IEEE Computer Society 2022 Report

23 Computing Technologies That Will Shape the World in 2022

Dennis Frailey, IEEE CS Board of Governors Member (Retired) Principal Fellow, Raytheon Adjunct Professor, SMU and UTA

Presented to Boise Chapter of IEEE Computer Society March 17, 2016

This Presentation is Jointly Sponsored by

AND

Advancing Computing as a Science & Profession

Executive Summary

- 2012 IEEE-CS Commissioned a Report on technologies that will have major impact by 2022
- 2013 Report completed
 - 23 technologies identified
 - State of the art of each technology surveyed
 - Challenges identified
 - Where technology is going speculated
 - Potential disruptions identified
- 2014 Factored the report into the 2014 update of the Computer Society's strategic plan

Presentation Outline

- Motivating Scenario Seamless Intelligence
- Summaries of Some of the Technologies
- Survey of Drivers and Disruptors
- IEEE Computer Society in 2022

Report can be downloaded from:

www.computer.org/web/computingnow/2022-Report

Motivation and Goals

- Plan for the Future
 - Try to paint the state of the art of promising technologies
 - Identify potential disruptions and how they will evolve
- Contribute to society
 - How should IEEE CS fit in the new world of future
 - Directly feed into the Computer Society's strategic plans
- Envisioning the future is always a fun @
 - And potentially risky ⊗

How

 Dejan Milojicic, then president-elect of the Computer Society, assembled a team of well respected technologists

- Team worked via a series of phone and F2F meetings
- Strengthened by surveys
- Input by volunteer leaders
- Final edits by staff

Two phases

- 1. Understand the Technologies
- 2. Propose how the IEEE CS organization should change in the future (publications, conferences, etc.)

Who - Core Team

- Hasan Alkhatib, (Entrepreneur, President SSN Services, LLC)
- Paolo Faraboschi, HP Labs, Spain
- Eitan Frachtenberg, FaceBook,
- Hironori Kasahara, Waseda University, Japan
- Danny Lange, Amazon
- Phil Laplante, Pennsylvania State University
- Arif Merchant, Google
- Karsten Schwan, GaTech
- Dejan Milojicic, HP Labs

Core Team Photos

Alkhatib

Laplante

Faraboschi

Merchant

Kasahara

Schwan

Lange

Milojicic

3/18/2016

Frachtenberg not shown

Additional Contributors

- Mohammed AlQuraishi, Harvard Medical School
- Angela Burgess, IEEE Computer Society, Executive Director
- Hiroyasu Iwata, Waseda University
- Rick McGeer, Communications and Design Group,
 SAP America
- John Walz, Retired from Lucent/AT&T

What: 23 Technologies in 2022

- 1. 3D Printing
- 2. Big Data and Analytics
- 3. Open Intellectual Property Movement
- 4. Massively Online Open Courses
- 5. Security Cross-Cutting Issues
- 6. Universal Memory
- 7. 3D Integrated Circuits
- 8. Photonics
- 9. Cloud Computing
- 10.Computational Biology and Bioinformatics
- 11. Device and Nano-technology

- 12. Sustainability
- 13. High Performance Computing
- 14. The Internet of Things
- 15.Life Sciences
- 16.Machine Learning and Intelligent Systems
- 17. Natural User Interfaces
- 18. Networking and Inter-connectivity
- 19.Quantum Computing
- 20. Multicore
- 21. Software Defined Networks
- 22. Robotics
- 23.Computer Vision & Pattern Recognition

