Detecting Tampered Image Regions

Victoria A Gunning MIT Computer Vision Lab MIT Edgerton Center

Previous Work

2005

Determined that a digital image's origin can be identified.

2009

Determined that portions of an digital image can be identified as tampered.

Noise Sources

PRNU (Photoresponse Non-uniformity) DSNU (Dark Signal Non-uniformity) Shot Noise Readout Noise Quantization

Denoising & Noise Extraction

Flat Fielding

Filters for Estimation: Box, Median, Gaussian, Bilateral, Bilateral Grid, ...

Denoising & Noise Extraction

Previous work used a combination of a Wiener filter and 8-tap Daubechies wavelet.

Gaussian Filter

Smooth change in dependency on neighbors as the distance increases

Bilateral Filter

Takes the pixel value distance in account as well as physical distance

$$B(x) = \frac{1}{k(x)} \sum_{\xi} f(x,\xi) g(I(\xi) - I(x)) I(\xi)$$

Modeling Cameras

Generate synthetic images Model the noise sources

$$I = g^{\gamma} \cdot [(1+K)Y + \Omega]^{\gamma} + Q$$

Deadleaf Images

PRNU

Gaussian Noise

Quantization Noise

Extracting K

Averaging K

D200 Images Frequencies

D200 Extracted K

Classifying Images

	Training		Testing	
Dim	Accuracy	Precision	Accuracy	Precision
300x300	.9933	.9933	1	1
150x150	.9664	.9664	1	1
75x75	.8758	.9128	.7632	.9474
50x50	.7953	8322	.7105	8421
25x25	.7282	.7651	.6579	.6842
10x10	.5503	.5638	.5789	.6316
5x5	.2933	.5168	.3421	.4211

The first test was using patch correlation. The middle of the image was from a different camera.

Masking the tampered and original areas, the mean and variance of each pixel region can be calculated.

	Dead le	eaf Image Original	Tampered Region		
Dim	Mean	Mean Variance	Mean	Mean Variance	
7x7	.4063	.0390	.2906	.0685	
11x11	.4108	.0268	.2895	.0567	
25x25	.4135	.0154	.2656	.0471	
51x51	.4085	0103	.1006	.0099	

The first test was using patch correlation. The middle of the image was from a different camera.

Masking the tampered and original areas, the mean and variance of each pixel region can be calculated.

	D200 Im	age Original	Tampered Region		
Dim	Mean Mean	Mean Variance	Mean Mean	Mean Variance	
7x7	.0716	.0256	.0676	.0246	
11x11	.0725	.0109	.0685	.0102	
25x25	.0729	.0026	.0692	.0021	
51x51	.0730	9.3678e-04	.0699	.5.1987e-04	

Markov Random Fields

The last tests used MRF and Loopy Belief Propagation.

Markov Random Fields

[1] Fridrich, J. (2009). Digital image forensics using sensor noise.
[2] Hirakawa, K. and Parks, T. W. (2005). Adaptive homogeneity-directed demosaicing algorithm.
[3] Luk, J., Fridrich, J., and Goljan, M. (2005). Determining digital image origin using sensor imperfections. Technical report, Binghamton University.
[4] Paris, S. and Durand, F. (2006). A fast approximation of the bilateral filter.
[5] Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for gray and color images. In Sixth International Conference on IEEE.

Thanks to my mentor Katie Bouman and advisor Bill Freeman.