5G Testbed at IISc

सत्यमेव जयते Department of Telecommunications Ministry of Communications Government of India Chandra R. Murthy Professor, ECE Department, IISc Bangalore

http://ece.iisc.ac.in/~5G-Testbed/

IISc's 5G Vision

• Goals/Mission:

- Build expertise in the area
- Develop niche competency
- Make key contributions
- Impact standards development and 5G use case scenarios
- Create IP, engage with startups
- Educational activities: workshops, industry outreach, etc

Key solution areas

- Massive MIMO (sub 6 GHz)⁻
- mmWave (~28 GHz)
- V2X
- VLC
- System level simulation
- ▶ loT
- Tactile internet
- Drone/UAVs

5G testbed project

सत्यमेव जयते Department of Telecommunications Ministry of Communications Government of India

Other parallel efforts

National 5G Testbed: Responsibility chart

	Subsystems	IITB	ІІТН	IITM	llSc	ΙΙΤΚ	CEWiT	SAMEER	IITD
	Radio Front End		X	X			X	X	
	subsystem <6 GHz								
	Radio Front End		X	Х			X	Х	Х
	subsystem >6 GHz								
	Massive MIMO		Х	Х	Х		X		Х
	Base band subsystems		X	Х	Х		Х		Х
	Polovs					×			
	Cognitive Radio								X
		X							~
	High speed Serial			X					
	Fight-speed Serial								
	L2/L3 subsystems								
	CloudRAN		X				X		
	Edge Computing &		X						X
	SDN								
	Core Network & SDN	Х	X	X					
	Devices		Х	Х			Х		
	ΙοΤ		X				X		Х
	IMS & Service layer								
	Security								Х
	LiFi				Х				Х
ENCE	V2X				X				

5G Testbed at IISc: People

Faculty

Staff

- Principal/Senior Engineers:
 - Alok Gupta
 - Ganesan Thiagarajan
 - Sudhakar B.
 - S. V. R. Anand
- Engineers:
 - Syed Sadaf
 - Srushti Patil
 - Ashish Meshram
 - Rahul Gottipatti
 - Vinay Chowdappa
 - Keertipriya Sathish
 - Pratik Sharma
 - Amol Bhindwale
 - Ishan Darwhekar
 - More (not here)

- Pratik Sharma
- Faheem Ahmed Students:
 - Sai Thoota
 - Vineeth Kumar
 - Rama Kiran
 - Sarvendranath R.
 - More (not here)

Administrative Assistant: Rajani B.

Ver 1: Dec. 2019

- Link testing in lab environment
- 80 MHz BW
- Separate testbeds for high BW and large MIMO demos

In Pictures – 5G Lab

Current Status of Sub 6 GHz

DL PHY channels implemented & verified on hw

- 80 MHz BW
- Test equipment based validation done
- UL PHY channels: OAI code incomplete
 - Working with them to implement the channels

Link level simulator

- 5G NR OAI code (gNB and UE RAN implementation)
- Demo: Link
- Index modulation demo: Link
 - Skylark boards: auto-synchronized when daisy chained

Current Status of Sub 6 GHz

- LTE end-to-end link demo: Link
 - USRP B210
 - I0 Mbps over 5 MHz BW
- 5G NR downlink demo: Link
 - ▶ gNB tx @ 40MHz and UE operating @ 40MHz, USRP x310
 - PBCH, PDCCH and PDSCH
 - Can view LLR, constellation, and CIR in the PHY-scope

IISc VLC Project: Implementation Plans

Block diagram of laser based VLC

- VLC system comprising of USRP hardware with built-in FPGA for data processing
- Use case: Smart light-pole for seamless transfer from wireless to VLC
- Direct modulated light source and intensity detected with silicon detectors

Communication link demonstration

F. Ahmad et. al. "Laser-based indoor VLC systems: Comparison of different remote phosphors," Photonics 2018, Delhi

Ongoing Work

- Experimental characterization of optoelectronic devices, modulation of VLC system.
- VLC system performance characterization, performance improvement
- USRP integration with VLC, single Tx-Rx, targeted data rate: 100 Mbps, QPSK/ M-QAM modulations. Breadboard demo.
- Identify use cases relevant in 5G context
- Demonstration of data streaming from Tx to Rx: <u>Link</u>

