STEM Symposium: Breaking Chocolate

June 2, 2017

Rebecca Kreitinger, UNM EECE ’2019
Turtle Haste, MSED, NBCT
Hy D. Tran, PhD, PE, FASME

Electronic resources will be hosted at: sites.ieee.org/albuquerque
Objectives

• Intro to Engineering processes
 – Breaking chocolate as a vehicle
• Measurements of physical properties (quantities)
 – Different physical quantities, such as length and force
• Uncertainty in measurements
• Calibration of a measurement instrument (applying the methods of the engineering design process)

Electronic resources will be hosted at: sites.ieee.org/albuquerque
Intro to Engineering

• Engineers solve real world problems using a structured process:
 – Identify and understand needs or requirements
 – Generate potential solutions
 – Evaluate and analyze
 – Produce and document the solution

• Handout engineering decision matrix (example slide next)

Electronic resources will be hosted at: sites.ieee.org/albuquerque
Typical decision aid

Simplified Quality Function Deployment (QFD) Template

- **Name:** __________________________

<table>
<thead>
<tr>
<th>REQUIREMENT 1:</th>
<th>IDEA 1:</th>
<th>IDEA 2:</th>
<th>IDEA 3:</th>
<th>IDEA 4:</th>
<th>IDEA 5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQUIREMENT 2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REQUIREMENT 3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REQUIREMENT 4:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REQUIREMENT 5:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The “breaking chocolate” experiment

• Initially designed for high school physical sciences
 – We adapt to use cross-cutting concepts in engineering and measurement for 6-8, adaptable to lower grades

• Three-point breaking strength test
 – Measurements are crucial in calculating the breaking strength:
 • Thickness and width of the chocolate
 • Distance between the end supports
 • Applied force that breaks the chocolate

Electronic resources will be hosted at: sites.ieee.org/albuquerque
What do we measure

• Physical properties and their quantities (we will often use “physical quantities” when referring to physical properties)
 – The SI system (commonly called metric)
metric and egyptian measures collide

Wait a minute. Which one is a cubit and which is a centimeter?

The MCO MIB has determined that the root cause for the loss of the MCO spacecraft was the failure to use metric units in the coding of a ground software file, “Small Forces,”...
What is length?

- Hands on #1, hand out rulers to tables, copies of the coin properties, and a handful of coins per table
- Teacher groups to determine process for identifying useful rulers, test process, and report out (per table group) (quick 2 sentence verbal explanation of best solution)
Set up the chocolate breaking experiment

- 3 contact points breaking strength:
 - (a) Distance between end chopsticks
 - (b) Width of chocolate
 - (c) Thickness at center chopstick, also (d) amount of force to break
What about force?

• Hand out scales, nickels, cups, string; balance stations already set up
• Purpose: How useful is the luggage scale? (Is it good to ± 10 g at 1 kg? Is it ± 10 g at 1.5 kg? How about at 0.5 kg?)
• Groups take 3 minutes to plan, test, and be ready to report (2 sentences per group, or write as a “tweet”)
Let’s get to breaking!

• Each table gets a bunch of wood blocks, chopsticks, string, and 1 luggage scale; at least three bars of chocolate; make sure each table has a different type of chocolate
• Remember to handle the chocolate as little as possible (melting!)
• Report (make your own table with poster paper & markers)
 – Your table team name, and the type of chocolate
 – Distance between endpoints
 – Distance center to endpoints (should be as close to the same as possible)
 – Width of chocolate
 – Thickness of chocolate where the center chopstick is
 – Breaking force
• Make a summary tweet!

Electronic resources will be hosted at: sites.ieee.org/albuquerque
Acknowledgments

• Kevin Strong, Melissa Teague, Chris DiAntonio, Meaghan Carpenter, Trish Briscoe, Mike Jackovich, Jason Neely, Gilberto Zamora, John Saldana, Lee Smith, Selena Connealy, Zane Kominek, John Emerson, Malva Knoll, ... Apologies if I forgot or misspelled your name

• The Albuquerque IEEE section, the UNM IEEE student section, Sandia Nat’l Labs, the Albuquerque inter-technical-society council, NCSLI

• You can always reach me at hdtran@sandia.gov; I will do my best to respond in a timely fashion

Electronic resources will be hosted at: sites.ieee.org/albuquerque