Wireless Power: a Path Toward Core-Less Transformers

Chathan M. Cooke MIT: RLE, High Voltage Lab.; Sea Grant Development Lab. Tuesday, January 19, 2016 at: National Grid, Waltham, MA

IEEE - PES Presentation

Presentation Outline

• Transformers:

- Necessary Classical Device
- Construction, Size, Core Basics
- An Alternate Approach:
 - Wireless Power: "Resonance"
- Resonant Coupling
- Scaling:
 - Resonant Coupling to High Power
- Key Limits, Future Prospects

Transformers: A Necessary Component In Electric Utility Systems

via: DOE 2012

"U.S. DOE report on large power transformers and the U.S. electric grid"

Transformers: A Classical Magnetic Device

- Transformer Basics
 - Magnetics: The coupling of 2 windings
 - Use of steel core, tight magnetic coupling
- Structure and Internals
- Costs, Weight (especially of steel core)
 Worldwide manufacture and shipping
- Size and Scaling Relations
 - Steel core

Transformers: Linked Magnetic Flux

Basic Transformer Structure

via: www.indiastudychannel.com

In The Beginning

via: www.edisontechcenter.org/Transformers.html

Stanley: 1886 'E'-core transformer

BDZ: 1885 toroid-core transformer

Typical Transformer Coils On Core

http://www.transformerindia.com/photos/cb04.jpg

Power Transformer Structure

via: www.meppi.com/Products/Transformers/

via: www.cbsa-asfc.gc.ca

Transformer Steel Cores

Steel Sheet Rolls

Cut and Stacked

http://siliconsteel.com/

via: www.tehenergo.ee/en/item/36-distribution_transformers.html

Steel Core Assemblies

via: www.lagor.it

Steel Core Assemblies

Figure 3 – 'E'-assembly, prior to addition of coils and insertion of top yoke

via: electrical-engineering-portal.com/power-transformer-construction-core

via: www.copper.org/

Full Construction Over Steel Core

via: electrical-engineering-portal.com/what-are-the-main-classes-of-transformer

Transformer Costs: 100-500 MVA

- Total Cost: 2 to 5 \$million [~ \$10/lb]
- Total Weight: 200,000 to 600,000 lbs
- Cost Breakout:
 - Raw Materials: ~60%
 - Copper: ~25%
 - Core Steel: ~25%
- Weight Breakout
 Core Steel: ~200,000 lb (larger MVA)

via: 2011 Data, DOE 2012

Transformers Travel to US

Transformer Size Relationships

- Basic Magnetics Theory: Faraday and Ampere
- Two Specific 'Areas' related to Power Capacity
- Power vs Size: Scaling relations
- Frequency effects
- Permeability effects (linear like frequency)
- Cooling more severe at higher powers

Transformer Equations

Key Specific 'Areas' for Power Capability

Core Cross-Section Area, A_c

'Winding Window' Area, A_w

via: electrical-engineering-portal.com

l'liī

Examples: Transformer Size - Power

$$P = 0.56 f \left(A_C\right)^2 \text{ (watts)}$$

Core Area =
$$100 \text{ in}^2 \rightarrow \rightarrow 336 \text{ kW}$$

Core Area =
$$1000 \text{ in}^2 \rightarrow \rightarrow 33.6 \text{ MW}$$

Core Area =
$$3000 \text{ in}^2 \rightarrow \rightarrow 302 \text{ MW}$$

At 6 kHz:

At 60 Hz:

Core Area =
$$100 \text{ in}^2 \rightarrow \rightarrow 33.6 \text{ MW}$$

Higher Frequency \rightarrow Smaller Size

- Recall: $P = 0.56 f (A_C)^2$ (watts)
- Examples for Traction Transformers

via: 'SR Transformers-121031.pdf'

450 – 675 kW: at 1.75 kHz

Size – Frequency Relations

Left: 5 kHz Transformer. Right: 16.7 Hz Transformer. Both: 3.6 kV Primary, 1.5 kV Secondary.

via: ABB Brochure: "Shrinking the Core"

An Alternate Approach to Transformers

- Recall: Classical Transformer Approach
 - 'Unity' magnetic coupling via steel core
 - Steel core about 25% of weight and cost
 - Core-Losses = major source of heat
- New Approach Technology from Wireless Power Systems
 - No physical contact between 'primary' and 'secondary'
 - No core
 - Not 'unity' magnetic coupling
 - Higher frequency operation
- Achieved via 'Resonant Coupling'
 - Originator = Tesla

Resonant Power - The 'Pioneer' = N. Tesla

Figure 2.2: Tesla's Colorado Springs experiments (from [26])

via: teslauniverse.com

Tesla: Double Resonant Coils

Key Concepts for Resonant Power

- Use 1st resonant L-C circuit as source of magnetic energy
- Use 2nd resonant L-C to collect magnetic energy
- Need 'weak' magnetic coupling between the two L-C circuits

via: www.youtube.com/watch?v=r1UT4NuygmQ

Induction Cooktop Yields 4kW Wireless Power

via: www.youtube.com/watch?v=JqgO7AEZXzI

Wireless Power Examples: Buses, Cars

Source: http://transportevolved.com/2014/01/09/miltonkeynes-uk-launches-wirelessly-charged-electric-bus-route/

Frequency	?? Hz
Power Transfer Levels	120 kW
Wireless Mode	static

Source: http://evworld.com/news.cfm?newsid=31633

Frequency	140 kHz
Power Transfer Levels	20 kW
Wireless Mode	static

Resonance Equations – Single L-C

Single L-C: Time and Frequency Responses

Q > 1

At Resonance; L & C Reactance 'Cancel'

Series = Short Circuit (zero voltage)

