
Foundations and Future Directions 

for Exascale Computing

Thomas Sterling

Chief Scientist, CREST

Professor, School of Informatics and Computing

Indiana University

April 9, 2015

Boise State University



Introduction
• Exascale computing will demand innovations greater than 

required for Petaflops, 7 years ago

– Computer architecture

– Parallel programming models

– System software

• 2 Classes of Exascale computing

– Evolutionary extensions of conventional heterogeneous multicore

– Revolutionary runtime software based global address space

• Break from the past through a new execution model

– Dramatic increase in efficiency and scalability with productivity

– Address starvation, latency, overhead, contention, energy, & reliability

– Dynamic adaptive resource management and task scheduling

• Multicore design innovations to support >109 threads
– Architecture mechanisms for cooperative computing with low overheads

– Integrated core and memory for low latency and high bandwidth



The von Neumann Age
• Foundations:

– Information Theory – Claude Shannon

– Computabilty – Turing/Church

– Cybernetics – Norbert Wiener

– Stored Program Computer Architecture – von Neumann

• The von Neumann Shift: 1945 – 1960 
– Vacuum tubes, core memory

– Technology assumptions

• ALUs are most expensive components

• Memory capacity and clock rate are scale drivers – mainframes

• Data movement of secondary importance

• Von Neumann derivatives:  1960 – 2015 
– Semiconductor, Exploitation of parallelism

– Out of order completion

– Vector

– SIMD

– Multiprocessor (MIMD)

• SMP

– Maintain sequential consistency

• MPP/Clusters

– Ensemble computations with message passing

3



4

Technology/Architecture/Programming  
Synergy

1 103 106 109 1012 1015

KiloOPS MegaOPS GigaOPS TeraOPS PetaOPSOne OPS

1951
Univac 1

1949
Edsac

1976
Cray 1

1982
Cray XMP

1988
Cray YMP

1964
CDC 6600

1996
T3E

1823 
Babbage Difference 

Engine

1991
Intel Delta

1997
ASCI Red

2001
Earth 

Simulator

2003
Cray X1

1943
Harvard 
Mark 1

1959
IBM 7094



Conventional HPC

Tianhe-2

55 Petaflops peak performance

33.9 Petaflops Linpack Rmax

1,375 Terabytes memory

Intel Xeon Phi Accelerator

24 Mwatts power

NUDT deployed

Inspur manufacturer

Titan

27 Petaflops peak performance

17.5 Petaflops Linpack Rmax

693 Terabytes memory

NVIDIA Tesla Accelerator GPU

8.2 MWatts power

ORNL deployed

Cray manufacturer



1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1
/1
/1
9
9
2

1
/1
/1
9
9
6

1
/1
/2
0
0
0

1
/1
/2
0
0
4

1
/1
/2
0
0
8

1
/1
/2
0
1
2

T
C

 (
F

lo
p

s/
C

y
cl

e
)

Heavyweight Lightweight Heterogeneous

Total Concurrency

Courtesy of Peter Kogge, 

UND



Unquestioned Assumptions

• Floating point ALU optimized resource

• All architectures are von Neumann derivatives

• Control is sequential instruction issue, IP

• Node performance optimized

• Binary values

• 2-state Boolean logic

• Fixed-length instruction set architecture (ISA)

• Separation of CPU and main memory (von Neumann bottleneck)

• Silicon based semiconductor technology

• X86 dominated instruction set

• Checkpoint/restart for fault tolerance

• CSP/MPI (well, not unquestioned)

7



Head room, margins, potential innovations

Floating point ALU optimized resource

• Costs and burdens:

