life. Less bus ripple - longer cap life.
Less likely to trip on excessive bus ripple.

Problem with too much Line Reactor \% ($\max =5 \%)$

Low DC bus voltage means:
Low motor voltage (at max speed) Higher motor current
More heating Shorter life
\% Vbus vs Load (lsc/lload = 47)

How does motor load affect I(THD)?

NOTES:

I(THD) = Iharm / Ifund
I(THD) increases as load decreases

Ifund decreases as load decreases Iharm decreases as load decreases
(drive is at full speed)

Vthd vs Load - Zoomed In

100hp drive on 250kVA xfmr, 6\%

Active Rectifier Applications

Quadrants of Operation

Braking in reverse
direction: stopping,
plugging, lowering hoist,
generator action

Special applications that require regeneration

- Downhill conveyors
- Centrifuges
- Cooling and ID fans
- Dynamometers
- Fabrics - Kevlar
- Paper mills
- Cranes
- Reasons:
- Continually braking (reverse torque)
- Braking or slowing down high inertia loads
- Emergency stopping for safety
- Dynamic braking dissipates the energy as heat in a resistor
- Regenerative braking sends the energy back into the power lines for other loads to use
- Constant braking torque throughout the speed range

Shipyard Cranes

Cooling Fans

Downhill Conveyor

Pump Jack

CONSUMIIING

Paper Mill

Fibers such as Kevlar

Active Rectifier Operation

3-Phase Drive with Active Front End

* used for LV and MV drives

Active Rectifier (AFE, ULH) AC Drive

Active Rectifier

Synchronous Rectifier Synchronous Converter Active Front End, AFE Regenerative Unit, RGU
Ultra-Low Harmonic, ULH
IGBT Supply Unit, ISU

Just Like Two DC Voltage Sources

Relative voltage magnitudes and resistance determine current magnitude and direction of power flow

Two AC Voltage Sources

Direction of power flow

Relative voltage magnitudes and phase angles determine current magnitude, PF, and direction of power flow

Current and Power Flow with an Inductor

$$
\overline{\mathrm{Ix}}=\frac{\overline{\mathrm{Vx}}}{\overline{j X}}=\frac{V x}{2 \pi f \mathrm{~L}}<-90
$$

$\Theta=0^{\circ}$, Vafe $=100 \mathrm{Vpk}$, Current lags by 90°

["

Current and Power Flow with AFE

By adjusting V_{a} and θ, you can control I_{L} and β.

Fixed
Voltage and Angle

> Adjustable Voltage and Angle

$$
\mathrm{L} \angle \beta^{\circ}=\frac{\left(\mathrm{V}_{\mathrm{L}} \angle 0^{\circ}-V_{\mathrm{a}} \angle \theta^{\circ}\right)}{\mathrm{X}_{\mathrm{L}} \angle 90^{\circ}}
$$

$\theta=0^{\circ}$, Vafe $=100$, Vline $=100$

Zero Current Zero Watts

$$
\xrightarrow[\text { Vafe }]{\text { Vline }}
$$

$\theta=0^{\circ}$, Vafe $=90$

Lagging Current Zero Watts

$\theta=0^{\circ}, \operatorname{Vafe}=100$

$\theta=0^{\circ}$, Vafe $=110$

Leading Current Zero Watts

$\theta=0^{\circ}, \operatorname{Vafe}=100$

$\theta=-17^{\circ}$, Vafe $=100$

Lagging Current >0 Watts

$\theta=-17^{\circ}$, Vafe $=105$

Unity PF Current >0 Watts

$\theta=-17^{\circ}$, Vafe $=110$

$\theta=-17^{\circ}$, Vafe $=105$

Unity PF Current >0 Watts

$\theta=0^{\circ}, \operatorname{Vafe}=100$

$\theta=+17^{\circ}$, Vafe $=105$

Unity PF Current <0 Watts

$\theta=0^{\circ}, \operatorname{Vafe}=100$

Ratio of Vafe to Vline vs Degrees

Vector Loci for Unity PF

Vafe $=$ Vline $/ \cos (\theta)$

AFE Converter

Motoring

- unity power factor
- I and V in-phase
- I(THD) = 3.6\%

Regenerating

- unity power factor
- I and V 180 deg out-ofphase
- I(THD) = 3.6\%

Voltages shown are Line to Neutral

Iline Vline Vafe

AFE Line Notches without LCL Filter

Voltages shown are Line to Line
$75.00 \mathrm{~m} \quad 80.00 \mathrm{~m} \quad 85.00 \mathrm{~m} \quad 90.00 \mathrm{~m} \quad 95.00 \mathrm{~m} \quad 100.00 \mathrm{~m}$