At resonance the voltage drop equals zero

Parallel = Open Circuit (zero current)

At resonance the reactive current is zero

Double Coupled L-Cs Resonant Circuits

4th Order Equations – 'Tesla Coil'

4 Energy Storage Elements

$$egin{aligned} rac{V_{out}}{V_{in}} = -\sqrt{rac{L_2}{L_1}} & s^2 \omega_2^2 k \ & \left\{ egin{aligned} & (1-k^2) s^4 + (rac{\omega_1}{Q_1} + rac{\omega_2}{Q_2}) s^3 + (\omega_2^2 + \omega_1^2 + rac{\omega_1 \omega_2}{Q_1 Q_2}) s^2 \ & + \omega_1 \omega_2 (rac{\omega_2}{Q_1} + rac{\omega_1}{Q_2}) s + \omega_1^2 \omega_2^2 \end{aligned}
ight. \ & \omega_i = rac{1}{\sqrt{L_i C_i}} ext{ and } Q_i = rac{\omega_i L_i}{R_i} & M = k \sqrt{L_1 L_2} \end{aligned}$$

l'liī

via: J.Stark III Thesis MIT 2004

Response: Single or Double Frequency Peaks

At Resonance: Highly Coupled

Fig. 6. Drawings of an isolated coil and mutually coupled coils. (a) Isolated coil. (b) Two coupled coils.

Fig. 7. Magnetic flux density dependence on operating frequency. (a) Sectional view. (b) 3.34 MHz. (c) 3.68 MHz (resonant frequency).

via: Lee, IEEE 2011

Coupling Changes Frequency Response

via: J.Stark III Thesis MIT 2004

Power Efficiency: Double Resonant Circuit

Transmitter

Receiver

$$\eta_1 = \frac{\text{Power to Load}}{\text{Total Power (Loss+Load)}} = \frac{I_L^2 R_{Le}}{I_1^2 R_1 + I_2^2 R_2 + I_L^2 R_{Le}}$$

Max Power Efficiency at Resonance

Calculate:

When at Optimum load resistance, R_{L-equiv-opt}

$$R_{L-equiv} = R_2 (1 + k^2 Q_1 Q_2)^{1/2}$$

Double Resonant Power Transfer, Optimization

Efficiency: 'k' Dependence with 'Q'

Coil Spatial Position Sensitivity Tests: Simple Circular Coils

- The transmitter (red) and receiver (orange) coils, aligned above one another and separated on the z-axis.
 - Separate: z-direction
 - 'Shift' : x-direction
- Litz-wire coils are employed.
 Symmetric, 30cm Diam. Coils.

Position Sensitivity: Separation

Coil Separation: z-axis

Position Sensitivity: Off Axis Shift

Coil Shift: x-axis

Circular Coils in Air, Litz Wire

Measured Frequency Characteristics

Lessons from Wireless World

- On-Going Development, Many Applications
 - Electric buses, cars
 - Autonomous-underwater-vehicles (AUV)
 - Medical implants, cell-phones, computers
- Theory and Experimental Agreement
 - High 'Q' is essential for low loss
 - Equivalent circuit models are okay and useful
 - Modal analysis models are okay and useful
 - Efficiency-power FOM = k $[root(Q_1Q_2)] >> 1$
 - Presently data only up to 10s kilowatt level
- Now: expand concepts to Megawatt Level

Resonant High-Power Transformers

- Maximize power transfer
- Minimize Loss: efficiency constraint
- Apply to 50 500 MW, 110 500kV designs
 - Requires high frequency
 - Recall transformer size relations
 - To keep similar size:
 - Mu reduced by 40,000
 - Frequency increase by ~40,000 (perhaps ~ 1MHz)
 - No core: less heat, better insulation

Optimized Power Transfer

Equivalent "Loss-Less" Resonant Circuit:

Optimized Power Transfer

At Resonance:

Idealized: Neglect Winding Losses

Define Power Transfer Efficiency (N1 = N2):

efficiency = $\eta_2 = \frac{\text{Optimum Power to } R_L \text{ with Transformer}}{\text{Optimum Power to } R_L \text{ without Transformer}}$

Max Power Transfer:

10 to 500 MW: Core-Less Design

Spiral Coil: 25 turns, 1.5" wire, 0.5" spacing, 24" ID: \rightarrow 1000 μ H

Spiral Coil = Shell-Form Pancake Coil

via: Hagman, PES transformer Course 2013

10 to 500 MW: Core-Less Design

- Coils
 - Control & Design separation for optimum 'k'
 - Employ existing coil technology
 - spiral 'pancake' coils
 - Like in shell-form transformers
 - Exhibit better high frequency response
 - Control inductance for low-loss
 - Minimum resistance possible
 - fewer turns, large area wire (Litz)
- Without Core
 - No Core losses
 - More space for cooling
 - More space for insulation

Limitations, Needs

- Power Electronics (at the megawatt level !!!)
 - Costs for steel core \rightarrow power electronics
- Non-magnetic coil supports
 - Magnetic forces still very large
- Stray field control
 - Use ferrite material external to windings
 - Example auto and bus chargers
- High 'Q' coils
 - Low losses, maybe superconductivity ??
 - Examples of superconductivity classical transformers

Conclusions

- Classical transformers
 - Costly; large heavy steel cores
 - Complicated construction
- Disruptive approach: eliminate the steel core
 - Use magnetically coupled resonance
 - Borrowed concepts from wireless power
 - No steel core
 - High frequency operation, needs power electronics
 - Structure of Pancake coils consistent with wireless power
 - High Q coils essential
- Added Bonus
 - Use power electronics to go 'breaker-less' ???

Thank You

And Thanks to the 'Internet' for Many Great Images

