Microgrid Controller Hardware-in-the-Loop Demonstration Platform

February 23, 2016

Erik Limpaecher

Science and Technology

This work is sponsored by the Department of Homeland Security, Science and Technology, Resilient Systems Division and the Department of Energy, Office of Electricity Delivery and Energy Reliability under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Test Coverage & Fidelity of New Power Distribution + Control Projects?

- Example: NYU-Poly study
- Validated 3φ time-domain model of Flushing network
- Analyzed performance of smart grid concepts
 - Automatic reconfiguration and self-healing capabilities
 - Auto-loop operations; required switching speed
 - Overcurrent, equipment malfunctioning, switch failures

Manual preprogrammed scenarios based on expected switching sequences – Good test coverage or fidelity? –

Overall Power Demand	400 MW
Feeder breakers	30
Feeder/Tie/Subnetwork switches	73
Auto-loops	2
Transformers	980
Transformers Network protectors	980 871
Transformers Network protectors Primary feeder and secondary grid sections	980 871 6,796 + 17,458

Computational burden:

- Intel Core i7 CPU 975 Processor at 3.33 GHz with 24 GB RAM
- Simulations with EMTP-type software
- Integration step of 50 µs to solve a 650 ms scenario

16-hour wait per 650 ms scenario – Good coverage possible? –

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

μGrid Controller HIL - 2 ERL 23 February 2016 [1] V. Spitsa, X. Ran, R. Salcedo, J. Martinez, R. Uosef, F. d. León, D. Czarkowski, and Z. Zabar, "On the transient behavior of large-scale distribution networks during automatic feeder reconfiguration," IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 887–896, Jun. 2012 [2] V. Spitsa, R. Salcedo, X. Ran, J. Martinez, R. E. Uosef, F. De León, D. Czarkowski, and Z. Zabar, "Three-phase time-domain simulation of very large distribution network," IEEE Trans. Power Del., vol. 27, no.2, pp. 677–687, Apr. 2012.

- High NRE for each project
 - One vendor's microgrid controller quote: \$1M starting price
- "Vaporware"
 - No standard list of functions or performance criteria
 - Difficult to validate marketing claims
- Risk of damage to expensive equipment
 - One utility-deployed microgrid: 1 year of controls testing, damaged a 750 kW transformer, required significant engineering staff support
- Interconnection behavior unknowable to utility engineers
 - Controls are implemented in proprietary software
 - Microgrids are a system of systems: Exhibit emergent behavior
- No standards verification
 - IEEE P2030.7 and P2030.8 standards are on the horizon

Microgrid Controller Hardware-in-the-Loop (HIL) Testbed

Types of Controller Testbeds

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

µGrid Controller HIL - 4 ERL 23 February 2016

Power Simulation: Flight Simulator Analogy

μGrid Controller HIL - 5 ERL 23 February 2016

Power Distribution Integration Platforms and Testbeds

µGrid Controller HIL - 6 ERL 23 February 2016

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

μGrid Controller HIL - 7 ERL 23 February 2016

- Microgrid controller HIL simulates in real-time at sub-cycle timescales
 - Useful for steady-state, dynamic, and transient analyses

Construction of Detailed Microgrid Test Feeder Model

Load the feeder model into the HIL simulator "target"

μGrid Controller HIL - 10 ERL 23 February 2016

Create detailed models of the DER devices

μGrid Controller HIL - 11 ERL 23 February 2016

...or add commercial controllers as hardware-in-the-loop

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Æ Grid Status

∰

Performance comparison •

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Microgrid Controller HIL Platform

Vision for the Microgrid Controller HIL Platform

October 1 Massachusetts Microgrid Controls Symposium

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

μGrid Controller HIL - 20 ERL 23 February 2016

Demo-centric Tech. Evaluation U.S. Marine Corps' ExFOB Example

ExFOB 2013 – Twentynine Palms

Anonymized Results of Demonstration Runs

* Vendor #2 islanded one minute earlier than Vendor #1, resulting in the higher demand during islanded operation.

Anonymized Results of Demonstration Runs (cont.)

Energy Consumption

	Grid-tied			Islanded
	Fuel Used (gal.)	Energy Imported (kWh)	Energy Exported (kWh)	Fuel Used (gal.)
Vendor #1	5.7	317	14	5.0
Vendor #2	6.3	272	38	5.9*
Difference	+11%	-14%	+170%	+18%

* Vendor #2 islanded one minute earlier than Vendor #1, resulting in the higher demand during islanded operation.