Landscape (top level view) From Industrial Advisory Board

Market Category

Life Sciences

Computational Biology and Bioinformatics

Medical Robotics

Computer Vision & Pattern Recognition

Machine Learning & Intelligent Systems

Natural User Interfaces

3D Printing

Big Data and Analytics

Technologies

High-Performance Computing

Cloud Computing

Internet of Things

Networking & Interconnectivity

Software-Defined Networks

3D Integrated Circuits

Multicore

Photonics

Universal Memory

Quantum Computing

Device and Nanotechnology

Human Capital

Massively Online Open Courses

Policies

©computer society

Open Intellectual Property Movement

Sustainability

Security Cross-Cutting Issues

Seamless Intelligence Scenario

Technology Has Transformed the World

1940's 1950's 1960's 1970's 1980's 1990's 2000's 2010's 2020's

Increasing automation, ubiquitous access, pervasive networking

A revolution in the acquisition, manipulation and communication of information

Seamless Intelligence Scenario

1940's 1950's 1960's 1970's 1980's 1990's 2000's 2010's 2020's

Seamless Mesh of Intelligent Devices

3/18/2016

Seamless Networking

- At the heart is seamless networking
 - transition from one network device to another is transparent and uninterrupted
- Wireless, from NFC to Bluetooth, WiFi, 4G and 5G, integrated into high speed wired & Internet reach from anywhere to anywhere

Software Role

- Progress in software-defined networking is needed to achieve this seamlessness through virtualized end-to-end connectivity
- This new world will require sophisticated coordination software to achieve integrated & complementary results among devices
- Voice, image and motion recognition will transform human-computer interaction (HCI) into seamless interaction between a person and all computing devices used in one's life

Seamless Intelligence - Challenges

- Federated identity, and use of more sophisticated identity technologies and standards will need to be developed
- Standard interfaces are needed for mashing up a series of applications to achieve an integrated, collective, intelligent reality
- Technology must provide powerful voice and facial recognition, massive identity databases, and powerful tracking
 - but controlling it will require collective social action.

Seamless Intelligence, Sample Benefits

- Cashless and contactless financial transactions
- Ability to cross borders without stopping for inspection
- Walking into a bar in a foreign country and have the bartender offer you your favorite drink
- Healthcare: as one walks into a hospital, the
 entire medical history can be accessible to the
 attending medical professional from a centrally
 managed health vault

Seamless Intelligence: The Double Edged Sword

Curse

Seamless intelligence technology can be used ...

to advance
healthcare,
education, science,
trade, security and
safety throughout the
world, in all countries

OR

for *militarization, invasion of privacy and Big Brother phenomena* worldwide, even
in countries that consider and
pride themselves on being
free societies

The future we want versus the future we don't want: Information and communication technology is advancing at a pace that is surpassing our abilities in society to direct this progress based on public good

computer society 3/18/2016

How Can / Must Society Respond?

The scale and speed of this progress is the challenge

There are choices that free nations can make through regulation and making choices in investment that can lead to a better world or a world that we do not desire

Potential Disruptions - Examples

Development	Disruption
Mobile Smart Devices	The demise of traditional laptop and desktop computers for many applications
Computing as a Service (Cloud Computing)	Lessening role for traditional corporate and personal servers
Country / regional internets with restrictions on use	Limited ability of individuals to have access to truthful and complete information
Intellectual property battles	Delays in availability of technology

society 3/18/2016

23

Topics To Be Discussed Here (see the report for more topics and details)

Market Category

Life Sciences

Computational Biology and Bioinformatics

Medical Robotics

Computer Vision & Pattern Recognition

Machine Learning & Intelligent Systems

Natural User Interfaces

3D Printing

Big Data and Analytics

Technologies

High-Performance Computing

Cloud Computing

Internet of Things

Networking & Interconnectivity

Software-Defined Networks

3D Integrated Circuits

Multicore

Photonics

Universal Memory

Quantum Computing

Device and Nanotechnology

Human Capital

Massively Online Open Courses

Policies

©computer society **Open Intellectual Property Movement**

Sustainability

Security Cross-Cutting Issues

The Open Intellectual Property Movement

Open Intellectual Property - Potential

- Open source software, standards, open access publishing, and crowdsourcing are a positive byproduct of WWW ubiquity
- The open property concept is rapidly expanding into areas where property has traditionally been proprietary, mongo such as hardware design
- The growth of open intellectual property can potentially generate significant benefits to humankind

Open Intellectual Property - Barriers

- Major challenges and risks include security and trust, motivation for innovators and diminishment of individuality
- Existing legal concepts, especially regarding intellectual property, may strongly impede open property
- The financial ramifications must be addressed by society