• Cache hierarchy 

• Branch prediction

• Speculative execution

• Out of order flow control reservation stations, …

• Prefetching, many simultaneous in-flight requests

• Alternatives:
• Emphasis on memory access throughput

• Response time to incidence of external messages

• Scratch pad memory

• Multi-threading

• Dataflow ISA

• Asynchronous flow control
8



Head room, margins, potential innovations

All architectures are von Neumann derivatives

Control is sequential instruction issue, IP

• Costs and burdens

– Variants: out of order, vector, SIMD, MPPs and clusters

– Flow control bottlenecks

– Control state limited to program counters, fork-joins

– Loss of operational precedence

– Not effective in asynchronous operation

• Alternatives

– DAGs

– Dataflow

– Systolic arrays

– unums

9



Head room, margins, potential innovations

• Boolean logic, Binary values, bits

– Limited to 2-state per spatial storage units

– Boolean logic does not have to be limited to 2-state

– Higher base may save space and energy

– Single flux quantum storage: many incremental flux levels

• Fixed length instructions

– Variable length instructions

– Compression through Hamming codes

– Tagged registers for typing – generic

– Biased register access patters – accumulator 

– Average of 4 – 5 bits per instruction with full semantic richness

– Convert instruction register to inner-loop register

– Saves bits, bandwidth, energy

• X86 ISA

– Treats rest of system as I/O devices

– Doesn’t recognize asynchrony of operation or message-driven computing
10



Head room, margins, potential innovations

• Separation of CPU and main memory

– Major bottleneck

– Worse with multi/many core processor sockets

– A driver for need for cache

– Processor in Memory (PIM) 

– On-chip scratch pad memory

• Silicon based semiconductor technology

– Moore’s Law will flat-line by end of decade, ~ 5 nm feature size

– Leakage current a challenge

– Graphene of interest

– Superconducting single flux quantum logic at 100 – 200 GHz, 100X 

energy advantage

• CSP/MPI (well, not unquestioned)
– MPI + X, where X = OpenMP maybe

– Fork-joins impose Amdahl bottlenecks

– X could also be DAGs

– Asynchronous Multi-Task execution models
11



Motivation for ParalleX Execution Model

• A crosscutting execution model to determine respective 

roles, responsibilities, and interoperability

• Exploit runtime information through introspection to 

discover parallelism for scalability and dynamically 

manage resources to demand for efficiency

• Expose limitations of conventional computer architecture
and devise mechanisms for lower overhead and latency

• Serve as a research platform (HPX) to explore utility, 

generality, opportunity, and challenges/limitations

• Target and enabler for parallel programming models

• Operation in the presence of uncertainty of asynchrony

• First conceived in support of HTMT project and Cascade 12



Distinguishing Features of ParalleX/HPX



ParalleX Compute Complexes

• Manifest as a variant of threads on conventional 

platforms

• Complexes are first-class objects

• Unbounded number of complex registers

• Preemptive, sometimes

• Internal static dataflow ILP

• Depleted complexes exhibit LCO synchronization 

semantics

• Can migrate as continuations

• State-machine definition in and out of runtime system

14



ParalleX Computation Complex 

-- Runtime Aware -- Logically Active -- Physically Active



Extensions
• Power management

– “Side-Path Energy Suppression”

– Not funded

• Reliability

– CVC-Microcheckpointing

– Not funded

• Real-time

– Semantics of time, progress to goal, priorities

– NSF sponsored

• PXFS

– Data driven mass storage

– Unified name space

– NSF sponsored

• PRIDE

– System-wide operating system

– Scales ParalleX processes up 16



Applications

S
y
s
te

m
H

a
rd

w
a
re

Networks

Collaborative Workflows
R

e
s
ili

e
n

c
e

P
ro

d
u

c
ti
v
it
y

E
x
e

c
u

ti
o

n
 M

o
d

e
l

PM
Processor 

Cores (P)

Memories 

(M)
PM PM PM. . . Persistent 

Storage

O
p
e
ra

ti
n
g

S
y
s
te

m

Lightweight Kernel LWK LWK LWK. . .

I/O Object 
Storage 
Software

System-Wide OS

R
u
n
ti
m

e
S

y
s
te

m
s

User 
Threads

Global 
Address 
Space

Synchronization Communication Introspection

E
n

e
rg

y
W

o
rk

fl
o
w

 
M

a
n
a
g
e
m

e
n
t Programming Environment Tools & Libraries

Programming Model

Object AbstractionLanguages Parallel Semantics 



• Dharma – Sandia National Laboratories

• Legion – Stanford University

• Charm++ – University of Illinois

• Uintah – University of Utah

• STAPL – Texas A&M University

• HPX – Indiana University (also LSU)

• OCR – Rice University

18

Asynchronous Many-Task Runtime Systems



HPX Runtime Design

• Current version of HPX provides the runtime infrastructure as defined 
by the ParalleX execution model

– Compute Complexes (ParalleX Threads) and scheduling

– Parcel Transport and Parcel Management for message-driven computation

– Local Control Objects (LCOs) for synchronization

– Active Global Address Space (AGAS) for system wide naming



HPX: Distinguishing Features (1)

• Derived within the conceptual context of an execution model

• Derived within the context of the SLOWER performance model

• Global Name Space and active global address space

• ParalleX Processes

– Span and share multiple hardware nodes

– hierarchical (nested)