- Introduction to Controller Hardware-in-the-Loop
- Orientation to the HIL Platform Demonstration
 - Way Ahead

1 work week compressed into 2 hours

- Peak kW: 879
- Min kW: 319
- Peak kVAR: 832
- Min kVAR: 382
- Nominal Voltage:

460 V

Microgrid Controller Hardware-in-the-Loop Platform

μGrid Controller HIL - 27 ERL 23 February 2016

HIL Platform Block Diagram

μGrid Controller HIL - 28 ERL 23 February 2016

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Device	IP Address	Notes
1 MVA Genset Controller	192.168.10.35	-
4 MVA Genset Controller	192.168.10.36	-
Storage Controller	192.168.10.40	-
PV Controller	-	No interface
Relay 1	10.10.45.101	Point of Common Coupling
Relay 2	10.10.45.102	Serves & senses sub-panel B021
Relay 3	10.10.45.103	Serves & senses sub-panel B012
Relay 4	10.10.45.104	Serves & senses load B001 + genset1
Relay 5	10.10.45.105	Serves & senses B022
Relay 6	10.10.45.106	Serves & senses loads B009-B011
Relay 7	10.10.45.107	Serves & senses genset 1
Relay 8	10.10.45.108	Serves & senses genset 2
Relay 9	10.10.45.109	Serves & senses load B009
Relay 10	10.10.45.110	Serves & senses load B010
Relay 11	10.10.45.111	Serves & senses load B004
Relay 12	10.10.45.112	-
Relay 13	10.10.45.113	Serves & senses battery
Relay 14	10.10.45.114	Serves & senses load B015 + battery
Relay 15	10.10.45.115	Serves & senses load B013
Relay 16	10.10.45.116	Serves & senses load B014
Relay 17	10.10.45.117	Serves & sense PV
Motor Relays		

- Four quadrant power source with sub-cycle transient accuracy, modeled in real time
 - Boost rectifier average model
 - Three phase PLL
 - D and Q axis current PIDs respond to power commands
- PV MPP tracker
- Inverter physical limits monitored by fault controller

	Battery Rating	PV Rating
AC Power Rating (kVA)	4,000	3,500
Storage (kWh)	500	n/a
Cycle Life	x	n/a
Voltage (V)	2,400	2,400
Frequency (Hz)	60	60
Ramp Rate	8 MW/s	2.5 MW/min

Battery and PV system ratings and characteristics

Parameter	Units	Notes
Real Power Command	kW	(-) discharge; (+) charge
Reactive Power Command	kVAR	(+) capacitive; (-) inductive
Modbus Enable	0/1	1 to indicate active Modbus connection.
Fault Status		Phase A Over Current
		Phase B Over Current
		Phase C Over Current
		DC Link Overvoltage
		PLL Loss of Sync
		Vrms out of spec
		Battery Empty
		Battery Full
Battery SoC	%	Battery start at 50%
Enable	0/1	Cycle to clear any faults.

Register list for battery system device controller

Simulated Genset Block

	1 MW Genset	4 MW Genset
Manufacturer / Model	CAT C32	CAT C175-20
Rating (kVA)	1,000	4,000
Power Factor	TBD	TBD
Voltage (V)	480	13,800
Frequency (Hz)	60	60
Speed (RPM)	1800	1800
Minimum Output Power	25kW	100kW
Startup Time	<10 sec	<15 sec

Genset ratings and characteristics

Synchronous Machine, Governor, and AVR Models

Device Controller Integration: Woodward easYgen 3000

Simulated Relay: **SEL-787 Transformer Protection Relay**

Relay Protection Functions

Image: Schweitzer Engineering

Protection Function		
ANSI 50	Inst. overcurrent	
ANSI 51	Avg. overcurrent	
ANSI 27	Undervoltage	
ANSI 59	Overvoltage	
ANSI 25	Synchronism-check	
1547 Tables 1&2	Abnormal V & f	
Gen. Synch	Generator synch	
ANSI 52	AC Circuit Breaker	