Massively Open Online Courses, MOOCs

28

Massively Open Online Courses

- Drawing hundreds or even thousands of students to a session, MOOCs offer free or low-cost, highquality, courses to anyone on the Internet
- They can be used for continuing education, credit bearing courses and even graduate education
 - Web-based course content, assessed through automated exams; assessment is optimized for automated grading
 - Connective learning model via crowd-sourced interactions;
 graduate assistants moderate interactions and answer questions
- Renowned scholars can reach immense audiences, underserved, remote populations, with enormous societal impact

MOOC challenges

- Quality issues
 - Low completion rates (<8% of enrolled students)
 - Weak methods for protecting against plagiarism
- Financial issues
 - It takes significant investment to build and maintain the MOOC platform
 - Compensation of educators

Universal Memory

31

Universal Memory – The End of DRAM is in Sight

- DRAM has had a remarkable lifespan of over 40 years, with regular increases in scale of about 1.6x per year
- Because of the charge retention and manufacturability dictated by laws of physics, the end of DRAM's scaling is in sight

Universal Memory

- The next 5–7 years will see a significant shift for IT infrastructure, and we believe that memory will change profoundly
- The number of memory manufacturers has been steadily decreasing: 20 (85), 11 (95), 8 (07), 4 manufacturers today
- Between now and 2022, we expect that a new form of non-volatile "universal" memory NVM will replace DRAM
- It is difficult to predict exactly when and how, but transition is inevitable; there are signs of that happening, eg Flash

Photonics

The Data Communication Challenges

- There are 3 challenges in the roadmap for data communication:
 - a) energy efficiency,
 - b) scaling bandwidth, and
 - c) delivering low latency across systems @ scale
- Systems increasingly require wider bandwidths, but communication energy grows nonlinearly with bandwidth
- Today the energy to move data exceeds the energy to compute on data
 - and this trend will continue society 3/18/2016

3D Integrated Circuits

 Today, we are making great strides in building three dimensional integrated circuits.

 At the processor-memory level, tighter integration using 3D-ICs technologies will address several

communication challenges

Photonics – The Potential Solution

Photonics: the science and technology of generating, controlling and detecting photons (light particles)

- Emerging silicon photonics offer lower power, high bandwidth, and overcome link length restriction of electrical interconnect
- Silicon photonics is foundational for high-end systems: in 2022, it is the only technology that can reach Exascale objective

3D Printing

3D Printing - Today

3D printers already *create many shapes using* combinations of materials

Many are difficult to create with conventional methods

They handle products from inches to feet; materials from plastic to metal, to foods, to stem cells to create living tissue

3D Printing – Medical Applications

- Custom prosthetics and even replacements for body parts may be 3D printed
 - ➤ e.g. cartilage formed from printed molds
- Combining different materials allows creation of composite materials with new properties
 - ➤ e.g. ability to self-heal after failure

3D Printing – Tomorrow

- Printing batteries and sensors on objects will enable those objects to sense the surrounding temperature, light, and even impending failure
- Printing complete, fully functioning devices
 (electronic and mechanical) will make redundant
 the process of assembling them from parts
- Manufacture of many products will move from large, centralized factories to local workshops and even homes

Big Data and Analytics

Today We Produce a Lot of Data

- Data is collected, shared, and analyzed every day
 - great potential to improve data-driven decisions
- Worldwide, we can now produce around 15
 petabytes of compressed genetic data per year
 - this is growing at a rate of 3-5x per year
- In high-energy physics, the Large Hadron Collider and other instruments in CERN alone produce a
 - similar amount of data

The challenge: analyzing all that data.