Line Notching

IGBT is on, creating line-to-line short circuit
Current in line reactor is increasing, storing energy in the reactors
Load is discharging the DC bus cap

Line Notching

IGBT is off
Current in line reactor is charging the DC bus cap
Reactor energy is transferred to DC bus cap

Line Notching

Blue = DC bus cap voltage
Red $=$ Current in line reactor
Green $=$ IGBT on/off signal

Customer's 120V supply for office area

Without LCL Filter, AFE stopped

Without LCL Filter, AFE running

With LCL Filter,
AFE running

AFE Line Notches Reduced with LCL Filter

Control of Vdc bus

Note the following:
The average current in the DC Bus Caps, Icap = Iafe - Iinu
Normally Icap $=0$, so Iinu $=$ Iafe
If the load increases:
Vcap decreases, and control increases Iafe to bring Vcap back to normal
If the load decreases or reverses:
Vcap increases, and control decreases or reverses Iafe to maintain Vcap

AFE Rectifier with LCL Filter

Advantages:

- Very low line harmonics, 3-4\% Ithd
- Unity PF
- Can operate with leading PF
- Sags will not affect motor voltage
- Possible to compensate for voltage drop along long leads
- Full power regeneration continually
- Constant torque braking at all speeds
- Fast stopping
- All in a small package without extra hardware!

Active Converter removes low frequencies by not creating them $<1 \mathrm{kHz}$
LCL filter (passive filter) removes high frequencies $>1.2 \mathrm{kHz}$ (current and voltage)
Power factor adjustable from 0.85 (leading or lagging) to 1.0
Full output voltage is available with 80% input voltage $(400 \mathrm{VIn}=480 \mathrm{VOut})(3300 \mathrm{VIn}=4160 \mathrm{VOut})$
Full regenerative capability
No phase shifting transformer required
Less affected by line imbalance

IEEE 519-2014, Annex C

Table C-1—Recommended limits on commutation notches

	Special applications	General system	Dedicated system
Notch depth	10%	20%	50%
Notch area $\left(\mathrm{A}_{\mathrm{N}}\right)^{\mathrm{c}, \mathrm{d}}$	16400	22800	36500

${ }^{a}$ Special applications include hospitals and airports.
${ }^{\mathrm{b}}$ A dedicated system exclusively supplies a specific user or user load.
${ }^{\text {c }}$ In volt-microseconds at rated voltage and current.
${ }^{\mathrm{d}}$ The values for A_{N} have been developed for 480 V systems. It is necessary to multiply the values given by $\mathrm{V} / 480$ for application at all other voltages.

Rule of Thumb -

Keep notch depth less than 10% if any other equipment will be connected to that same point of common coupling.

Ithd and Vthd vs \%Load

What about Power Factor?

What is Total Power Factor?

- Displacement PF
- COS of angle between fundamental current and voltage due to reactive current
- $P F_{\text {disp }}=\cos (\theta)=P / S_{1}$

$$
P F_{t o t a l}=P F_{d i s p} \times P F_{d i s t}=\frac{P[k w]}{S[k V A]}
$$

- Distortion PF
- Calculation based upon the current THD due to harmonic currents
- $P F_{\text {dist }}=\frac{1}{\sqrt{1+T H D^{2}}}=S_{1} / S$

PF of a Motor Across the Line

\% Load

PF of a Drive w/o LR or LC vs Load

PF of a Drive w/LR or LC vs Load

PF of an 18-Pulse Drive vs Load

PF of an AFE Drive

\% Load

End of Part 1