– First-class objects

– Support user and node OS requests for global services

– Supports data decomposition

• Message-driven computation with continuations

– Does not always return results to parent thread but migrates 
continuations

– Percolation for moving work to resources such as GPUs

• Compute complexes extend beyond typical threads
20



HPX: Distinguishing Features (2)

• Embedded data-structure (graphs) control objects

– Resolves arbitration of simultaneous use requests

• Distributed parallel control state through dynamic graphs of 

continuations (futures and dataflow)

– e.g., graph vertex/links insertion or deletion

• Copy semantics through Distributed Control Operations 

(DCO)

– Distributed arbitration of access conflicts to structure elements

– Graph structure changes 

• Suspended (Depleted) threads (compute complexes) serve 

as control objects to build continuation graphs

– Planning

– Search spaces

• Responds to OS service requests for multi-node 

capabilities

21



AMR in HPX-5

• Model of a short gamma ray 
burst

• Shows a fluid which is initially 
confined to a small high 
density high pressure region.

• Explodes creating spherical 
shock wave

• Colors indicate the density of 
the fluid

• 2nd inward moving wave 
collides at center then reflects 
back out

• 6 levels of refinement



Gain with Respect to Cores per Node and 
Overhead;

Latency of 8192 reg-ops, 64 Tasks per Core

1
2

4
8

16
32

0

10

20

30

40

50

60

70

P
e

rf
o

rm
a

n
c

e
 G

a
in

Performance Gain of Non-Blocking Programs over Blocking 
Programs with Varying Core Counts (Memory Contention) 

and Overheads



LULESH

• Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics 
evolving a Sedov blast wave

• Developed at the ASCR Co-design center at Livermore National Lab

• Contains three types of communication patterns: face adjacent, 26 
neighbor, and 13 neighbor communications each timestep

• LULESH is a static, regular computation – very well suited for MPI

Red indicates computation
White indicates communication



LULESH

• Dynamic techniques can match MPI performance, even 

for static, uniform computations!



The Negative Impact of Global Barriers in Astrophysics Codes

Computational phase 

diagram from the MPI based 

GADGET code (used for N-

body and SPH simulations) 

using 1M particles over four 

time steps on 128 procs.

Red indicates computation

Blue indicates waiting for 

communication



Dynamic load balancing via message-driven work-

queue execution for Adaptive Mesh Refinement (AMR)



Application: Adaptive Mesh Refinement

(AMR) for Astrophysics simulations



Towards the Global Core Architecture

• A new class of core architectures required
– Designed for extreme scale

– Extreme replication

– Useful for diverse computing domains

• Special requirements
– Emphasis on interoperability with the other Billion cores

– De-emphasis on ALU utilization, need availability and hyper-control state

– Ultra low overheads for

• Global address translation

• User thread context creation, termination, and switching including preemption

• Message-driven computation and networking

– Minimization of local memory latency, possibly PIM structures

• Operational properties monitoring
– Fault detection and reconfiguration control

– Energy/power measurement and modulation

– Resource utilization and availability 29



Other Architecture Innovation Opportunities

• Variable width binary instruction encoding
– Register type tagging

– Compression 

– Generic operations

– Non uniform register access ordering

• Wide word ALU
– High throughput

– In flight compound atomic multi-field operations

– Software flexibility with hardware performance

• Dataflow fine grain parallelism
– Replaces complex ILP mechanisms

– Latency hiding

– Hardware support for control flow

• Advanced optical interconnect and 3-D stacking 30



Wide-word Struct ALU

. . .
Thread 0 registers

Thread N-1 registers

…

Scratchpad

Memory Interface
Row Buffers

Dataflow

Control

State

Wide

Instruction

Buffer

Parcel
Handler

Thread

Manager

Memory Vault

Fault

Detection

and

Handling

Power

Management

Access

Control

AGAS
Translation

Datapaths

with

associated

control

Control-only

interfaces

PRECISE

Decoder

I

N

T

E

R

C

O

N

N

E

C

T

A B

C D

E

F

G H
I

J

K L

M
N

O

P



Conclusions

• New high density functional structures are 

required at end of Moore’s Law and are emerging

• Reactive Runtime systems supported by 

innovations in hardware architecture mechanisms 

will exploit extremes of parallelism at high 

efficiency

• Neo-Digital age advances beyond von Neumann 

architectures to maximize execution concurrency 

and react to uncertainties of asynchrony

32