Big Data and Analytics

- These techniques can potentially have tremendous impact in reducing uncertainty around decisions, before they're made
 - and afterwards too
- But there are significant technological/societal challenges:
 - rapid changes in: acquisition, storage, and processing
 - education of workforce/everyday users
 - complex privacy issues

Robotics in Medicine

45

3/18/2016

Robotics in Medicine - Today

- Computer science helped evolve invasive image processing and measurement techniques to screen undiscovered diseases
 - ➤ 3D Hi-vision endoscope, navigation system and surgical robotic system
- Computer Aided Surgery is expected to become standard operation due to its low invasiveness, lower hand vibration and highly accurate positioning
 - > Reducing physical burdens on patient

Da Vinci Surgical System

- More than 2700 installations
 - ➤ But the distribution and surgical applications are still limited

© 2010 Intuitive Surgical, Inc.

Robotics in Medicine - Future

- Robotics will have a great potential to allow patients, elderly, and pregnant to undertake *Tele-[checkup, diagnosis, therapy]*
 - beyond hospital, region, country, and even continent
- Tele-echography robot, will be applicable to critical care in long-travel ships and aircraft

Security Cross-Cutting Issues

Security Cross-Cutting Issues

- We face a tradeoff between privacy, security, and convenience.
 - Changes in laws & improvements in privacy-enhancement tools and techniques may be needed to *find a balance* between tolerable levels of intrusion and desired levels of security
- Powerful forces are converging that are of great concern to individuals and to public entities.
 - exponential growth of large data repositories;
 - enhanced capability to analyze data for various patterns;
 - advancing ability to collect diverse data
 - adversarial government agents, criminals, and enemies.

Survey of IEEE Members

Conducted as part of the 2022 study

Survey

- Several Thousand IEEE Members were Surveyed
- Two classes of questions:
 - What are the major driver technologies?
 - What are the major disruptor technologies?

Respondents were asked to rank these

- Result:
 - Overall rankings of drivers and disruptors

Survey Outcome: Drivers

- Increases in average life expectancy
- Increasing ratio of retirees to workers
- People's concern over control over access/amount of personal information
- Desire for sustainable energy sources
- Reduction in availability of grants and philanthropic resources
- Widening economic inequality worldwide
- Reduced job security in a global market economy
- Climate change

- Global terrorism
- Use of big data and analytics
- Reduction in cost of data collection and retention (for use in analytics)
- Quickening pace of knowledge transfer (e.g. instantaneous global communication)
- Long-term availability of certain energy sources
- Alternative distribution chains (such as manufacturers selling directly to consumers)
- Use of technology for medical procedures
- Wireless/ broadband connectivity

Survey Outcome: Major Drivers

Disruptors

- Crowdsourcing / opensourcing of hardware development
- Changes in educational structure/design, eg, Massive Online Open Courses
- Virtual/alternative currencies (such as bitcoin)
- Smartphone use as a device for payment
- Cloud computing
- The growing use of robots as a source of labor
- Non-volatile memory influencing accessibility and portability of big data
- Quantum/non-deterministic computing
- Use of 3-D printing
- Green computing
- New user interfaces.
 - ➤ eg, Siri, Kinect instead traditional keyboard/mouse interface

Major Disruptors

IEEE Computer Society in 2022

- Society for professionals'/students' seamless intelligence
 - Membership that is on average 10 years younger
 - Cool factor, but maintain traditional engineering principles rigor
 - Truly global and truly connected
- New products
 - Instant access, publish, collaborate, meet physically/virtually
 - New standards: living code, practices, building codes
 - Learning by doing and from doers
- Societally mindful of preserving privacy
 - At pace with technology, but not faster than societal changes
 - Know only as much about a member as he/she allows

2022 Report Conclusions (1 of 2)

 By 2022, computing devices will vary from nanoto mega-scale

Microsoft mega scale data center, Dublin, Ireland (opened 2009)

- Wireless/wired networks will enable access to worldwide integrated services
- Virtual connectivity will enable integration of relevant computing resources to provide users with

integrated and seamless services

2022 Report Conclusions (2 of 2)

The resulting ecosystem will offer seamless, continuous, uninterrupted services that enhance automation, productivity, collaboration and access to intelligence and knowledge

The benefit of technology is what we make of it:

societies will face challenges in technologies that benefit humanity instead of destroying and intruding on human rights of privacy and freedom

Thank you!

Questions