Demonstration against ORNL/EPRI Microgrid Functional Use Cases

Functional Use Case	Description	Demonstration
F-1 Frequency Control	Selection of grid-forming, -feeding,	The microgrid controller selects from
	and -supporting energy sources to	among the two gensets and battery
	maintain stability; sub-second	DERs.
	control to maintain stable	
	frequency while islanded	
F-2 Voltage Control	Regulate voltage at the microgrid	No demo
	point of common coupling	
F-3 Intentional Islanding	Planned disconnect from area	Islanding will be initiated by the
	electric power system (AEPS)	microgrid controller
F-4 Unintentional Islanding	Fast disconnect from AEPS upon	No demo due to battery and PV
	large disturbance to provide	inverter controller PLL instability
	continuous supply to loads	
F-5 Transition from Islanded to	Resynchronize and reconnect to	Initiated by microgrid controller once
Grid-tied	AEPS	generators and grid synchronize

Demonstration against ORNL/EPRI Microgrid Functional Use Cases (cont.)

Functional Use Case	Description	Demonstration
F-6(a) Energy Management: grid-	Coordinate generation, load, &	The microgrid controllers target a
tied	storage dispatch, to participate in	power export value for a defined
	utility operation and energy market	period, and should also shave peak
	activities	demand.
F-6(b) Energy Management:	Coordinate generation, load, &	Fuel consumption and service of
islanded	storage dispatch, to optimize	critical and priority loads are
	islanded operation (fuel	measured during islanded operation.
	consumption, islanding duration)	
F-7 Microgrid Protection	Configure protection devices for	DER and relay protection are
	different operating conditions	implemented, but are not
		configurable.
F-8 Ancillary Services:	Provide frequency regulation,	Demand response to hit a target
regulation	generation reserves, reactive	power export value;
	power support, and demand	Reactive power support to maintain
	response to AEPS	unity power factor at PCC
F-9 Microgrid Blackstart	Restore islanded operation after a	Likely limited by present genset
	complete shutdown	control capabilities
F-10 User Interface, Data	Organize, archive, and visualize	Data collection and visualization
Collection	real-time and non-real-time data	performed by MIT-LL, not μC

15-minute Demonstration Sequence

μGrid Controller HIL - 36 ERL 23 February 2016

Heads-up Display (screen 1)

- Introduction to Controller Hardware-in-the-Loop
- Orientation to Today's Demonstration
- Way Ahead

Vision for Eventual HIL Capabilities

Vision for Power Systems HIL & Shared Repository

μGrid Controller HIL - 41 ERL 23 February 2016 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Elements of the EPCC Shared Repository

- Integration of control systems
 - Microgrid controller testing; integrate with DER & IED sub-systems
 - Distribution management system testing and integration
 - Transmission operator dispatch integration and ancillary services testing
 - Volt VAR control systems testing
- Protection system testing, including
 - Evaluation of automation sequences
 - Development of automated self-healing systems
 - Feeder sectionalization studies
- Prime mover DG controller testing
 - Evaluating stability issues due to DG dynamics
- Anti-islanding and blackstart testing

- DER controls behavior testing
 - DG penetration studies
 - Anti-islanding / intentional islanding controls studies
- Detailed power systems analysis
 - Evaluating electromagnetic transients due to switching or faults
 - Assessment of symmetrical and non-symmetrical events
 - Evaluation of transient overvoltage and resonance
- Micro-PMU (phasor measurement units) studies
- Implementation and evaluation of smart grid concepts
- Communications testing and integration
- Other distribution-level studies

Acknowledgements

Sponsors

Sarah Mahmood, DHS S&T Jalal Mapar, DHS S&T Dan Ton, DOE OE Ernest Wong, DHS S&T

MIT Lincoln Laboratory

Division 7 – Engineering Division 4 – Homeland Protection Division 5 – Cyber Security Division 6 – Communications Security Services Department

Collaborators

Vijay Bhavaraju, Eaton Mark Buckner, ORNL Fran Cummings, Peregrine Group Babak Enayati, National Grid Mark Evlyn, Schneider Galen Nelson, MassCEC Luis Ortiz, Anbaric Jim Reilly, Reilly Associates Travis Sheehan, BRA Michael Starke, ORNL Tom Steber, Schneider Brad Swing, City of Boston

Contact Information

Erik Limpaecher

Assistant Group Leader

Energy Systems, Group 73

781-999-2237 (cell)

781-981-4006 (lab)

elimpaecher@ll.mit.edu

Power Systems HIL Platform

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

μGrid Controller HIL - 47 ERL 23 February 2016