V2X Testbed

भारतीय विज्ञान संस्था

UL: 300 Mbps, DL: 50 Mbps (10 UEs/ BS) Roundtrip latency: 10 ms, Coverage: 1 Km/BS FR1: 3.3-3.6 GHz PHY: 64 QAM, 2x2MIMO

Setup for the WiFi Experiment

Goal: Remote driving using video feedback over WiFi

WiFi Setup

- Station running Raspbian
- APs running OpenWRT

UGV Platforms

- UGV controlled over PIXHAWK
- o PIXHAWK interfaced with R-Pi
- Handover is a major source of latency in WiFi
- Video stream has high-delays during handover

Our Approach

Preemptively do handover based on location estimation

What next in V2X?

- Deploy a multimodal network across campus with WiFi
 - (11n, 11r, 11p) and LTE coverage
 - UAV intrusion detection demo: Link
- Do a thorough latency profiling of the network and identify the main bottlenecks
- Experimental setup for remote driving using video
 feedback and autonomous control over the network
- Develop appropriate PCRF, RRM, Scheduler

modifications to admit profiles for low-latency control

mmWave Testbed

28GHz Patch Antenna Elements: Design, fabrication & Characterization

28GHz Patch Antenna Array

Design, fabrication & Characterization Integrated with beam steering circuits

Feed Circuit using Anokiwave S AWMF 0108/0158 for Beam Steering Board

Design, fabrication, characterization

Up-/Down converters: Design, fabrication, characterization

Plans for 2019

Antenna Design

Both 26/28GHz

- Fabrication, preliminary testing of small array
- Control algorithms development, tests for beam steering: current work

New Studies on Antenna element

- Bandwidth enhancement of antenna element to cover different international standards
- Feed schemes to beat multilayering constraints
- Modified element design developed and fabricated
 - Slot antenna, modified patch, SIW feed scheme or other modifications

System Level Studies

- Anokiwave IC based system simulations done
- Concept design & verification simulations of full array done
- Up/down converter (using CW input): Ongoing
- Moderate array (eg 16x4) at 28GHz: Design, fabrication & testing by Dec. 2019

Evaluation of Anokiwave ICs

Evaluation of Anokiwave ICs

- Established capability to automate measurements
 - Shows some non-linearity in phase (within specified limits)
 - Alternate phase jumps are 7° and 14° (instead of 11.25° uniform)
 - Shows some variation in amplitude when phase is varied (and vice versa)
- Evaluated statistics of variations
 - absolute max error, RMS error etc (between intended ampl/phase to realized)
- 2 x 2 mmWave antenna design demo: Link

Other 5G R&D at IISc

IoT, mmWave VLSI

IoT and LPWAN

- Interference management from massive number of devices
- Access techniques to enable long sleep cycles
- Seamless switching between guaranteed time-slot and random access
- Algorithms for large-scale deployment
- Tactile CPS: extremely low latency control & feedback

mmWave VLSI

- Design key RF blocks such as LNA, PA, synthesizer
- Explore advanced techniques including phased arrays and dual band RF transceiver design

Edge Computing, massive MIMO, etc

- Edge computing
 - Coded caching, coded computation, streaming codes

Massive MIMO algorithms & baseband platforms

- Beamforming, beam selection and tracking
- Frame structure: design and optimization
- Channel measurements and characterization
- AI/ML for wireless

System-level simulation

- Ability to simulate large-scale 5G networks
- Hardware-in-the-loop co-simulation
- Feeds into the IMT-2020 evaluation
- Greater participation in 3GPP standardization meetings

Other 5G Research Areas

Multi-user beamforming for interference alignment

Self-driving cars

Sensor networks

Energy harvesting communications

Sparse channel estimation

and data detection

Summary: Gbps for everyone, g-bps from everything

- 5G focus areas
 - Millimeter wave communications
 - Beamforming & switching, new modulation techniques
 - Massive MIMO
 - D2D, full duplex, relaying
 - V2X
 - Routing and scheduling for low latency
 - VLC
 - Very high data rate, short range links
- Actively involve in Indian 5G ecosystem
 - IMT-2020 evaluation
 - TSDSI meetings
 - Startups, industry
 - Education, outreach

http://ece.iisc.ac.in/~5G-Testbed/

Thank You

